Skip to main content

Abstract

This chapter is devoted to the study of controllable proximity effects in superconductors (S), in terms of both fundamental aspects and applications. As a part of the work, theoretical description was suggested for a number of structures with superconducting electrodes and multiple interlayers with new physics related to the proximity effect and nanoscale φ-junctions. They are Josephson structures with the phase of the ground state φ g , 0 <  φ g  < π φ-junctions can be created on the basis of longitudinally oriented normal metal (N) and ferromagnetics (F) layers between superconducting electrodes. Under certain conditions, the amplitude of the first harmonic in the current-phase relation (CPR) is relatively small due to F layer. The coupling across N layer provides negative sign of the second harmonic. To derive quantitative criteria for realization of a φ-junction, we have solved two-dimensional boundary-value problem in the frame of Usadel equations for overlap and ramp geometries of different structures with NF bilayer. This chapter is focused on different geometries of nanoscale φ-structures of the size much less than Josephson penetration depth λ J . At the same time, φ-state cannot be realized in conventional SNS and SFS sandwiches. Proximity effect between N and F layers limits minimal possible size of φ-junction. In the case of smaller junctions, NF bilayer becomes almost homogeneous, φ-state is prohibited, and junction exists in 0- or π-state. The conditions for realization of φ-junctions in ramp-type S–NF–S, overlap-type SFN–FN–NFS, and RTO-type SN–FN–NS geometries are discussed in the chapter. It is shown that RTO-type SN–FN–NS geometry is most suitable for practical realization. It is also shown in this chapter that the parameter range of φ-state existence can be sufficiently broadened. It allows to realize Josephson φ-junctions using up-to-date technology. By varying the temperature, we can slightly shift the region of 0-π transition and, consequently, we can control the mentioned phase of the ground state. Furthermore, sensitivity of the ground state to an electron distribution function permits applications of φ-junctions as small-scale self-biasing single-photon detectors. Moreover, these junctions are controllable and have degenerate ground states +φ and −φ, providing necessary condition for the so-called silent quantum bits.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S.K. Tolpygo, Low Temp. Phys. 42, 463 (2016)

    Article  Google Scholar 

  2. A.A. Golubov, M.Yu. Kupriyanov, E. Il’ichev, Rev. Mod. Phys. 76, 411 (2004)

    Article  ADS  Google Scholar 

  3. A.I. Buzdin, M.Yu. Kupriyanov, Pis’ma Zh. Exp. Teor. Fiz. 52, 1089 (1990) [JETP Lett. 52, 487 (1990)]

    Google Scholar 

  4. L.R. Tagirov, Physica C 307, 145 (1998)

    Article  ADS  Google Scholar 

  5. T. Kontos, M. Aprili, J. Lesueur, X. Grison, Phys. Rev. Lett. 86(2), 304 (2001)

    Article  ADS  Google Scholar 

  6. C. Bell, R. Loloee, G. Burnell, M.G. Blamire, Phys. Rev. B 71, 180501 (R) (2005)

    Google Scholar 

  7. M. Weides, M. Kemmler, E. Goldobin, H. Kohlstedt, R. Waser, D. Koelle, R. Kleiner, Phys. Rev. Lett. 97, 247001 (2006)

    Article  ADS  Google Scholar 

  8. A.V. Ustinov, V.K. Kaplunenko, J. Appl. Phys. 94, 5405 (2003)

    Article  ADS  Google Scholar 

  9. Ya.M. Blanter, F.W.J. Hekking, Phys. Rev. B 69, 024525 (2004)

    Article  ADS  Google Scholar 

  10. I.B. Sperstad, J. Linder, A. Sodbo, Phys. Rev. B 78, 104509 (2008)

    Article  ADS  Google Scholar 

  11. M.G. Blamire, J.W.A. Robinson, J. Phys.: Condens. Matter 26, 453201 (2014)

    ADS  Google Scholar 

  12. M. Eschrig, Rep. Prog. Phys. 78, 104501 (2015)

    Article  ADS  Google Scholar 

  13. V.V. Ryazanov, V.A. Oboznov, A.V. Veretennikov, A.Yu. Rusanov, Phys. Rev. B 65, 02051(R) (2001)

    Article  Google Scholar 

  14. S.M. Frolov, D.J. Van Harlingen, V.A. Oboznov, V.V. Bolginov, V.V. Ryazanov, Phys. Rev. B. 70, 144505 (2004)

    Article  ADS  Google Scholar 

  15. V.V. Ryazanov, V.A. Oboznov, A.Yu. Rusanov, A.V. Veretennikov, A.A. Golubov, J. Aarts, Phys. Rev. Lett. 86(11), 2427 (2001)

    Article  ADS  Google Scholar 

  16. P. Bunyk, K. Likharev, and D. Zinoviev, Int. J. High Speed Electron. Syst. 11, 1, 257, (2001)

    Google Scholar 

  17. T. Ortlepp, Ariando, O. Mielke, C.J.M. Verwijs, K.F.K. Foo, H. Rogalla, F.H. Uhlmann, H. Hilgenkamp, Science 312, 1495 (2006)

    Google Scholar 

  18. O. Wetzstein, T. Ortlepp, R. Stolz, J. Kunert, H.-G. Meyer, H. Toepfer, IEEE Trans. Appl. Supercon. 21, 814 (2011)

    Article  ADS  Google Scholar 

  19. M.H.S. Amin, A.Yu. Smirnov, A.M. Zagoskin, T. Lindstrom, S.A. Charlebois, T. Claeson, A. Ya. Tzalenchuk, Phys. Rev. B 73, 064516-1-5 (2005)

    Google Scholar 

  20. N.V. Klenov, V.K. Kornev, N.F. Pedersen, Physica C 435, 114 (2006)

    Article  ADS  Google Scholar 

  21. N.V. Klenov, N.G. Pugach, A.V. Sharafiev, S.V. Bakurskiy, V.K. Kornev, Phys. Solid State 52, 2246 (2010)

    Article  ADS  Google Scholar 

  22. I. Askerzade, Low Temp. Phys. 41, 241 (2015)

    Article  ADS  Google Scholar 

  23. A. Buzdin, A.E. Koshelev, Phys. Rev. B 67, 220504(R) (2003)

    Article  ADS  Google Scholar 

  24. N.G. Pugach, E. Goldobin, R. Kleiner, D. Koelle, Phys. Rev. B. 81(10), 104513 (2010)

    Article  ADS  Google Scholar 

  25. H. Sickinger, A. Lipman, M. Weides, R.G. Mints, H. Kohlstedt, D. Koelle, R. Kleiner, E. Goldobin, Phys. Rev. Lett. 109, 107002 (2012)

    Article  ADS  Google Scholar 

  26. E. Goldobin, H. Sickinger, M. Weides, N. Ruppelt, H. Kohlstedt, R. Kleiner, D. Koelle, Appl. Phys. Lett. 102, 242602 (2013)

    Article  ADS  Google Scholar 

  27. A. Lipman, R.G. Mints, R. Kleiner, D. Koelle, E. Goldobin, Phys. Rev. B. 90(18), 184502 (2014)

    Article  ADS  Google Scholar 

  28. R. Menditto, H. Sickinger, M. Weides, H. Kohlstedt, M. Zonda, T. Novotny, D. Koelle, R. Kleiner, E. Goldobin, Phys. Rev. B. 93, 174506 (2016)

    Article  ADS  Google Scholar 

  29. J.W.A. Robinson, S. Piano, G. Burnell, C. Bell, M.G. Blamire, Phys. Rev. Lett. 97, 177003 (2006)

    Article  ADS  Google Scholar 

  30. S. Piano, J.W.A. Robinson, G. Burnell, M.G. Blamire The, Eur. Phys. J. B 58, 123 (2007)

    Article  ADS  Google Scholar 

  31. R.S. Keizer, S.T.B. Goennenwein, T.M. Klapwijk, G. Miao, G. Xiao, A. Gupta, Nature 439, 825 (2006)

    Article  ADS  Google Scholar 

  32. M.S. Anwar, M. Veldhorst, A. Brinkman, J. Aarts, Appl. Phys. Lett. 100, 052602 (2012)

    Article  ADS  Google Scholar 

  33. V. Shelukhin, A. Tsukernik, M. Karpovski, Y. Blum, K.B. Efetov, A.F. Volkov, T. Champel, M. Eschrig, T. Lofwander, G. Schon, A. Palevski, Phys. Rev. B. 73, 174506 (2006)

    Article  ADS  Google Scholar 

  34. A.K. Feofanov, V.A. Oboznov, V.V. Bol’ginov et al., Nat. Phys. 6, 593 (2010)

    Article  Google Scholar 

  35. R.G. Mints, Phys. Rev. B 57, R3221 (1998)

    Article  ADS  Google Scholar 

  36. J. Pfeiffer, M. Kemmler, D. Koelle, R. Kleiner, E. Goldobin, M. Weides, A.K. Feofanov, J. Lisenfeld, A.V. Ustinov, Phys. Rev. B. 77, 214506 (2008)

    Article  ADS  Google Scholar 

  37. T. Golod, A. Iovan, V.M. Krasnov, Nat. Commun. 6, 8628 (2015)

    Article  ADS  Google Scholar 

  38. I.V. Vernik, V.V. Bol’ginov, S.V. Bakurskiy, A.A. Golubov, M.Yu. Kupriyanov, V.V. Ryazanov, O.A. Mukhanov, IEEE Trans. Appl. Supercon. 23 (3), 1701208 (2013)

    Article  Google Scholar 

  39. S.V. Bakurskiy, N.V. Klenov, I.I. Soloviev, V.V. Bol’ginov, V.V. Ryazanov, I.I. Vernik, O.A. Mukhanov, M.Yu. Kupriyanov, A.A. Golubov, Appl. Phys. Lett. 102, 192603 (2013)

    Article  ADS  Google Scholar 

  40. S.V. Bakurskiy, N.V. Klenov, I.I. Soloviev, M.Yu. Kupriyanov, A.A. Golubov, Phys. Rev. B 88, 144519 (2013)

    Article  ADS  Google Scholar 

  41. I.I. Soloviev, N.V. Klenov, S.V. Bakurskiy, V.V. Bol’ginov, V.V. Ryazanov, M.Y. Kupriyanov, A.A. Golubov, Appl. Phys. Lett. 105, 242601 (2014)

    Article  ADS  Google Scholar 

  42. N.V. Klenov, V.I. Ruzhickiy, I.I. Soloviev, Moscow Univ. Phys. Bull. 70, 404 (2015)

    Article  ADS  Google Scholar 

  43. T.Yu. Karminskaya, M.Yu. Kupriyanov, Pis’ma Zh. Eksp. Teor. Fiz. 85, 343 (2007) [JETP Lett. 85, 286 (2007)]

    Google Scholar 

  44. T.Yu. Karminskaya, A.A. Golubov, M.Yu. Kupriyanov, A.S. Sidorenko, Phys. Rev. B 81, 214518 (2010)

    Google Scholar 

  45. F. Born, M. Siegel, E.K. Hollmann, H. Braak, A.A. Golubov, D.Yu. Gusakova, M.Yu. Kupriyanov, Phys. Rev. B. 74, 140501 (2006)

    Article  ADS  Google Scholar 

  46. A.A. Golubov, M.Yu. Kupriyanov, Ya.V. Fominov, JETP Lett. 75, 709 (2002) [Pisma v ZhETF 75, 588 (2002)]

    Article  ADS  Google Scholar 

  47. I.S. Burmistrov, N.M. Chtchelkatchev, Phys. Rev. B 72, 144520 (2005)

    Article  ADS  Google Scholar 

  48. S.V. Bakurskiy, N.V. Klenov, T.Yu. Karminskaya, M.Yu. Kupriyanov, A.A. Golubov, Supercond. Sci. Technol. 26, 015005 (2013)

    Article  ADS  Google Scholar 

  49. R.S. Keizer, S.T.B. Goennenwein, T.M. Klapwijk, G. Miao, G. Xiao, A. Gupta, Nature 439, 825 (2006)

    Article  ADS  Google Scholar 

  50. S.V. Bakurskiy, N.V. Klenov, I.I. Soloviev, M.Yu. Kupriyanov, A.A. Golubov, Appl. Phys. Lett. 108, 042602 (2016)

    Article  ADS  Google Scholar 

  51. M. Houzet, V. Vinokur, F. Pistolesi, Phys. Rev. B 72, 220506 (2005)

    Article  ADS  Google Scholar 

  52. F.S. Bergeret, A.F. Volkov, K.B. Efetov, Phys. Rev. Lett. 86, 3140 (2001)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

S.B., I.S., N.K., and M.K. carried out research on current transport for the structures with complex weak link region (bilayer) with support of the RSF grant No. 17-12-01079. This work was also supported in part by the Ministry of Education and Science of the Russian Federation, Grant SC 8168.2016.2, and by RFBR, Grant 16-29-09515-ofi-m.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Klenov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bakurskiy, S.V., Klenov, N.V., Soloviev, I.I., Sidorenko, A., Kupriyanov, M.Y., Golubov, A.A. (2018). Compact Josephson φ-Junctions. In: Sidorenko, A. (eds) Functional Nanostructures and Metamaterials for Superconducting Spintronics. NanoScience and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-90481-8_3

Download citation

Publish with us

Policies and ethics