Skip to main content

Large Neighborhood Search

  • Chapter
  • First Online:
Handbook of Metaheuristics

Part of the book series: International Series in Operations Research & Management Science ((ISOR,volume 272))

Abstract

In the last 15 years, heuristics based on large neighborhood search (LNS) and the variant adaptive large neighborhood search (ALNS) have become some of the most successful paradigms for solving various transportation and scheduling problems. Large neighborhood search methods explore a complex neighborhood through the use of heuristics. Using large neighborhoods makes it possible to find better candidate solutions in each iteration and hence follow a more promising search path. Starting from the general framework of large neighborhood search, we study in depth adaptive large neighborhood search, discussing design ideas and properties of the framework. Application of large neighborhood search methods in routing and scheduling are discussed. We end the chapter by presenting the related framework of very large-scale neighborhood search (VLSN) and discuss parallels to LNS, before drawing some conclusions about algorithms exploiting large neighborhoods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J. Adams, E. Balas, D. Zawack, The shifting bottleneck procedure for job shop scheduling. Manag. Sci. 34(3), 391–401 (1988)

    Google Scholar 

  2. Y. Adulyasak, J.-F. Cordeau, R. Jans, Optimization-based adaptive large neighborhood search for the production routing problem. Transp. Sci. 48(1), 20–45 (2012)

    Google Scholar 

  3. R.K. Ahuja, J.B. Orlin, D. Sharma, Multi-exchange neighborhood structures for the capacitated minimum spanning tree problem. Math. Program. 91(1), 71–97 (2001)

    Google Scholar 

  4. R.K. Ahuja, Ö. Ergun, J.B. Orlin, A.P. Punnen, A survey of very large-scale neighborhood search techniques. Discret. Appl. Math. 123, 75–102 (2002)

    Google Scholar 

  5. D. Aksen, O. Kaya, F.S. Salman, Ö. Tüncel, An adaptive large neighborhood search algorithm for a selective and periodic inventory routing problem. Eur. J. Oper. Res. 239(2), 413–426 (2014)

    Google Scholar 

  6. D.S. Altner, R.K. Ahuja, Ö. Ergun, J.B. Orlin, Very large-scale neighborhood search, in Search Methodologies: Introductory Tutorials in Optimization and Decision Support Techniques (Springer, Berlin, 2014), pp. 339–367

    Google Scholar 

  7. D.L. Applegate, R.E. Bixby, V. Chvátal, W.J. Cook, The Traveling Salesman Problem: A Computational Study (Princeton University Press, Princeton, 2006)

    Google Scholar 

  8. N. Azi, M. Gendreau, J.-Y. Potvin, A dynamic vehicle routing problem with multiple delivery routes. Ann. Oper. Res. 199(1), 103–112 (2012)

    Google Scholar 

  9. N. Azi, M. Gendreau, J.-Y. Potvin, An adaptive large neighborhood search for a vehicle routing problem with multiple routes. Comput. Oper. Res. 41, 167–173 (2014)

    Google Scholar 

  10. L. Bach, G. Hasle, C. Schulz, GPU parallelization of ALNS for the DCVRP, in VeRoLog Abstracts, Nantes (2016)

    Google Scholar 

  11. A.C. Beezão, J.-F. Cordeau, G. Laporte, H.-H. Yanasse, Scheduling identical parallel machines with tooling constraints. Eur. J. Oper. Res. 257(3), 834–844 (2017)

    Google Scholar 

  12. M.A.F. Belo-Filho, P. Amorim, B. Almada-Lobo, An adaptive large neighbourhood search for the operational integrated production and distribution problem of perishable products. Int. J. Prod. Res. 53(20), 6040–6058 (2015)

    Google Scholar 

  13. R. Bent, P. Van Hentenryck, A two-stage hybrid local search for the vehicle routing problem with time windows. Transp. Sci. 38(4), 515–530 (2004)

    Google Scholar 

  14. R. Bent, P. Van Hentenryck, A two-stage hybrid algorithm for pickup and delivery vehicle routing problem with time windows. Comput. Oper. Res. 33(4), 875–893 (2006)

    Google Scholar 

  15. R.E. Bixby, A brief history of linear and mixed-integer programming computation. Doc. Math. Extra Volume: Optimization Stories, 107–121 (2012)

    Google Scholar 

  16. T. Brueggemann, J.L. Hurink, Two exponential neighborhoods for single machine scheduling. Technical report Memorandum No. 1776, University of Twente (2005)

    Google Scholar 

  17. T. Brueggemann, J. Hurink, Two very large-scale neighborhoods for single machine scheduling. OR Spectr. 29, 513–533 (2007)

    Google Scholar 

  18. T. Brueggemann, J.L. Hurink, T. Vredeveld, G.J. Woeginger, Performance of a very large-scale neighborhood for minimizing makespan on parallel machines. Electron. Notes Discret. Math. 25, 29–33 (2006)

    Google Scholar 

  19. T. Brueggemann, J.L. Hurink, Matching based exponential neighborhoods for parallel machine scheduling. J. Heuristics 17(6), 637–658 (2011)

    Google Scholar 

  20. K. Buhrkal, A. Larsen, S. Ropke, The waste collection vehicle routing problem with time windows in a city logistics context. Procedia. Soc. Behav. Sci. 39, 241–254 (2012)

    Google Scholar 

  21. E.K. Burke, M. Gendreau, M. Hyde, G. Kendall, G. Ochoa, E. Özcan, R. Qu, Hyper-heuristics: a survey of the state of the art. J. Oper. Res. Soc. 64(12), 1695–1724 (2013)

    Google Scholar 

  22. F. Campeotto, A. Dovier, F. Fioretto, E. Pontelli, A GPU implementation of large neighborhood search for solving constraint optimization problems, in Proceedings of the Twenty-First European Conference on Artificial Intelligence (IOS Press, Amsterdam, 2014), pp. 189–194

    Google Scholar 

  23. D. Canca, A. De-Los-Santos, G. Laporte, J.A. Mesa, An adaptive neighborhood search metaheuristic for the integrated railway rapid transit network design and line planning problem. Comput. Oper. Res. 78, 1–14 (2017)

    Google Scholar 

  24. E. Carrizosa, V. Guerrero, D.R. Morales, Visualizing proportions and dissimilarities by space-filling maps: a large neighborhood search approach. Comput. Oper. Res. 78, 369–380 (2017)

    Google Scholar 

  25. Y. Caseau, F. Laburthe, Disjunctive scheduling with task intervals. Technical report LIENS-95-25, Ecole Normale Superieure, Département de mathématiques et informatique, Paris (1995)

    Google Scholar 

  26. J. Christiaens, G. Vanden Berghe, A fresh ruin & recreate implementation for the capacitated vehicle routing problem. Technical report, KU Leuven, November 2016

    Google Scholar 

  27. L.C. Coelho, J.-F. Cordeau, G. Laporte, The inventory-routing problem with transshipment. Comput. Oper. Res. 39(11), 2537–2548 (2012)

    Google Scholar 

  28. L.C. Coelho, J.-F. Cordeau, G. Laporte, Heuristics for dynamic and stochastic inventory-routing. Comput. Oper. Res. 52, 55–67 (2014)

    Google Scholar 

  29. E. Danna, E. Rothberg, C. Le Pape, Exploring relaxation induced neighborhoods to improve MIP solutions. Math. Program. 102(1), 71–90 (2005)

    Google Scholar 

  30. A. Davenport, J. Kalagnanam, C. Reddy, S. Siegel, J. Hou, An application of constraint programming to generating detailed operations schedules for steel manufacturing, in International Conference on Principles and Practice of Constraint Programming (Springer, Berlin, 2007), pp. 64–76

    Google Scholar 

  31. R. De Franceschi, M. Fischetti, P. Toth, A new ILP-based refinement heuristic for vehicle routing problems. Math. Program. 105(2–3), 471–499 (2006)

    Google Scholar 

  32. E.M. de Sá, I. Contreras, J.-F. Cordeau, Exact and heuristic algorithms for the design of hub networks with multiple lines. Eur. J. Oper. Res. 246(1), 186–198 (2015)

    Google Scholar 

  33. E. Demir, T. Bektaş, G. Laporte, An adaptive large neighborhood search heuristic for the pollution-routing problem. Eur. J. Oper. Res. 223(2), 346–359 (2012)

    Google Scholar 

  34. E. Demir, T. Bektaş, G. Laporte, The bi-objective pollution-routing problem. Eur. J. Oper. Res. 232(3), 464–478 (2014)

    Google Scholar 

  35. E. Demirović, N. Musliu, MaxSAT-based large neighborhood search for high school timetabling. Comput. Oper. Res. 78, 172–180 (2017)

    Google Scholar 

  36. K.A. Dowsland, Nurse scheduling with tabu search and strategic oscillation. Eur. J. Oper. Res. 106(2–3), 393–407 (1998)

    Google Scholar 

  37. G. Dueck, New optimization heuristics: the great deluge algorithm and the record-to-record travel. J. Comput. Phys. 104(1), 86–92 (1993)

    Google Scholar 

  38. G. Dueck, T. Scheuer, Threshold accepting: a general purpose optimization algorithm appearing superior to simulated annealing. J. Comput. Phys. 90(1), 161–175 (1990)

    Google Scholar 

  39. Ö. Ergun, J.B. Orlin, A. Steele-Feldman, Creating very large scale neighborhoods out of smaller ones by compounding moves. J. Heuristics 12(1), 115–140 (2006)

    Google Scholar 

  40. M. Eskandarpour, P. Dejax, O. Péton, A large neighborhood search heuristic for supply chain network design. Comput. Oper. Res. 80, 23–37 (2017)

    Google Scholar 

  41. M.M. Flood, The traveling salesman problem. Oper. Res. 4(1), 61–75 (1956)

    Google Scholar 

  42. F. Furini, E. Malaguti, A. Santini, An exact algorithm for the partition coloring problem. Technical report, Optimization Online (2016)

    Google Scholar 

  43. D. Gamboa, C. Osterman, C. Rego, F. Glover, An experimental evaluation of ejection chain algorithms for the traveling salesman problem. Technical report, School of Business Administration, University of Mississippi (2006)

    Google Scholar 

  44. M. Gendreau, F. Guertin, J.-Y. Potvin, R. Séguin, Neighborhood search heuristics for a dynamic vehicle dispatching problem with pick-ups and deliveries. Transp. Res. C: Emerg. Technol. 14(3), 157–174 (2006)

    Google Scholar 

  45. M. Gendreau, O. Jabali, W. Rei, Stochastic vehicle routing problems, in Vehicle Routing: Problems, Methods, and Applications, ed. by P. Toth, D. Vigo, 2nd edn. (Society for Industrial and Applied Mathematics, Philadelphia, 2014), pp. 213–239

    Google Scholar 

  46. F. Glover, Ejection chains, reference structures and alternating path methods for traveling salesman problems. Discret. Appl. Math. 65(1–3), 223–253 (1996)

    Google Scholar 

  47. F. Glover, C. Rego, Ejection chain and filter-and-fan methods in combinatorial optimization. 4OR: Q. J. Oper. Res. 4(4), 263–296 (2006)

    Google Scholar 

  48. P. Grangier, M. Gendreau, F. Lehuédé, L.-M. Rousseau, A matheuristic based on large neighborhood search for the vehicle routing problem with cross-docking. Comput. Oper. Res. 84, 116–126 (2017)

    Google Scholar 

  49. G. Gutin, D. Karapetyan, Local search heuristics for the multidimensional assignment problem, in Proceedings of Golumbic Festschrift, vol. 5420 (Springer, Heidelberg, 2009), pp. 100–115

    Google Scholar 

  50. P. Hansen, N. Mladenović, Variable neighborhood search: principles and applications. Eur. J. Oper. Res. 130(3), 449–467 (2001)

    Google Scholar 

  51. A. Hemmati, L.M. Hvattum, Evaluating the importance of randomization in adaptive large neighborhood search. Int. Trans. Oper. Res. 24(5), 929–942 (2017)

    Google Scholar 

  52. A. Hemmati, M. Stålhane, L.M. Hvattum, H. Andersson, An effective heuristic for solving a combined cargo and inventory routing problem in tramp shipping. Comput. Oper. Res. 64, 274–282 (2015)

    Google Scholar 

  53. V.C. Hemmelmayr, J.-F. Cordeau, T.G. Crainic, An adaptive large neighborhood search heuristic for two-echelon vehicle routing problems arising in city logistics. Comput. Oper. Res. 39(12), 3215–3228 (2012)

    Google Scholar 

  54. G. Hiermann, J. Puchinger, S. Ropke, R.F. Hartl, The electric fleet size and mix vehicle routing problem with time windows and recharging stations. Eur. J. Oper. Res. 252(3), 995–1018 (2016)

    Google Scholar 

  55. M. Hifi, S. Negre, T. Saadi, S. Saleh, L. Wu, A parallel large neighborhood search-based heuristic for the disjunctively constrained knapsack problem, in Parallel & Distributed Processing Symposium Workshops (IPDPSW), 2014 IEEE International (IEEE, Piscataway, 2014), pp. 1547–1551

    Google Scholar 

  56. J. Hurink, An exponential neighborhood for a one machine batching problem. OR Spektrum 21(4), 461–476 (1999)

    Google Scholar 

  57. C. Iris, D. Pacino, S. Ropke, Improved formulations and an adaptive large neighborhood search heuristic for the integrated berth allocation and quay crane assignment problem. Transport. Res E: Log. Transport. Rev. 105, 123–147 (2017)

    Google Scholar 

  58. S. Irnich, P. Toth, D. Vigo, The family of vehicle routing problems, in Vehicle Routing: Problems, Methods and Applications, 2nd edn. (SIAM, Philadelphia, 2014), pp. 1–33

    Google Scholar 

  59. L.W. Jacobs, M.J. Brusco, Note: a local-search heuristic for large set-covering problems. Nav. Res. Logist. 42(7), 1129–1140 (1995)

    Google Scholar 

  60. A. Kiefer, R.F. Hartl, A. Schnell, Adaptive large neighborhood search for the curriculum-based course timetabling problem. Ann. Oper. Res. 252(2), 255–282 (2017)

    Google Scholar 

  61. P. Kilby, P. Prosser, P. Shaw, Guided local search for the vehicle routing problem, in Proceedings of the 2nd International Conference on Metaheuristics, July 1997

    Google Scholar 

  62. J.E. Korsvik, K. Fagerholt, G. Laporte, A large neighbourhood search heuristic for ship routing and scheduling with split loads. Comput. Oper. Res. 38(2), 474–483 (2011)

    Google Scholar 

  63. A.A. Kovacs, S.N. Parragh, K.F. Doerner, R.F. Hartl, Adaptive large neighborhood search for service technician routing and scheduling problems. J. Sched. 15(5), 579–600 (2012)

    Google Scholar 

  64. A.A. Kovacs, S.N. Parragh, R.F Hartl, A template-based adaptive large neighborhood search for the consistent vehicle routing problem. Networks 63(1), 60–81 (2014)

    Google Scholar 

  65. S. Kristiansen, T.R. Stidsen, Elective course student sectioning at Danish high schools. Ann. Oper. Res. 239(1), 99–117 (2016)

    Google Scholar 

  66. S. Kristiansen, M. Sørensen, M.B Herold, T.R. Stidsen, The consultation timetabling problem at Danish high schools. J. Heuristics 19(3), 465–495 (2013)

    Google Scholar 

  67. P. Laborie, D. Godard, Self-adapting large neighborhood search: application to single-mode scheduling problems. Technical report TR-07-001, ILOG (2007)

    Google Scholar 

  68. G. Laporte, R. Musmanno, F. Vocaturo, An adaptive large neighbourhood search heuristic for the capacitated arc-routing problem with stochastic demands. Transp. Sci. 44(1), 125–135 (2010)

    Google Scholar 

  69. G. Laporte, S. Ropke, T. Vidal, Heuristics for the vehicle routing problem, in Vehicle Routing: Problems, Methods, and Applications, ed. by P. Toth, D. Vigo, 2nd edn. (Society for Industrial and Applied Mathematics, Philadelphia, 2014), pp. 87–116

    Google Scholar 

  70. R. Le Bras, B. Dilkina, Y. Xue, C. Gomes, K. McKelvey, M. Schwartz, C. Montgomery, Robust network design for multispecies conservation, in Proceedings of the Twenty-Seventh AAAI Conference on Artificial Intelligence (2013)

    Google Scholar 

  71. H. Lei, G. Laporte, B. Guo, The capacitated vehicle routing problem with stochastic demands and time windows. Comput. Oper. Res. 38(12), 1775–1783 (2011)

    Google Scholar 

  72. B.P. Lim, M. Van Den Briel, S. Thiébaux, R. Bent, S. Backhaus, Large neighborhood search for energy aware meeting scheduling in smart buildings, in International Conference on AI and OR Techniques in Constraint Programming for Combinatorial Optimization Problems (Springer, Cham, 2015), pp. 240–254

    Google Scholar 

  73. S. Lin, B. Kernighan, An effective heuristic algorithm for the traveling salesman problem. Oper. Res. 21(2), 498–516 (1973)

    Google Scholar 

  74. S.-W. Lin, K.-C. Ying, Minimizing shifts for personnel task scheduling problems: a three-phase algorithm. Eur. J. Oper. Res. 237(1), 323–334 (2014)

    Google Scholar 

  75. R. Masson, F. Lehuédé, O. Péton, An adaptive large neighborhood search for the pickup and delivery problem with transfers. Transp. Sci. 47(3), 344–355 (2013)

    Google Scholar 

  76. R. Masson, F. Lehuédé, O. Péton, The dial-a-ride problem with transfers. Comput. Oper. Res. 41, 12–23 (2014)

    Google Scholar 

  77. M. Matusiak, R. de Koster, J. Saarinen, Utilizing individual picker skills to improve order batching in a warehouse. Eur. J. Oper. Res. 263(3), 888–899 (2017)

    Google Scholar 

  78. G.R. Mauri, G.M. Ribeiro, L.A.N. Lorena, G. Laporte, An adaptive large neighborhood search for the discrete and continuous berth allocation problem. Comput. Oper. Res. 70, 140–154 (2016)

    Google Scholar 

  79. N. Mladenovic, P. Hansen, Variable neighborhood search. Comput. Oper. Res. 24(11), 1097–1100 (1997)

    Google Scholar 

  80. M.C. Monçores, A.C.F. Alvim, M.O. Barros, Large neighborhood search applied to the software module clustering problem. Comput. Oper. Res. 91, 92–111 (2018)

    Google Scholar 

  81. L.F. Muller, S. Spoorendonk, D. Pisinger, A hybrid adaptive large neighborhood search heuristic for lot-sizing with setup times. Eur. J. Oper. Res. 218(3), 614–623 (2012)

    Google Scholar 

  82. M. Palpant, C.C. Artigues, P. Michelon, LSSPER: solving the resource-constrained project scheduling problem with large neighbourhood search. Ann. Oper. Res. 131, 237–257 (2004)

    Google Scholar 

  83. S.N. Parragh, V. Schmid, Hybrid column generation and large neighborhood search for the dial-a-ride problem. Comput. Oper. Res. 40(1), 490–497 (2013)

    Google Scholar 

  84. M.A. Pereira, L.C. Coelho, L.A.N. Lorena, L.C. De Souza, A hybrid method for the probabilistic maximal covering location–allocation problem. Comput. Oper. Res. 57, 51–59 (2015)

    Google Scholar 

  85. L. Perron, Fast restart policies and large neighborhood search, in Proceedings of CP-AI-OR’2003 (2003)

    Google Scholar 

  86. L. Perron, P. Shaw, Parallel large neighborhood search, in Proceedings of RenPar’15 (2003)

    Google Scholar 

  87. V. Pillac, M. Gendreau, C. Guéret, A.L. Medaglia, A review of dynamic vehicle routing problems. Eur. J. Oper. Res. 225(1), 1–11 (2013)

    Google Scholar 

  88. D. Pisinger, S. Ropke, A general heuristic for vehicle routing problems. Comput. Oper. Res. 34(8), 2403–2435 (2007)

    Google Scholar 

  89. J.-Y. Potvin, J.-M. Rousseau, A parallel route building algorithm for the vehicle routing and scheduling problem with time windows. Eur. J. Oper. Res. 66(3), 331–340 (1993)

    Google Scholar 

  90. H.N. Psaraftis, M. Wen, C.A. Kontovas, Dynamic vehicle routing problems: three decades and counting. Networks 67(1), 3–31 (2016)

    Google Scholar 

  91. A.P. Punnen, The traveling salesman problem: new polynomial approximation algorithms and domination analysis. J. Inf. Optim. Sci. 22(1), 191–206 (2001)

    Google Scholar 

  92. C. Rego, D. Gamboa, F. Glover, Data structures and ejection chains for solving large scale traveling salesman problems. Eur. J. Oper. Res. 160(1), 154–171 (2006)

    Google Scholar 

  93. G.M. Ribeiro, G. Laporte, An adaptive large neighborhood search heuristic for the cumulative capacitated vehicle routing problem. Comput. Oper. Res. 39(3), 728–735 (2012)

    Google Scholar 

  94. S. Ropke, PALNS - a software framework for parallel large neighborhood search, in 8th Metaheuristic International Conference CDROM (2009)

    Google Scholar 

  95. S. Ropke, D. Pisinger, An adaptive large neighborhood search heuristic for the pickup and delivery problem with time windows. Transp. Sci. 40(4), 455–472 (2006)

    Google Scholar 

  96. S. Ropke, D. Pisinger, A unified heuristic for a large class of vehicle routing problems with backhauls. Eur. J. Oper. Res. 171(3), 750–775 (2006)

    Google Scholar 

  97. L.-M. Rousseau, M. Gendreau, G. Pesant, Using constraint-based operators to solve the vehicle routing problem with time windows. J. Heuristics 8(1), 43–58 (2002)

    Google Scholar 

  98. M.A. Salazar-Aguilar, A. Langevin, G. Laporte, Synchronized arc routing for snow plowing operations. Comput. Oper. Res. 39(7), 1432–1440 (2012)

    Google Scholar 

  99. A. Santini, S. Ropke, L.M. Hvattum, A comparison of acceptance criteria for the adaptive large neighbourhood search metaheuristic. J. Heuristics (2018). https://doi.org/10.1007/s10732-018-9377-x

    Google Scholar 

  100. V.I. Sarvanov, N.N. Doroshko, Approximate solution of the traveling salesman problem by a local algorithm with scanning neighborhoods of factorial cardinality in cubic time. Softw. Algorithms Progr. Math. Inst. Beloruss. Acad. Sci., Minsk 31, 11–13 (1981)

    Google Scholar 

  101. V. Schmid, Hybrid large neighborhood search for the bus rapid transit route design problem. Eur. J. Oper. Res. 238(2), 427–437 (2014)

    Google Scholar 

  102. G. Schrimpf, J. Schneider, H. Stamm-Wilbrandt, G. Dueck, Record breaking optimization results using the ruin and recreate principle. J. Comput. Phys. 159(2), 139–171 (2000)

    Google Scholar 

  103. M. Schneider, A. Stenger, J. Hof, An adaptive VNS algorithm for vehicle routing problems with intermediate stops. OR Spectr. 37(2), 353–387 (2015)

    Google Scholar 

  104. P. Shaw, A new local search algorithm providing high quality solutions to vehicle routing problems. Technical report, APES Group, Department of Computer Science, University of Strathclyde, Glasgow, July 1997

    Google Scholar 

  105. P. Shaw, Using constraint programming and local search methods to solve vehicle routing problems, in CP-98 (Fourth International Conference on Principles and Practice of Constraint Programming). Lecture Notes in Computer Science, vol. 1520, pp. 417–431 (1998)

    Google Scholar 

  106. H. Sontrop, P. van der Horn, M. Uetz, Fast ejection chain algorithms for vehicle routing with time windows. Lect. Notes Comput. Sci. 3636, 78–89 (2005)

    Google Scholar 

  107. P.M. Thompson, Local search algorithms for vehicle routing and other combinatorial problems. Ph.D. thesis, Operations Research Center, MIT, 1988

    Google Scholar 

  108. P.M. Thompson, H.N. Psaraftis, Cyclic transfer algorithms for multivehicle routing and scheduling problems. Oper. Res. 41(5), 935–946 (1993)

    Google Scholar 

  109. E. Uchoa, D. Pecin, A. Pessoa, M. Poggi, T. Vidal, A. Subramanian, New benchmark instances for the capacitated vehicle routing problem. Eur. J. Oper. Res. 257(3), 845–858 (2017)

    Google Scholar 

  110. M. Veenstra, K.J. Roodbergen, I.F. Vis, L.C. Coelho, The pickup and delivery traveling salesman problem with handling costs. Eur. J. Oper. Res. 257(1), 118–132 (2017)

    Google Scholar 

  111. T. Vidal, T.G. Crainic, M. Gendreau, C. Prins, A unified solution framework for multi-attribute vehicle routing problems. Eur. J. Oper. Res. 234(3), 658–673 (2014)

    Google Scholar 

  112. M. Wen, E. Linde, S. Ropke, P. Mirchandani, A. Larsen, An adaptive large neighborhood search heuristic for the electric vehicle scheduling problem. Comput. Oper. Res. 76, 73–83 (2016)

    Google Scholar 

  113. M. Yagiura, T. Ibaraki, F. Glover, A path relinking approach with ejection chains for the generalized assignment problem. Eur. J. Oper. Res. 169(2), 548–569 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Ropke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pisinger, D., Ropke, S. (2019). Large Neighborhood Search. In: Gendreau, M., Potvin, JY. (eds) Handbook of Metaheuristics. International Series in Operations Research & Management Science, vol 272. Springer, Cham. https://doi.org/10.1007/978-3-319-91086-4_4

Download citation

Publish with us

Policies and ethics