Skip to main content

Underwater Acoustic Signal and Noise Modeling

  • Chapter
  • First Online:
Underwater Acoustic Signal Processing

Part of the book series: Modern Acoustics and Signal Processing ((MASP))

  • 2705 Accesses

Abstract

In this chapter, the four dimensions in which underwater acoustic signals can be categorized are introduced: time, frequency, consistency from observation to observation, and knowledge of structure. Recalling the remote-sensing application, the impact of propagation through an underwater acoustic channel on source-signal characterization is described in terms of its effect on signal amplitude and phase. Various representations of bandpass signals are presented, including the analytic signal, complex envelope, envelope and instantaneous intensity. Statistical models for sampled time-series data are obtained for signals and noise to support derivation and analysis of detection and estimation algorithms. Reverberation in active systems is characterized as a random process in order to describe its autocorrelation function and power spectral density. The effect on reverberation arising from the motion of the sonar platform or reverberation-source scatterers, known as Doppler spreading, is introduced and approximated. In addition to the standard Gaussian noise model, a number of heavy-tailed distributions are described including the K distribution, Poisson-Rayleigh, and mixture distributions. Standard statistical models for signals and signals-plus-noise are presented along with techniques for evaluating or approximating the probability of detection and probability of false alarm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    As noted in Sect. 7.4.1, ambient noise can be assumed stationary over short periods of time. However, as described in Sect. 7.4.2, a normalization process needs to occur in order to treat reverberation as a WSS random process.

  2. 2.

    The bandwidth of the complex envelope accounts for both the positive and negative frequencies.

  3. 3.

    As described in [14, Ch. 5] there exist broadband waveforms with significant Doppler sensitivity that are not subject to (7.7).

  4. 4.

    As shown in Sect. 4.4 or [24, Ch. 12], the Hilbert transform of s(t) is \(s_h(t)= \pi ^{-1}\int _{-\infty }^{\infty } s(\tau )/(\tau -t) \,\mathrm {d} \tau \). Note, however, that some texts define the Hilbert transform as the negative of that used here (i.e., with t − τ in the denominator of the definition rather than τ − t).

  5. 5.

    Recall from Sect. 5.5 that the ACF for complex WSS random processes is .

  6. 6.

    Recall from Sect. 5.5 that \(R_{\tilde {z}\tilde {z}}(\tau ) = 2R_{uu}(\tau )+j2R_{vv}(\tau )\) and R uv(τ) = −R uv(−τ) for a WSS proper complex random process.

  7. 7.

    Ergodicity in a WSS bandpass process with no zero-frequency content implies the ensemble mean is zero and that the temporally averaged power equals the variance.

  8. 8.

    Recall from the discussion in Sect. 5.3.6 that matrix–vector notation representing a vector as a lower-case bold letter (e.g., x) takes precedence over the mathematical-statistics notation of random variables taking an upper case letter and its observed value the lower case. Whether x = [X 1X n]T or x = [x 1x n]T must be discerned from context.

  9. 9.

    A trivial example of this can be found by letting θ ∼Unif(0, 4π).

  10. 10.

    Acknowledgement: CTBTO [29] with gratitude to Drs. G. Haralabus, M. Zampolli, P. Nielsen, and A. Brouwer for their assistance in identifying, accessing, and interpreting the data.

  11. 11.

    A distribution family is closed under a mathematical operation if the result of the operation is still within the family. For example, the Gaussian distribution is closed under translation, scale, and the addition of other Gaussian random variables.

  12. 12.

    Note that the approximations in Table 7.6 for the K distribution are accurate enough for use as a CRLB, but not accurate enough to obtain the off-diagonal term of the Fisher information matrix without adding terms in the 1∕α polynomial.

  13. 13.

    Note that this differs from that presented in [85] by not assuming the data have been normalized and by a factor of 2 so the average intensity is P o + λ rather than 2(P o + λ).

  14. 14.

    This technique has its origins in [96] and was applied in [97] to obtain the envelope PDF.

  15. 15.

    The computational routine from [98] has been implemented as a MATLAB® subroutine in [99]. Note that the definition of the Hankel transform in [99] differs from that used here, which is from [24, pg. 248], by absorbing the “x” in the integrand of (7.234) into the function g(x).

  16. 16.

    Note that the parameter variables used here differ from those in [53] to align with the (α, β) gamma-distribution convention: a g is the shape, b g the scale, and c g the location or shift parameter.

References

  1. J.G. Proakis, Digital Communications (McGraw-Hill, New York 1983)

    MATH  Google Scholar 

  2. T.S. Rappaport, Wireless Communications (Prentice Hall, Englewood, 1996)

    Google Scholar 

  3. M. Stojanovic, Recent advances in high-speed underwater acoustic communications. IEEE J. Ocean. Eng. 21(2), 125–136 (1996)

    Article  Google Scholar 

  4. D. Brady, J.C. Preisig, Underwater acoustic communications, in Wireless Communications: Signal Processing Perspectives, ed. by H.V. Poor, G.W. Wornell, Chap. 8 (Prentice Hall PTR, Englewood, 1998)

    Google Scholar 

  5. R.J. Urick, Principles of Underwater Sound, 3rd edn. (McGraw-Hill, New York, 1983)

    Google Scholar 

  6. The physics of sound in the sea. Sum. Tech. Rep.8~, Office of Scientific Research and Development, Nat. Def. Res. Comm. Div. 6, 1946

    Google Scholar 

  7. W.S. Burdic, Underwater Acoustic System Analysis, 2nd edn. (Peninsula Publishing, Los Altos, 1991)

    Google Scholar 

  8. D. Ross, Mechanics of Underwater Noise (Peninsula Publishing, Los Altos, 1987)

    Google Scholar 

  9. W.W.L. Au, M.C. Hastings, Principles of Marine Bioacoustics (Springer, Berlin, 2008)

    Book  Google Scholar 

  10. L. Cohen, Time-Frequency Analysis (Prentice Hall PTR, Englewood Cliffs, 1995)

    Google Scholar 

  11. G. Okopal, P.J. Loughlin, L. Cohen, Dispersion-invariant features for classification. J. Acoust. Soc. Am. 123(2), 832–841 (2008)

    Article  Google Scholar 

  12. C. Eckart, Optimal rectifier systems for the detection of steady signals. Tech. Rpt. 52-11, University of California, Marine Physical Laboratory of the Scripps Institute of Oceanography, La Jolla, California, March 1952

    Google Scholar 

  13. C.H. Sherman, J.L. Butler, Transducers and Arrays for Underwater Sound (Springer, Berlin, 2007)

    Book  Google Scholar 

  14. D.W. Ricker, Echo Signal Processing (Kluwer Academic Publishers, Boston, 2003)

    Book  Google Scholar 

  15. I. Dyer, Statistics of sound propagation in the ocean. J. Acoust. Soc. Am. 48(1B), 337–345 (1970)

    Article  Google Scholar 

  16. P.N. Mikhalevsky, Envelope statistics of partially saturated processes. J. Acoust. Soc. Am. 72(1), 151–158 (1982)

    Article  MATH  Google Scholar 

  17. A.D. Seifer, M.J. Jacobson, Ray transmissions in an underwater acoustic duct with a pseudorandom bottom. J. Acoust. Soc. Am. 43(6), 1395–1403 (1968)

    Article  Google Scholar 

  18. S.O. Rice, Mathematical analysis of random noise: part III. Bell Syst. Tech. J. 24(1), 46–156 (1945)

    Article  MATH  Google Scholar 

  19. R.J. Urick, Models for the amplitude fluctuations of narrow-band signals and noise in the sea. J. Acoust. Soc. Am. 62(4), 878–887 (1977)

    Article  Google Scholar 

  20. C.H. Harrison, The influence of propagation focusing on clutter statistics. IEEE J. Ocean. Eng. 35(2), 175–184 (2010)

    Article  Google Scholar 

  21. A.B. Carlson, Communication Systems (McGraw-Hill, New York, 1986)

    Google Scholar 

  22. J. Dugundji, Envelopes and pre-envelopes of real waveforms. IRE Trans. Inf. Theory 4(1), 53–57 (1958)

    Article  Google Scholar 

  23. R.N. McDonough, A.D. Whalen, Detection of Signals in Noise, 2nd edn. (Academic Press, San Diego, 1995)

    Google Scholar 

  24. R.N. Bracewell, The Fourier Transform and Its Applications, 2nd edn. (McGraw-Hill, New York, 1986)

    MATH  Google Scholar 

  25. R.G. Lyons, Understanding Digital Signal Processing (Prentice Hall, Englewood Cliffs, 2011)

    Google Scholar 

  26. W.W. Peterson, T.G. Birdsall, W.C. Fox, The theory of signal detectability. Trans. IRE Prof. Group Inf. Theory 4(4), 171–212 (1954)

    Article  Google Scholar 

  27. S.M. Haver, H. Klinck, S.L. Nieukirk, H. Matsumoto, R.P. Dziak, J.L. Miksis-Olds, The not-so-silent world: measuring Arctic, Equatorial, and Antarctic soundscapes in the Atlantic Ocean. Deep Sea Res. I 122, 95–104 (2017)

    Article  Google Scholar 

  28. G.M. Wenz, Acoustic ambient noise in the ocean: spectra and sources. J. Acoust. Soc. Am. 34(12), 1936–1956 (1962)

    Article  Google Scholar 

  29. Acknowledgement: The author thanks and acknowledges the Preparatory Commission for the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO; https://www.ctbto.org/specials/vdec/) for providing access to the data used to produce these figures. The CTBTO is not responsible for the views of the author.

  30. T. Arase, E.M. Arase, Deep-sea ambient-noise statistics. J. Acoust. Soc. Am. 44(6), 1679–1684 (1968)

    Article  Google Scholar 

  31. W.J. Jobst, S.L. Adams, Statistical analysis of ambient noise. J. Acoust. Soc. Am. 62(1), 63–71 (1977)

    Article  Google Scholar 

  32. A.R. Milne, J.H. Ganton, Ambient noise under arctic-sea ice. J. Acoust. Soc. Am. 36(5), 855–863 (1964)

    Article  Google Scholar 

  33. I. Dyer, Statistics of distant shipping noise. J. Acoust. Soc. Am. 53(2), 564–570 (1973)

    Article  Google Scholar 

  34. J.G. Veitch, A.R. Wilks, A characterization of Arctic undersea noise. J. Acoust. Soc. Am. 77(3), 989–999 (1985)

    Article  Google Scholar 

  35. M. Bouvet, S.C. Schwartz, Underwater noises: statistical modeling, detection, and normalization. J. Acoust. Soc. Am. 83(3), 1023–1033 (1988)

    Article  Google Scholar 

  36. A.B. Baggeroer, E.K. Scheer, The NPAL Group, Statistics and vertical directionality of low-frequency ambient noise at the North Pacific Acoustics Laboratory site. J. Acoust. Soc. Am. 117(3), 1643–1665 (2005)

    Google Scholar 

  37. D. Middleton, Statistical-physical models of electromagnetic interference. IEEE Trans. Electromagn. Compat. EMC-19(3), 106–127 (1977)

    Article  Google Scholar 

  38. G.R. Wilson, D.R. Powell, Experimental and modeled density estimates of underwater acoustic returns, in Statistical Signal Processing, ed. by E.J. Wegman, J.G. Smith (Marcel Dekker, New York, 1984), pp. 223–219

    Google Scholar 

  39. S.A. Kassam, Signal Detection in Non-Gaussian Noise (Springer, New York, 1988)

    Book  Google Scholar 

  40. F.W. Machell, C.S. Penrod, Probability density functions of ocean acoustic noise processes, in Statistical Signal Processing, ed. by E.J. Wegman, J.G. Smith (Marcel Dekker, New York, 1984), pp. 211–221

    Google Scholar 

  41. N.L. Johnson, S. Kotz, N. Balakrishnan, Continuous Univariate Distributions, vol. 1, 2nd edn. (Wiley, Hoboken, 1994)

    Google Scholar 

  42. P. Faure, Theoretical model of reverberation noise. J. Acoust. Soc. Am. 36(2), 259–266 (1964)

    Article  MathSciNet  Google Scholar 

  43. V.V. Ol’shevskii, Characteristics of Sea Reverberation (Consultants Bureau, New York, 1967)

    Google Scholar 

  44. M.A. Richards, J.A. Scheer, W.A. Holm, Principles of Modern Radar (SciTech Publishing, Raleigh, 2010)

    Book  Google Scholar 

  45. H.L. Van Trees, Optimum Array Processing (Wiley, New York, 2002)

    Book  Google Scholar 

  46. C.W. Holland, J.R. Preston, D.A. Abraham, Long-range acoustic scattering from a shallow-water mud-volcano cluster. J. Acoust. Soc. Am. 122(4), 1946–1958 (2007)

    Article  Google Scholar 

  47. D.A. Abraham, A.P. Lyons, Novel physical interpretations of K-distributed reverberation. IEEE J. Ocean. Eng. 27(4), 800–813 (2002)

    Article  Google Scholar 

  48. E. Jakeman, P.N. Pusey, A model for non-Rayleigh sea echo. IEEE Trans. Antennas Propag. 24(6), 806–814 (1976)

    Article  Google Scholar 

  49. E. Jakeman, On the statistics of k-distributed noise. J. Phys. A Math. Gen. 13, 31–48 (1980)

    Article  MATH  Google Scholar 

  50. K.D. Ward, Compound representation of high resolution sea clutter. Electron. Lett. 17(16), 561–563 (1981)

    Article  Google Scholar 

  51. E. Jakeman, K.D. Ridley, Modeling Fluctuations in Scattered Waves (Taylor & Francis, Boca Raton, 2006)

    Book  Google Scholar 

  52. K.D. Ward, R.J.A. Tough, S. Watts, Sea Clutter: Scattering, the K Distribution and Radar Performance (The Institution of Engineering and Technology, London, 2006)

    Book  Google Scholar 

  53. D.A. Abraham, Signal excess in K-distributed reverberation. IEEE J. Ocean. Eng. 28(3), 526–536 (2003)

    Article  Google Scholar 

  54. D.A. Abraham, Detection-threshold approximation for non-Gaussian backgrounds. IEEE J. Ocean. Eng. 35(2), 355–365 (2010)

    Article  Google Scholar 

  55. K. Oldham, J. Myland, J. Spanier, An Atlas of Functions, 2nd edn. (Springer Science, New York, 2009)

    Book  MATH  Google Scholar 

  56. I.S. Gradshteyn, I.M. Ryzhik, Table of Integrals, Series, and Products, ed. by D. Zwillinger, 8th edn. (Elsevier Academic Press, Waltham, 2015)

    Google Scholar 

  57. I.R. Joughin, D.B. Percival, D.P. Winebrenner, Maximum likelihood estimation of K distribution parameters for SAR data. IEEE Trans. Geosci. Remote Sens. 31(5), 989–999 (1993)

    Article  Google Scholar 

  58. W.J.J. Roberts, S. Furui, Maximum likelihood estimation of K-distribution parameters via the expectation-maximization algorithm. IEEE Trans. Signal Process. 48(12), 3303–3306 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  59. D.A. Abraham, A.P. Lyons, Reliable methods for estimating the K-distribution shape parameter. IEEE J. Ocean. Eng. 35(2), 288–302 (2010)

    Article  Google Scholar 

  60. J.M. Fialkowski, R.C. Gauss, D.M. Drumheller, Measurements and modeling of low-frequency near-surface scattering statistics. IEEE J. Ocean. Eng. 29(2), 197–214 (2004)

    Article  Google Scholar 

  61. J.M. Fialkowski, R.C. Gauss, Methods for identifying and controlling sonar clutter. IEEE J. Ocean. Eng. 35(2), 330–354 (2010)

    Article  Google Scholar 

  62. S.M. Zabin, H.V. Poor, Parameter estimation for Middleton Class A interference processes. IEEE Trans. Commun. 37(10), 1042–1051 (1989)

    Article  Google Scholar 

  63. S.M. Zabin, H.V. Poor, Recursive algorithms for identification of impulse noise channels. IEEE Trans. Inf. Theory 36(3), 559–578 (1990)

    Article  MATH  Google Scholar 

  64. S.M. Zabin, H.V. Poor, Efficient estimation of Class A noise parameters via the EM algorithm. IEEE Trans. Inf. Theory 37(1), 60–72 (1991)

    Article  MATH  Google Scholar 

  65. S.T. McDaniel, Seafloor reverberation fluctuations. J. Acoust. Soc. Am. 88(3), 1530–1535 (1990)

    Article  Google Scholar 

  66. M. Gu, D.A. Abraham, Using McDaniel’s model to represent non-Rayleigh reverberation. IEEE J. Ocean. Eng. 26(3), 348–357 (2001)

    Article  Google Scholar 

  67. M. Gu, D.A. Abraham, Parameter estimation for McDaniel’s non-Rayleigh reverberation model, in Proceedings of Oceans 99 Conference, Seattle, Washington (1999), pp. 279–283

    Google Scholar 

  68. E. Conte, M. Longo, Characterisation of radar clutter as a spherically invariant random process. IEE Proc. F Radar Signal Process. 134(2), 191–197 (1987)

    Article  Google Scholar 

  69. T.J. Barnard, D.D. Weiner, Non-Gaussian clutter modeling with generalized spherically invariant random vectors. IEEE Trans. Signal Process. 44(10), 2384–2390 (1996)

    Article  Google Scholar 

  70. T.J. Barnard, F. Khan, Statistical normalization of spherically invariant non-Gaussian clutter. IEEE J. Ocean. Eng. 29(2), 303–309 (2004)

    Article  Google Scholar 

  71. B.R. La Cour, Statistical characterization of active sonar reverberation using extreme value theory. IEEE J. Ocean. Eng. 29(2), 310–316 (2004)

    Article  Google Scholar 

  72. J.M. Gelb, R.E. Heath, G.L. Tipple, Statistics of distinct clutter classes in mid-frequency active sonar. IEEE J. Ocean. Eng. 35(2), 220–229 (2010)

    Article  Google Scholar 

  73. G.B. Goldstein, False-alarm regulation in log-normal and Weibull clutter. IEEE Trans. Aerosp. Electron. Syst. AES-9(1), 84–92 (1973)

    Article  Google Scholar 

  74. D.C. Schleher, Radar detection in Weibull clutter. IEEE Trans. Aerosp. Electron. Syst. AES-12(6), 736–743 (1976)

    Article  Google Scholar 

  75. M. Sekine, Y. Mao, Weibull Radar Clutter (Peter Peregrinus, London, 1990)

    Book  Google Scholar 

  76. N.L. Johnson, S. Kotz, N. Balakrishnan, Continuous Univariate Distributions, vol. 2, 2nd edn. (Wiley, New York, 1995)

    Google Scholar 

  77. N.P. Chotiros, H. Boehme, T.G. Goldsberry, S.P. Pitt, R.A. Lamb, A.L. Garcia, R.A. Altenburg, Acoustic backscattering at low grazing angles from the ocean bottom. Part II. Statistical characteristics of bottom backscatter at a shallow water site. J. Acoust. Soc. Am. 77(3), 975–982 (1985)

    Google Scholar 

  78. S. Kay, C. Xu, CRLB via the characteristic function with application to the K-distribution. IEEE Trans. Aerosp. Electron. Syst. 44(3), 1161–1168 (2008)

    Article  Google Scholar 

  79. P.A. Crowther, Fluctuation statistics of sea-bed acoustic backscatter, in Bottom Interacting Ocean Acoustics, ed. by W.A. Kuperman, F.B. Jensen (Plenum, New York, 1980), pp. 609–622

    Chapter  Google Scholar 

  80. A.P. Lyons, D.A. Abraham, Statistical characterization of high-frequency shallow-water seafloor backscatter. J. Acoust. Soc. Am. 106(3), 1307–1315 (1999)

    Article  Google Scholar 

  81. W.J. Lee, T.K. Stanton, Statistics of echoes from mixed assemblages of scatterers with different scattering amplitudes and numerical densities. IEEE J. Ocean. Eng. 39(4), 740–754 (2014)

    Article  Google Scholar 

  82. A.P. Dempster, N.M. Laird, D.B. Rubin, Maximum likelihood from incomplete data via the EM algorithm. J. R. Stat. Soc. Ser. B 2, 1–38 (1977)

    MathSciNet  MATH  Google Scholar 

  83. G.J. McLachlan, T. Krishnan, The EM Algorithm and Extensions (Wiley, Hoboken, 2008)

    Book  MATH  Google Scholar 

  84. D.A. Abraham, J.M. Gelb, A.W. Oldag, Background and clutter mixture distributions for active sonar statistics. IEEE J. Ocean. Eng. 36(2), 231–247 (2011)

    Article  Google Scholar 

  85. D.A. Abraham, Application of gamma-fluctuating-intensity signal model to active sonar, in Proceedings of 2015 IEEE Oceans Conference, Genoa, Italy (2015)

    Google Scholar 

  86. M.A. Richards, Fundamentals of Radar Signal Processing (McGraw-Hill, New York, 2005)

    Google Scholar 

  87. D.A. Shnidman, The calculation of the probability of detection and the generalized Marcum Q-function. IEEE Trans. Inf. Theory 35(2), 389–400 (1989)

    Article  MATH  Google Scholar 

  88. C.W. Helstrom, Elements of Signal Detection and Estimation (Prentice Hall, Englewood Cliffs, 1995)

    MATH  Google Scholar 

  89. S.M. Kay, Fundamentals of Statistical Signal Processing: Detection Theory (Prentice Hall PTR, Englewood Cliffs, 1998)

    Google Scholar 

  90. A.H. Nuttall, Accurate efficient evaluation of cumulative or exceedance probability distributions directly from characteristic functions. Tech. Rpt. 7023, Naval Underwater Systems Center, New London, CT, October 1983

    Google Scholar 

  91. S.O. Rice, Mathematical analysis of random noise. Bell Syst. Tech. J. 23(3), 282–332 (1944)

    Article  MathSciNet  MATH  Google Scholar 

  92. S.O. Rice, Statistical properties of a sine wave plus random noise. Bell Syst. Tech. J. 27(1), 109–157 (1948)

    Article  MathSciNet  Google Scholar 

  93. W.W. Weinstock, Target cross section models for radar systems analysis. Ph.D. dissertation, University of Pennsylvania, Philadelphia, PA, 1964

    Google Scholar 

  94. D.A. Shnidman, Expanded Swerling target models. IEEE Trans. Aerosp. Electron. Syst. 39(3), 1059–1069 (2003)

    Article  Google Scholar 

  95. P. Swerling, Radar probability of detection for some additional fluctuating target cases. IEEE Trans. Aerosp. Electron. Syst. 33(2), 698–709 (1997)

    Article  Google Scholar 

  96. R.D. Lord, The use of the Hankel transform in statistics I. general theory and examples. Biometrika 41, 44–55 (1954)

    Article  MathSciNet  MATH  Google Scholar 

  97. D.M. Drumheller, Padé approximations to matched filter amplitude probability functions. IEEE Trans. Aerosp. Electron. Syst. 35(3), 1033–1045 (1999)

    Article  Google Scholar 

  98. W.L. Anderson, Computer program numerical integration of related Hankel transforms of orders 0 and 1 by adaptive digital filtering. Geophysics 44(7), 1287–1305 (1979)

    Article  Google Scholar 

  99. B. Borchers, Hankel Transform Routines in MATLAB. http://www.nmt.edu/~borchers/hankel.html

  100. H. Amindavar, J.A. Ritcey, Padé approximations for detectability in K-clutter and noise. IEEE Trans. Aerosp. Electron. Syst. 30(2), 425–434 (1994)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Abraham, D.A. (2019). Underwater Acoustic Signal and Noise Modeling. In: Underwater Acoustic Signal Processing. Modern Acoustics and Signal Processing. Springer, Cham. https://doi.org/10.1007/978-3-319-92983-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-92983-5_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-92981-1

  • Online ISBN: 978-3-319-92983-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics