Skip to main content

Functional Genomics Approach Towards Dissecting Out Abiotic Stress Tolerance Trait in Plants

  • Chapter
  • First Online:
Genetic Enhancement of Crops for Tolerance to Abiotic Stress: Mechanisms and Approaches, Vol. I

Part of the book series: Sustainable Development and Biodiversity ((SDEB,volume 20))

Abstract

Plant functional genomics has revolutionized not only the methodologies for identification and elucidation of key genes’ function but also in designing strategies for improving tolerance towards abiotic stresses . Leveraging various approaches has demonstrated the robustness and versatility in their application to study gene/genome function and engineering abiotic stress tolerance in plants. With the emergence of novel high throughput technologies in this area, functional genomics can contribute immensely in understanding the gene regulatory networks operating under stress, thereby benefiting crop improvement programs. This chapter provides recent findings in the field of functional genomics , thus offering several efficacious methodologies such as next generation sequencing, genome -wide hybridization, gene-inactivation and genome -editing-based strategies in addition to metabolite analysis for discovery as well as validation of the candidate genes. Further, methodologies such as gene expression microarrays , insertional mutagenesis , map-based cloning and various genomic-assisted methods are evaluated critically and discussed in the light of integration of the information obtained through functional genomics with practical application in crop breeding .

Rohit Joshi and Brijesh K. Gupta have equally contributed to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agarwal P, Parida SK, Raghuvanshi S, Kapoor S, Khurana P, Khurana JP, Tyagi AK (2016) Rice improvement through genome-based functional analysis and molecular breeding in India. Rice 9:1

    Article  PubMed  PubMed Central  Google Scholar 

  • Akpınar BA, Lucas SJ, Budak H (2013) Genomics approaches for crop improvement against abiotic stress. Sci World J 2013: Article ID 361921

    Article  Google Scholar 

  • Allardyce JA, Rookes JE, Hussain HI, Cahill DM (2013) Transcriptional profiling of Zea mays roots reveals roles for jasmonic acid and terpenoids in resistance against Phytophthora cinnamomi. Funct Integr Genom 13:217–228

    Article  CAS  Google Scholar 

  • Alonso JM, Stepanova AN, Leisse TJ, Kim CJ, Chen H, Shinn P, Stevenson DK, Zimmerman J, Barajas P, Cheuk R, Gadrinab C (2003) Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science 301:653–657

    Article  PubMed  Google Scholar 

  • Ara H, Sinha HA (2014) Conscientiousness of mitogen activated protein kinases in acquiring tolerance for abiotic stresses in plants. Proc Ind Natl Sci Acad 80:211–219

    Article  Google Scholar 

  • Armbrust EV, Berges JA, Bowler C, Green BR, Martinez D, Putnam NH, Zhou S, Allen AE, Apt KE, Bechner M, Brzezinski MA (2004) The genome of the diatom Thalassiosira pseudonana: ecology, evolution and metabolism. Science 306:79–86

    Article  CAS  PubMed  Google Scholar 

  • Baisakh N, Subudhi PK, Varadwaj P (2008) Primary responses to salt stress in a halophyte, smooth cordgrass (Spartina alterniflora Loisel.). Funct Integ Genom 8:287–300

    Article  CAS  Google Scholar 

  • Bajaj D, Srivastava R, Nath M, Tripathi S, Bharadwaj C, Upadhyaya HD, Tyagi AK, Parida SK (2016) EcoTILLING-based association mapping efficiently delineates functionally relevant natural allelic variants of candidate genes governing agronomic traits in chickpea. Front Plant Sci 7:450

    Article  PubMed  PubMed Central  Google Scholar 

  • Baloglu MC, Inal B, Kavas M, Unver T (2014) Diverse expression pattern of wheat transcription factors against abiotic stresses in wheat species. Gene 550:117–122

    Article  CAS  PubMed  Google Scholar 

  • Bhullar NK, Gruissem W (2013) Nutritional enhancement of rice for human health: the contribution of biotechnology. Biotechnol Adv 31:50–57

    Article  CAS  PubMed  Google Scholar 

  • Bino RJ, Hall RD, Fiehn O, Kopka J, Saito K, Draper J, Nikolau BJ, Mendes P, Roessner-Tunali U, Beale MH, Trethewey RN (2004) Potential of metabolomics as a functional genomics tool. Trends Plant Sci 9:418–425

    Article  CAS  PubMed  Google Scholar 

  • Bohra A, Singh NP (2015) Whole genome sequences in pulse crops: a global community resource to expedite translational genomics and knowledge-based crop improvement. Biotechnol Lett 37:1529–1539

    Article  CAS  PubMed  Google Scholar 

  • Bohra A, Sahrawat KL, Kumar S, Joshi R, Parihar AK, Singh U, Singh D, Singh NP (2015) Genetics and genomics based interventions for nutritional enhancement of grain-legume crops: status and outlook. J Appl Genet 56:151–161

    Article  CAS  PubMed  Google Scholar 

  • Bortesi L, Fischer R (2015) The CRISPR/Cas9 system for plant genome editing and beyond. Biotechnol Adv 33:41–52

    Article  CAS  PubMed  Google Scholar 

  • Boudsocq M, Sheen J (2013) CDPKs in immune and stress signaling. Trends Plant Sci 18:30–40

    Article  CAS  PubMed  Google Scholar 

  • Breyne P, Zabeau M (2001) Genome-wide expression analysis of plant cell cycle modulated genes. Cur Opin Plant Biol 4:136–142

    Article  CAS  Google Scholar 

  • Chen L, Hao L, Parry MAJ, Phillips AL, Hu YG (2014) Progress in TILLING as a tool for functional genomics and improvement of crops. J Integr Plant Biol 56:425–443

    Article  PubMed  Google Scholar 

  • Cheng CK, Au CH, Wilke SK, Stajich JE, Zolan ME, Pukkila PJ, Kwan HS (2013) 5’-Serial analysis of gene expression studies reveal a transcriptomic switch during fruiting body development in Coprinopsis cinerea. BMC Genom 14:195

    Article  CAS  Google Scholar 

  • Chinnusamy V, Schumaker K, Zhu JK (2004) Molecular genetic perspectives on cross-talk and specificity in abiotic stress signaling in plants. J Exp Bot 55:225–236

    Article  CAS  PubMed  Google Scholar 

  • Cramer GR, Urano K, Delrot S, Pezzotti M, Shinozaki K (2011) Effects of abiotic stress on plants: a systems biology perspective. BMC Plant Biol 11:163

    Article  PubMed  PubMed Central  Google Scholar 

  • Cseri A, Cserháti M, Von Korff M, Nagy B, Horváth GV, Palágyi A, Pauk J, Dudits D, Törjék O (2011) Allele mining and haplotype discovery in barley candidate genes for drought tolerance. Euphytica 181:341–356

    Article  Google Scholar 

  • de Lorenzo L, Merchan F, Laporte P, Thompson R, Clarke J, Sousa C, Crespi M (2009) A novel plant leucine-rich repeat receptor kinase regulates the response of Medicago truncatula roots to salt stress. Plant Cell 21:668–680

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dhakarey R, Kodackattumannil Peethambaran P, Riemann M (2016) Functional analysis of jasmonates in rice through mutant approaches. Plants 5:15

    Article  PubMed Central  CAS  Google Scholar 

  • Dwivedi SL, Ceccarelli S, Blair MW, Upadhyaya HD, Are AK, Ortiz R (2016) Landrace germplasm for improving yield and abiotic stress adaptation. Trends Plant Sci 21:31–42

    Article  CAS  PubMed  Google Scholar 

  • Edwards D (2016) The impact of genomics technology on adapting plants to climate change. In: Edwards D, Batley J (eds) Plant genomics and climate change. Springer, New York, pp 173–178

    Chapter  Google Scholar 

  • Ergen NZ, Budak H (2009) Sequencing over 13000 expressed sequence tags from six subtractive cDNA libraries of wild and modern wheats following slow drought stress. Plant Cell Environ 32:220–236

    Article  CAS  PubMed  Google Scholar 

  • Fang C, Li W, Li G, Wang Z, Zhou Z, Ma Y, Shen Y, Li C, Wu Y, Zhu B, Yang W (2013) Cloning of Ln gene through combined approach of map based cloning and association study in soybean. J Genet Genom 40:93–96

    Article  CAS  Google Scholar 

  • Feist AM, Palsson BO (2008) The growing scope of applications of genome-scale metabolic reconstructions using Escherichia coli. Nat Biotechnol 26:659–667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feki K, Quintero FJ, Khoudi H, Leidi EO, Masmoudi K, Pardo JM, Brini F (2014) A constitutively active form of a durum wheat Na+/H+ antiporter SOS1 confers high salt tolerance to transgenic Arabidopsis. Plant Cell Rep 33:277–288

    Article  CAS  PubMed  Google Scholar 

  • Fenart S, Chabi M, Gallina S, Huis R, Neutelings G, Riviere N, Thomasset B, Hawkins S, Lucau-Danila A (2013) Intra-platform comparison of 25-mer and 60-mer oligonucleotide Nimblegen DNA microarrays. BMC Res Notes 6:43

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ford R, Khan S, Mantri N (2015) Towards understanding the transcriptional control of abiotic stress tolerance mechanisms in food legumes. In: Pandey GK (ed) Elucidation of abiotic stress signaling in plants. Springer, New York, pp 29–43

    Chapter  Google Scholar 

  • Gahlaut V, Mathur S, Dhariwal R, Khurana JP, Tyagi AK, Balyan HS, Gupta PK (2014) A multi-step phosphorelay two-component system impacts on tolerance against dehydration stress in common wheat. Funct Integ Genom 14:707–716

    Article  CAS  Google Scholar 

  • Gaj T, Guo J, Kato Y, Sirk SJ, Barbas CF 3rd (2012) Targeted gene knockout by direct delivery of zinc-finger nuclease proteins. Nat Methods 9:805–807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gaj T, Gersbach CA, Barbas CF 3rd (2013) ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol 31:397–405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Galagan JE, Calvo SE, Borkovich KA, Selker EU, Read ND, Jaffe D, FitzHugh W, Ma LJ, Smirnov S, Purcell S, Rehman B (2003) The genome sequence of the filamentous fungus Neurospora crassa. Nature 422:859–868

    Article  CAS  PubMed  Google Scholar 

  • Gao Y, Zhao Y (2012) Epigenetic suppression of T-DNA insertion mutants in Arabidopsis. Mol Plant 6:539–545

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gao B, Zhang D, Li X, Yang H, Zhang Y, Wood AJ (2015) De novo transcriptome characterization and gene expression profiling of the desiccation tolerant moss Bryum argenteum following rehydration. BMC Genom 16:416

    Article  CAS  Google Scholar 

  • Ghaffar MBA, Norliza MB, Pritchard J, Ford-Lloyd BV (2016) Identification of candidate genes involved in brown plant hopper resistance in rice using microarray analysis. J Trop Agric Food Sci 44:49–62

    Google Scholar 

  • Ghaffari A, Gharechahi J, Nakhoda B, Salekdeh GH (2014) Physiology and proteome responses of two contrasting rice mutants and their wild type parent under salt stress conditions at the vegetative stage. J Plant Physiol 171:31–44

    Article  CAS  PubMed  Google Scholar 

  • Glover NM, Daron J, Pingault L, Vandepoele K, Paux E, Feuillet C, Choulet F (2015) Small-scale gene duplications played a major role in the recent evolution of wheat chromosome 3B. Genome Biol 16:188

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gul A, Ahad A, Akhtar S, Ahmad Z, Rashid B, Husnain T (2016) Microarray: gateway to unravel the mystery of abiotic stresses in plants. Biotechnol Lett 38:527–543

    Article  CAS  PubMed  Google Scholar 

  • Guo M, Liu JH, Ma X, Luo DX, Gong ZH, Lu MH (2016) The plant heat stress transcription factors (HSFs): structure, regulation, and function in response to abiotic stresses. Front Plant Sci 7:114

    PubMed  PubMed Central  Google Scholar 

  • Gupta B, Huang B (2014) Mechanism of salinity tolerance in plants: physiological, biochemical, and molecular characterization. Intl J Genom 2014:701596

    Google Scholar 

  • Gupta B, Tripathi AK, Joshi R, Pareek A, Singla-Pareek SL (2015) Designing climate smart future crops employing signal transduction components. In: Pandey GK (ed) Elucidation of abiotic stress signaling in plants: functional genomics perspectives, vol 2. Springer, New York, pp 393–414

    Chapter  Google Scholar 

  • Hall R, Beale M, Fiehn O, Hardy N, Sumner L, Bino R (2002) Plant metabolomics: the missing link in functional genomics strategies. Plant Cell 14:1437–1440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hamilton JP, Buell CR (2012) Advances in plant genome sequencing. Plant J 70:177–190

    Article  CAS  PubMed  Google Scholar 

  • Hasanuzzaman M, Roychowdhury R, Karmakar J, Dey N, Nahar K, Fujita M (2015) Recent advances in biotechnology and genomic approaches for abiotic stress tolerance in crop plants. In: Thangadurai D, Sangeetha J (eds) Genomics and proteomics: principles, technologies, and applications. CRC Press, Boca Raton, pp 333–366

    Chapter  Google Scholar 

  • Hirakawa H, Shirasawa K, Miyatake KO, Nunome T, Negoro S, Ohyama AK, Yamaguchi H, Sato S, Isobe S, Tabata S, Fukuoka H (2014) Draft genome sequence of eggplant (Solanum melongena L.): the representative solanum species indigenous to the old world. DNA Res 21:649–660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoang XLT, Thu NBA, Thao NP, Tran LSP (2014) Transcription factors in abiotic stress responses: their potentials in crop improvement. In: Ahmad P, Wani MR, Azooz MM, Tran LSP (eds) Improvement of crops in the era of climatic changes. Springer, New York, pp 337–366

    Google Scholar 

  • Hruz T, Laule O, Szabo G, Wessendorp F, Bleuler S, Oertle L, Widmayer P, Gruissem W, Zimmermann P (2008) Genevestigator V3: a reference expression database for the meta-analysis of transcriptomes. Advan Bioinform 2008:42074

    Google Scholar 

  • Jaganathan D, Thudi M, Kale S, Azam S, Roorkiwal M, Gaur PM, Kishor PK, Nguyen H, Sutton T, Varshney RK (2015) Genotyping-by-sequencing based intra-specific genetic map refines a “QTL-hotspot” region for drought tolerance in chickpea. Mol Genet Genomics 290:559–571

    Article  CAS  PubMed  Google Scholar 

  • Jan AT, Singhal P, Haq QMR (2013) Plant abiotic stress: deciphering remedial strategies for emerging problem. J Plant Inter 8:97–108

    CAS  Google Scholar 

  • Jorge TF, Rodrigues JA, Caldana C, Schmidt R, van Dongen JT, Thomas-Oates J, António C (2015) Mass spectrometry-based plant metabolomics: metabolite responses to abiotic stress. Mass Spectrom Rev 35:620–649

    Article  PubMed  CAS  Google Scholar 

  • Joshi R, Chinnusamy V (2014) Antioxidant enzymes: defense against high temperature stress. In: Ahmad P (ed) Oxidative damage to plants: antioxidant networks and signaling. Elsevier, New York, pp 369–396

    Chapter  Google Scholar 

  • Joshi R, Karan R, Singla-Pareek SL, Pareek A (2012) Microarray technology. In: Gupta AK, Pareek A, Gupta SM (eds) Biotechnology in medicine and agriculture: principles and practices. IK International Publishing House Pvt. Ltd., India, pp 273–296

    Google Scholar 

  • Joshi R, Ramanarao MV, Bedre R, Sanchez L, Pilcher W, Zandkarimi H, Baisakh N (2015a) Salt adaptation mechanisms of halophytes: improvement of salt tolerance in crop plants. In: Pandey GK (ed) Elucidation of abiotic stress signaling in plants: functional genomics perspectives, vol 2. Springer, New York, pp 243–280

    Chapter  Google Scholar 

  • Joshi R, Singh B, Bohra A, Chinnusamy V (2015b) Salt stress signaling pathways: specificity and crosstalk. In: Wani SH, Hossain MA (eds) Managing salinity tolerance in plants: molecular and genomic perspectives. CRC Press, Boca Raton, pp 51–78

    Google Scholar 

  • Joshi R, Karan R, Singla-Pareek SL, Pareek A (2016a) Ectopic expression of Pokkali phosphoglycerate kinase-2 (OsPGK2-P) improves yield in tobacco plants under salinity stress. Plant Cell Rep 35:27–41

    Article  CAS  PubMed  Google Scholar 

  • Joshi R, Wani SH, Singh B, Bohra A, Dar ZA, Lone AA, Pareek A, Singla-Pareek SL (2016b) Transcription factors and plant response to drought stress: current understanding and future directions. Front Plant Sci 7:1029

    Article  PubMed  PubMed Central  Google Scholar 

  • Joung JK, Sander JD (2013) TALENs: a widely applicable technology for targeted genome editing. Nat Rev Mol Cell Biol 14:49–55

    Article  CAS  PubMed  Google Scholar 

  • Jung KH, An G (2013) Functional characterization of rice genes using a gene-indexed T-DNA insertional mutant population. In: Yang Y (ed) Rice protocols. Methods Mol Biol 956:57–67

    Google Scholar 

  • Jung KH, Dardick C, Bartley LE, Cao P, Phetsom J, Canlas P, Seo YS, Shultz M, Ouyang S, Yuan Q, Frank BC (2008) Refinement of light-responsive transcript lists using rice oligonucleotide arrays: evaluation of gene-redundancy. PLoS ONE 3:e3337

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jung KH, Gho HJ, Giong HK, Chandran AK, Nguyen QN, Choi H, Zhang T, Wang W, Kim JH, Choi HK, An G (2013) Genome-wide identification and analysis of Japonica and Indica cultivar-preferred transcripts in rice using 983 Affymetrix array data. Rice 6:19

    Article  PubMed  PubMed Central  Google Scholar 

  • Kaur C, Ghosh A, Pareek A, Sopory SK, Singla-Pareek SL (2014) Glyoxalases and stress tolerance in plants. Biochem Soc Trans 42:485–490

    Article  CAS  PubMed  Google Scholar 

  • Khan MS, Ahmad D, Khan MA (2015) Utilization of genes encoding osmoprotectants in transgenic plants for enhanced abiotic stress tolerance. Electr J Biotechnol 18:257–266

    Article  CAS  Google Scholar 

  • Khatodia S, Bhatotia K, Passricha N, Khurana SMP, Tuteja N (2016) The CRISPR/Cas genome-editing tool: application in improvement of crops. Front Plant Sci 7:506

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim ST, Kim SG, Agrawal GK, Kikuchi S, Rakwal R (2014) Rice proteomics: a model system for crop improvement and food security. Proteomics 14:593–610

    Article  CAS  PubMed  Google Scholar 

  • Kole C, Muthamilarasan M, Henry R, Edwards D, Sharma R, Abberton M, Batley J, Bentley A, Blakeney M, Bryant J, Cai H (2015) Application of genomics-assisted breeding for generation of climate resilient crops: progress and prospects. Front Plant Sci 6:563

    Article  PubMed  PubMed Central  Google Scholar 

  • Kudapa H, Ramalingam A, Nayakoti S, Chen X, Zhuang WJ, Liang X, Kahl G, Edwards D, Varshney RK (2013) Functional genomics to study stress responses in crop legumes: progress and prospects. Funct Plant Biol 14:1221–1233

    Article  CAS  Google Scholar 

  • Kumar V, Jain M (2015) The CRISPR-Cas system for plant genome editing: advances and opportunities. J Exp Bot 66:47–57

    Article  CAS  PubMed  Google Scholar 

  • Kumar G, Purty RS, Sharma MP, Singla-Pareek SL, Pareek A (2009) Physiological responses among Brassica species under salinity stress show strong correlation with transcript abundance for SOS pathway-related genes. J Plant Physiol 166:507–520

    Article  CAS  PubMed  Google Scholar 

  • Kumar G, Kushwaha HR, Panjabi-Sabharwal V, Kumari S, Joshi R, Karan R, Mittal S, Pareek SL, Pareek A (2012) Clustered metallothionein genes are co-regulated in rice and ectopic expression of OsMT1e-P confers multiple abiotic stress tolerance in tobacco via ROS scavenging. BMC Plant Biol 12:107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kushwaha HR, Kumar G, Verma PK, Singla-Pareek SL, Pareek A (2011) Analysis of a salinity induced BjSOS3 protein from Brassica indicate it to be structurally and functionally related to its ortholog from Arabidopsis. Plant Physiol Biochem 49:996–1004

    Article  CAS  PubMed  Google Scholar 

  • Kushwaha HR, Joshi R, Pareek A, Singla-Pareek SL (2016) MATH-domain family shows response towards abiotic stress in Arabidopsis and rice. Front Plant Sci 7:923

    Article  PubMed  PubMed Central  Google Scholar 

  • Langridge P, Fleury D (2011) Making the most of ‘omics’ for crop breeding. Trends Biotechnol 29:33–40

    Article  CAS  PubMed  Google Scholar 

  • Le DT, Nishiyama R, Watanabe Y, Mochida K, Yamaguchi-Shinozaki K, Shinozaki K, Tran LSP (2011) Genome-wide expression profiling of soybean two-component system genes in soybean root and shoot tissues under dehydration stress. DNA Res 18:17–29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Le DT, Nishiyama R, Watanabe Y, Tanaka M, Seki M, Yamaguchi-Shinozaki K, Shinozaki K, Tran LS (2012) Differential gene expression in soybean leaf tissues at late developmental stages under drought stress revealed by genome-wide transcriptome analysis. PLoS ONE 7:e49522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee LS, Till BJ, Hill H, Huynh OA, Jankowicz-Cieslak J (2014) Mutation and mutation screening. In: Henry RJ, Furtado A (eds) Cereal genomics. Method Mol Biol 1099:77–95

    Google Scholar 

  • Li F, Fan G, Wang K, Sun F, Yuan Y, Song G, Li Q, Ma Z, Lu C, Zou C, Chen W (2014a) Genome sequence of the cultivated cotton Gossypium arboreum. Nat Genet 46:567–572

    Article  CAS  PubMed  Google Scholar 

  • Li J, Sun X, Yu G, Jia C, Liu J, Pan H (2014b) Generation and analysis of expressed sequence tags (ESTs) from halophyte Atriplex canescens to explore salt-responsive related genes. Int J Mol Sci 15:1172–11189

    Google Scholar 

  • Liu JH, Peng T, Dai W (2014a) Critical cis-acting elements and interacting transcription factors: key players associated with abiotic stress responses in plants. Plant Mol Biol Rep 32:303–317

    Article  CAS  Google Scholar 

  • Liu Z, Zhang M, Kong L, Lv Y, Zou M, Lu G, Cao J, Yu X (2014b) Genome-wide identification, phylogeny, duplication, and expression analyses of two-component system genes in Chinese cabbage (Brassica rapa ssp. pekinensis). DNA Res 21:379–396

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu D, Hu R, Palla KJ, Tuskan GA, Yang X (2016) Advances and perspectives on the use of CRISPR/Cas9 systems in plant genomics research. Curr Opin Plant Biol 30:70–77

    Article  CAS  PubMed  Google Scholar 

  • Ma L, Chen C, Liu X, Jiao Y, Su N, Li L, Wang X, Cao M, Sun N, Zhang X, Bao J (2005) A microarray analysis of the rice transcriptome and its comparison to Arabidopsis. Genome Res 15:1274–1283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma Y, Qin F, Tran LS (2012) Contribution of genomics to gene discovery in plant abiotic stress responses. Mol Plant 5:1176–1178

    Article  CAS  PubMed  Google Scholar 

  • Mahalingam R, Gomez-Buitrago A, Eckardt N, Shah N, Guevara-Garcia A, Day P, Raina R, Fedoroff NV (2003) Characterizing the stress/defense transcriptome of Arabidopsis. Genome Biol 4:R20

    Article  PubMed  PubMed Central  Google Scholar 

  • Martínez-Andújar C, Pluskota WE, Bassel GW, Asahina M, Pupel P, Nguyen TT, Takeda-Kamiya N, Toubiana D, Bai B, Górecki RJ, Fait A (2012) Mechanisms of hormonal regulation of endosperm cap-specific gene expression in tomato seeds. Plant J 71:575–586

    Article  PubMed  CAS  Google Scholar 

  • Matsumura H, Urasaki N, Yoshida K, Krüger DH, Kahl G, Terauchi R (2012) SuperSAGE: powerful serial analysis of gene expression. In: Jin H, Gassmann W (eds) RNA abundance analysis: methods and protocols. Springer, New York, pp 1–17

    Google Scholar 

  • Merret R, Descombin J, Juan YT, Favory JJ, Carpentier MC, Chaparro C, Charng YY, Deragon JM, Bousquet-Antonelli C (2013) XRN4 and LARP1 are required for a heat-triggered mRNA decay pathway involved in plant acclimation and survival during thermal stress. Cell Rep 5:1279–1293

    Article  CAS  PubMed  Google Scholar 

  • Mickelbart MV, Hasegawa PM, Bailey-Serres J (2015) Genetic mechanisms of abiotic stress tolerance that translate to crop yield stability. Nat Rev Genet 16:237–251

    Article  CAS  PubMed  Google Scholar 

  • Mir RR, Zaman-Allah M, Sreenivasulu N, Trethowan R, Varshney RK (2012) Integrated genomics, physiology and breeding approaches for improving drought tolerance in crops. Theor Appl Genet 125:625–645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mun JH, Yu HJ, Park BS (2015) Genomic resources and physical mapping of the B. rapa genome. In: Wang X, Kole C (eds) The Brassica rapa genome. Springer, New York, pp 25–39

    Chapter  Google Scholar 

  • Mustafiz A, Singh AK, Pareek A, Sopory SK, Singla-Pareek SL (2011) Genome-wide analysis of rice and Arabidopsis identifies two glyoxalase genes that are highly expressed in abiotic stresses. Funct Integr Genom 11:293–305

    Article  CAS  Google Scholar 

  • Muthurajan R, Balasubramanian P (2009) pyramiding genes for enhancing tolerance to abiotic and biotic stresses. In: Jain SM, Brar DS (eds) Molecular techniques in crop improvement. Springer, New York, pp 163–184

    Google Scholar 

  • Nakabayashi R, Saito K (2015) Integrated metabolomics for abiotic stress responses in plants. Curr Opin Plant Biol 24:10–16

    Article  CAS  PubMed  Google Scholar 

  • Nakano M, Nobuta K, Vemaraju K, Tej SS, Skogen JW, Meyers BC (2006) Plant MPSS databases: signature-based transcriptional resources for analyses of mRNA and small RNA. Nucl Acid Res 34:D731–D735

    Article  CAS  Google Scholar 

  • Naredo MEB, Cairns J, Wang H, Atienza G, Sanciangco MD, Melgar RJ, Kumar A, Ramaiah V, Serraj R, Mc Nally KL (2009) EcoTILLING as a SNP discovery tool for drought candidate genes in Oryza sativa germplasm. Philippine J Crop Sci 34:10–16

    Google Scholar 

  • Negrão SC, Pires AI, McNally KL, Oliveira MM (2011) Use of EcoTILLING to identify natural allelic variants of rice candidate genes involved in salinity tolerance. Plant Genet Resour 9:300–304

    Article  CAS  Google Scholar 

  • Nelson DE, Repetti PP, Adams TR, Creelman RA, Wu J, Warner DC, Anstrom DC, Bensen RJ, Castiglioni PP, Donnarummo MG, Hinchey BS (2007) Plant nuclear factor Y (NF-Y) B subunits confer drought tolerance and lead to improved corn yields on water-limited acres. Proc Natl Acad Sci USA 104:16450–16455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nielsen KL, Høgh AL, Emmersen J (2006) DeepSAGE-digital transcriptomics with high sensitivity, simple experimental protocol and multiplexing of samples. Nucl Acid Res 34: article e133

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nishiyama R, Watanabe Y, Leyva-Gonzalez MA, Van Ha C, Fujita Y, Tanaka M, Seki M, Yamaguchi-Shinozaki K, Shinozaki K, Herrera-Estrella L, Tran LS (2013) Arabidopsis AHP2, AHP3 and AHP5 histidine phosphotransfer proteins function as redundant negative regulators of drought stress response. Proc Natl Acad Sci USA 110:4840–4845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nobuta K, Venu RC, Lu C, Beló A, Vemaraju K, Kulkarni K, Wang W, Pillay M, Green PJ, Wang GL, Meyers BC (2007) An expression atlas of rice mRNAs and small RNAs. Nat Biotechnol 25:473–477

    Article  CAS  PubMed  Google Scholar 

  • Okazaki Y, Saito K (2016) Integrated metabolomics and phytochemical genomics approaches for studies on rice. Gigascience 5:11

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pandey R, Joshi G, Bhardwaj AR, Agarwal M, Katiyar-Agarwal S (2014) A comprehensive genome-wide study on tissue-specific and abiotic stress-specific miRNAs in Triticum aestivum. PLoS ONE 9:e95800

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pareek A, Singh A, Kumar M, Kushwaha HR, Lynn AM, Singla-Pareek SL (2006) Whole-genome analysis of Oryza sativa reveals similar architecture of two-component signaling machinery with Arabidopsis. Plant Physiol 142:380–397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pareek A, Sopory SK, Bohnert HK, Govindjee (eds) (2010) Abiotic stress adaptation in plants: physiolgical, molecular and genomic foundation. Springer, The Netherlands

    Google Scholar 

  • Park S, Lee CM, Doherty CJ, Gilmour SJ, Kim Y, Thomashow MF (2015) Regulation of the Arabidopsis CBF regulon by a complex low-temperature regulatory network. Plant J 82:193–207

    Article  CAS  PubMed  Google Scholar 

  • Peng X, Wu Q, Teng L, Tang F, Pi Z, Shen S (2015) Transcriptional regulation of the paper mulberry under cold stress as revealed by a comprehensive analysis of transcription factors. BMC Plant Biol 15:108

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Petolino JF, Worden A, Curlee K, Connell J, Strange Moynahan TL, Larsen C, Russell S (2010) Zinc finger nuclease-mediated transgene deletion. Plant Mol Biol 73:617–628

    Article  CAS  PubMed  Google Scholar 

  • Pitzschke A (2015) Modes of MAPK substrate recognition and control. Trends Plant Sci 20:49–55

    Article  CAS  PubMed  Google Scholar 

  • Pitzschke A, Datta S, Persak H (2014) Salt stress in Arabidopsis: lipid transfer protein AZI1 and its control by mitogen-activated protein kinase MPK3. Mol Plant 7:722–738

    Article  PubMed  CAS  Google Scholar 

  • Prasch CM, Sonnewald U (2013) Simultaneous application of heat, drought, and virus to Arabidopsis plants reveals significant shifts in signaling networks. Plant Physiol 162:1849–1866

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quijano CD, Brunner S, Keller B, Gruissem W, Sautter C (2015) The environment exerts a greater influence than the transgene on the transcriptome of field-grown wheat expressing the Pm3b allele. Transgenic Res 24:87–97

    Article  CAS  PubMed  Google Scholar 

  • Rahman M, Rahmat Z, Gul M, Zafar Y (2016) Plant functional genomics: approaches and applications. In: Khan MS, Khan IA, Barh D (eds) Applied molecular biotechnology: the next generation of genetic engineering. CRC Press, Boca Raton, pp 157–186

    Chapter  Google Scholar 

  • Rasmussen S, Barah P, Suarez-Rodriguez MC, Bressendorff S, Friis P, Costantino P, Bones AM, Nielsen HB, Mundy J (2013) Transcriptome responses to combinations of stresses in Arabidopsis. Plant Physiol 161:1783–1794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reams AB, Kofoid E, Kugelberg E, Roth JR (2012) Multiple pathways of duplication formation with and without recombination (RecA) in Salmonella enterica. Genetics 192:397–415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rejeb IB, Pastor V, Mauch-Mani B (2014) Plant responses to simultaneous biotic and abiotic stress: molecular mechanisms. Plants 3:458–475

    Article  PubMed  PubMed Central  Google Scholar 

  • Richards CL, Rosas U, Banta J, Bhambhra N, Purugganan MD (2012) Genome-wide patterns of Arabidopsis gene expression in nature. PLoS Genet 8:e1002662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roy SJ, Tucker EJ, Tester M (2011) Genetic analysis of abiotic stress tolerance in crops. Curr Opin Plant Biol 14:232–239

    Article  CAS  PubMed  Google Scholar 

  • Rudd S (2003) Expressed sequence tags: alternative or complement to whole genome sequences? Trends Plant Sci 8:321–329

    Article  CAS  PubMed  Google Scholar 

  • Russell SD, Gou X, Wong CE, Wang X, Yuan T, Wei X, Bhalla PL, Singh MB (2012) Genomic profiling of rice sperm cell transcripts reveals conserved and distinct elements in the flowering plant male germ lineage. New Phytol 195:560–573

    Article  CAS  PubMed  Google Scholar 

  • Sahoo KK, Tripathi AK, Pareek A, Singla-Pareek SL (2013) Taming drought stress in rice through genetic engineering and transcription factors and protein kinases. Plant Stress 1:60–72

    Google Scholar 

  • Saito K, Matsuda F (2010) Metabolomics for functional genomics, systems biology, and biotechnology. Annu Rev Plant Biol 61:463–489

    Article  CAS  PubMed  Google Scholar 

  • Sánchez-León N, Arteaga-Vázquez M, Alvarez-Mejía C, Mendiola-Soto J, Durán-Figueroa N, Rodríguez-Leal D, Rodríguez-Arévalo I, García-Campayo V, García-Aguilar M, Olmedo-Monfil V, Arteaga-Sánchez M (2012) Transcriptional analysis of the Arabidopsis ovule by massively parallel signature sequencing. J Exp Bot 63:3829–3842

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Saxena RK, Cui X, Thakur V, Walter B, Close TJ, Varshney RK (2011) Single feature polymorphisms (SFPs) for drought tolerance in pigeonpea (Cajanus spp.). Funct Integ Genom 11:651–657

    Article  CAS  Google Scholar 

  • Schauer N, Fernie AR (2006) Plant metabolomics: towards biological function and mechanism. Trends Plant Sci 11:508–516

    Article  CAS  PubMed  Google Scholar 

  • Schulte D, Ariyadasa R, Shi B, Fleury D, Saski C, Atkins M, Wu CC, Graner A, Langridge P, Stein N (2011) BAC library resources for map-based cloning and physical map construction in barley (Hordeum vulgare L.). BMC Genom 12:247

    Article  CAS  Google Scholar 

  • Sharan A, Soni P, Nongpiur RC, Singla-Pareek SL, Pareek A (2017) Mapping the ‘two component system’ network in rice. Sci Rep 7:9287

    Google Scholar 

  • Sharma R, Mishra M, Gupta B, Parsania C, Singla-Pareek SL, Pareek A (2015) De Novo assembly and characterization of stress transcriptome in a salinity-tolerant variety CS52 of Brassica juncea. PLoS ONE 10:e0126783

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sikora P, Chawade A, Larsson M, Olsson J, Olsson O (2011) Mutagenesis as a tool in plant genetics, functional genomics, and breeding. Intl J Plant Genom 2011: Article ID 314829

    Article  CAS  Google Scholar 

  • Singh AK, Kumar R, Pareek A, Sopory SK, Singla-Pareek SL (2012) Overexpression of rice CBS domain containing protein improves salinity, oxidative, and heavy metal tolerance in transgenic tobacco. Mol Biotechnol 52:205–216

    Article  CAS  PubMed  Google Scholar 

  • Singh A, Kushwaha HR, Soni P, Gupta H, Singla-Pareek SL, Pareek A (2015a) Tissue specific and abiotic stress regulated transcription of histidine kinases in plants is also influenced by diurnal rhythm. Front Plant Sci 6:711

    PubMed  PubMed Central  Google Scholar 

  • Singh B, Bohra A, Mishra S, Joshi R, Pandey S (2015b) Embracing new-generation ‘omics’ tools to improve drought tolerance in cereal and food-legume crops. Biol Plant 59:413–428

    Article  CAS  Google Scholar 

  • Sinha AK, Jaggi M, Raghuram B, Tuteja N (2011) Mitogen-activated protein kinase signaling in plants under abiotic stress. Plant Signal Behav 6:196–203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sofi P, Trag AR (2006) Genomics in rice improvement. Asian J Biochem 1:194–210

    Article  Google Scholar 

  • Song Q, Jenkins J, Jia G, Hyten DL, Pantalone V, Jackson SA, Schmutz J, Cregan PB (2016) Construction of high resolution genetic linkage maps to improve the soybean genome sequence assembly Glyma1.01. BMC Genom 17:33

    Article  CAS  Google Scholar 

  • Sreenivasulu N, Sopory SK, Kavi Kishor PB (2007) Deciphering the regulatory mechanisms of abiotic stress tolerance in plants by genomic approaches. Gene 388:1–13

    Article  CAS  PubMed  Google Scholar 

  • Strange TL, Petolino JF (2012) Targeting dna to a previously integrated transgenic locus using zinc finger nucleases. In: Dunwell JM, Wetten AC (eds) Transgenic plants: methods and protocols, methods in molecular biology. Springer, New York, pp 391–397

    Chapter  Google Scholar 

  • Sumner LW, Mendes P, Dixon RA (2003) Plant metabolomics: large-scale phytochemistry in the functional genomics era. Phytochem 62:817–836

    Article  CAS  Google Scholar 

  • Sun CX, Li MQ, Gao XX, Liu LN, Wu XF, Zhou JH (2016) Metabolic response of maize plants to multi-factorial abiotic stresses. Plant Biol 1:120–129

    Article  CAS  Google Scholar 

  • Sunkar R, Chinnusamy V, Zhu J, Zhu JK (2007) Small RNAs as big players in plant abiotic stress responses and nutrient deprivation. Trends Plant Sci 12:301–309

    Article  CAS  PubMed  Google Scholar 

  • Tao X, Gu YH, Wang HY, Zheng W, Li X, Zhao CW, Zhang YZ (2012) Digital gene expression analysis based on integrated de novo transcriptome assembly of sweet potato [Ipomoea batatas (L.) Lam.]. PLoS ONE 7:e36234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Teotia S, Singh D, Tang X, Tang G (2016) Essential RNA-based technologies and their applications in plant functional genomics. Trends Biotechnol 34:106–123

    Article  CAS  PubMed  Google Scholar 

  • Tripathi AK, Pareek A, Sopory SK, Singla-Pareek SL (2012) Narrowing down the targets for yield improvement in rice under normal and abiotic stress conditions via expression profiling of yield-related genes. Rice 5:37

    Article  PubMed  PubMed Central  Google Scholar 

  • Tripathi P, Rabara RC, Rushton PJ (2014) A systems biology perspective on the role of WRKY transcription factors in drought responses in plants. Planta 239:255–266

    Article  CAS  PubMed  Google Scholar 

  • Tripathy MK, Tyagi W, Goswami M, Kaul T, Singla-Pareek SL, Deswal R, Reddy MK, Sopory SK (2012) Characterization and functional validation of tobacco PLC delta for abiotic stress tolerance. Plant Mol Biol Rep 30:488–497

    Article  CAS  Google Scholar 

  • Umezawa T, Fujita M, Fujita Y, Yamaguchi-Shinozaki K, Shinozaki K (2006) Engineering drought tolerance in plants: discovering and tailoring genes to unlock the future. Curr Opin Plant Biotech 17:113–122

    Article  CAS  Google Scholar 

  • Urano K, Kurihara Y, Seki M, Shinozaki K (2010) ‘Omics’ analyses of regulatory networks in plant abiotic stress responses. Curr Opin Plant Biol 13:132–138

    Article  CAS  PubMed  Google Scholar 

  • Varshney RK, Hoisington DA, Tyagi AK (2006) Advances in cereal genomics and applications in crop breeding. Trends Biotechnol 24:490–499

    Article  CAS  PubMed  Google Scholar 

  • Varshney RK, Ribaut JM, Buckler ES, Tuberosa R, Rafalski JA, Langridge P (2012) Can genomics boost productivity of orphan crops? Nat Biotechnol 30:1172–1176

    Article  CAS  PubMed  Google Scholar 

  • Varshney RK, Saxena RK, Upadhyaya HD, Khan AW, Yu Y, Kim C, Rathore A, Kim D, Kim J, An S, Kumar V (2017) Whole-genome resequencing of 292 pigeonpea accessions identifies genomic regions associated with domestication and agronomic traits. Nat Genet 49:1082–1088

    Article  CAS  PubMed  Google Scholar 

  • Vega-Sánchez ME, Gowda M, Wang GL (2007) Tag-based approaches for deep transcriptome analysis in plants. Plant Sci 173:371–380

    Article  CAS  Google Scholar 

  • Verdier J, Torres-Jerez I, Wang M, Andriankaja A, Allen SN, He J, Tang Y, Murray JD, Udvardi MK (2013) Establishment of the Lotus japonicas gene expression atlas (LjGEA) and its use to explore legume seed maturation. Plant J 74:351–362

    Article  CAS  PubMed  Google Scholar 

  • Vij S, Tyagi AK (2007) Emerging trends in the functional genomics of the abiotic stress response in crop plants. Plant Biotechnol J 5:361–380

    Article  CAS  PubMed  Google Scholar 

  • Vogel JT, Zarka DG, Van Buskirk HA, Fowler SG, Thomashow MF (2005) Roles of the CBF2 and ZAT12 transcription factors in configuring the low temperature transcriptome of Arabidopsis. Plant J 41:195–211

    Article  CAS  PubMed  Google Scholar 

  • Wang ZL, Li PH, Fredricksen M, Gong ZZ, Kim CS, Zhang C, Bohnert HJ, Zhu JK, Bressan RA, Hasegawa PM, Zhao YX (2004) Expressed sequence tags from Thellungiella halophila, a new model to study plant salt-tolerance. Plant Sci 166:609–616

    Article  CAS  Google Scholar 

  • Wang M, Wang S, Xia G (2015) From genome to gene: a new epoch for wheat research? Trends Plant Sci 20:380–387

    Article  PubMed  CAS  Google Scholar 

  • Wang H, Wang H, Shao H, Tang X (2016) Recent advances in utilizing transcription factors to improve plant abiotic stress tolerance by transgenic technology. Front Plant Sci 7:67

    PubMed  PubMed Central  Google Scholar 

  • Wei CL, Ng P, Chiu KP, Wong CH, Ang CC, Lipovich L, Liu ET, Ruan Y (2004) 5′ Long serial analysis of gene expression (LongSAGE) and 3′ LongSAGE for transcriptome characterization and genome annotation. Proc Natl Acad Sci USA 101:11701–11706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wen Y, Li X, Guo C, Ma C, Duan W, Lu W, Xiao K (2015) Characterization and expression analysis of mitogen-activated protein kinase cascade genes in wheat subjected to phosphorus and nitrogen deprivation, high salinity, and drought. J Plant Biochem Biotechnol 24:184–196

    Article  CAS  Google Scholar 

  • Wheeler DA, Wang L (2013) From human genome to cancer genome: the first decade. Genome Res 23:1054–1062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wood V, Gwilliam R, Rajandream MA, Lyne M, Lyne R, Stewart A, Sgouros J, Peat N, Hayles J, Baker S, Basham D (2002) The genome sequence of Schizosaccharomyces pombe. Nature 415:871–880

    Article  CAS  PubMed  Google Scholar 

  • Wu M, Chen A, Wang Z, Zhang J, Wang C, Li F, Wei P, Wang R, Luo Z, Wei C, Lin F, Yang J (2015) Plant microarray for gene expression profiling and their application. J Agric Technol 11:93–105

    CAS  Google Scholar 

  • Xia Z, Zhai H, Lü S, Wu H, Zhang Y (2013) Recent achievement in gene cloning and functional genomics in soybean. The Sci World J 2013: Article ID 281367

    Google Scholar 

  • Xie K, Yang Y (2013) RNA-guided genome editing in plants using a CRISPR-Cas system. Mol Plant 6:1975–1983

    Article  CAS  PubMed  Google Scholar 

  • Yang Q, Chen ZZ, Zhou XF, Yin HB, Li X, Xin XF, Hong XH, Zhu JK, Gong Z (2009) Overexpression of SOS (Salt Overly Sensitive) genes increases salt tolerance in transgenic Arabidopsis. Mol Plant 2:22–31

    Article  CAS  PubMed  Google Scholar 

  • Yang X, Yang YN, Xue LJ, Zou MJ, Liu JY, Chen F, Xue HW (2011) Rice ABI5-Like1 regulates abscisic acid and auxin responses by affecting the expression of ABRE-containing genes. Plant Physiol 5:1397–1409

    Article  CAS  Google Scholar 

  • Yang Z, Huang D, Tang W, Zheng Y, Liang K, Cutler AJ, Wu W (2013) Mapping of quantitative trait loci underlying cold tolerance in rice seedlings via high-throughput sequencing of pooled extremes. PLoS ONE 8:e68433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoshida T, Fujita Y, Maruyama K, Mogami J, Todaka D, Shinozaki K, Yamaguchi-Shinozaki KA (2014) Four Arabidopsis AREB/ABF transcription factors function predominantly in gene expression downstream of SnRK2 kinases in abscisic acid signaling in response to osmotic stress. Plant Cell Environ 38:35–49

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang J (2014) Salinity affects the proteomics of rice roots and leaves. Proteomics 14:1711–1712

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Zhu Y, Liu X, Hong X, Xu Y, Zhu P, Shen Y, Wu H, Ji Y, Wen X, Zhang C (2015) Suppression of endogenous gene silencing by bidirectional cytoplasmic RNA decay in Arabidopsis. Science 348:120–123

    Article  CAS  PubMed  Google Scholar 

  • Zhang B, Yang X, Yang C, Li M, Guo Y (2016) Exploiting the CRISPR/Cas9 system for targeted genome mutagenesis in petunia. Sci Rep 6:20315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao X, Wang W, Zhang F, Deng J, Li Z, Fu B (2014) Comparative metabolite profiling of two rice genotypes with contrasting salt stress tolerance at the seedling stage. PLoS ONE 9:e108020

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

Research in our lab is supported by funds from the Department of Biotechnology, Council of Scientific and Industrial Research, Government of India, internal grants of ICGEB, and Bioseed Research India. RJ acknowledges the Start-Up research grant (Young Scientist) from the Science and Engineering Research Board and Dr. D. S. Kothari Fellowship from University Grants Commission, Government of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sneh L. Singla-Pareek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Joshi, R., Gupta, B.K., Pareek, A., Singh, M.B., Singla-Pareek, S.L. (2019). Functional Genomics Approach Towards Dissecting Out Abiotic Stress Tolerance Trait in Plants. In: Rajpal, V., Sehgal, D., Kumar, A., Raina, S. (eds) Genetic Enhancement of Crops for Tolerance to Abiotic Stress: Mechanisms and Approaches, Vol. I. Sustainable Development and Biodiversity, vol 20. Springer, Cham. https://doi.org/10.1007/978-3-319-91956-0_1

Download citation

Publish with us

Policies and ethics