Skip to main content

Solver Independent Rotating Workforce Scheduling

  • Conference paper
  • First Online:
Integration of Constraint Programming, Artificial Intelligence, and Operations Research (CPAIOR 2018)

Abstract

The rotating workforce scheduling problem aims to schedule workers satisfying shift sequence constraints and ensuring enough shifts are covered on each day, where every worker completes the same schedule, just starting at different days in the schedule. We give two solver independent models for the rotating workforce scheduling problem and compare them using different solving technology, both constraint programming and mixed integer programming. We show that the best of these models outperforms the state-of-the-art for the rotating workforce scheduling problem, and that solver independent modeling allows us to use different solvers to achieve different aims: e.g., speed to solution or robustness of solving (particular for unsatisfiable problems). We give the first complete method able to solve all of the standard benchmarks for this problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Available at http://www.dbai.tuwien.ac.at/staff/musliu/benchmarks/.

  2. 2.

    We also tried Gecode as a constraint programming solver, but it was not competitive.

  3. 3.

    We ran preliminary experiments on all possible combinations with a five minutes runtime limit.

References

  1. Baker, K.R.: Workforce allocation in cyclical scheduling problems: a survey. J. Oper. Res. Soc. 27(1), 155–167 (1976)

    Article  Google Scholar 

  2. Balakrishnan, N., Wong, R.T.: A network model for the rotating workforce scheduling problem. Networks 20(1), 25–42 (1990)

    Article  MathSciNet  Google Scholar 

  3. Belov, G., Stuckey, P.J., Tack, G., Wallace, M.G.: Improved linearization of constraint programming models. In: Rueher, M. (ed.) Principles and Practice of Constraint Programming - CP 2016, pp. 49–65. Springer International Publishing, Cham (2016)

    Google Scholar 

  4. Van den Bergh, J., Beliën, J., De Bruecker, P., Demeulemeester, E., De Boeck, L.: Personnel scheduling: a literature review. Eur. J. Oper. Res. 226(3), 367–385 (2013)

    Article  MathSciNet  Google Scholar 

  5. Burke, E.K., De Causmaecker, P., Berghe, G.V., Van Landeghem, H.: The state of the art of nurse rostering. J. Sched. 7(6), 441–499 (2004)

    Article  MathSciNet  Google Scholar 

  6. Chu, G.: Improving combinatorial optimization. Ph.D. thesis, The University of Melbourne (2011). http://hdl.handle.net/11343/36679

  7. Chuin Lau, H.: On the complexity of manpower shift scheduling. Comput. Oper. Res. 23(1), 93–102 (1996)

    Article  Google Scholar 

  8. Cimatti, A., Griggio, A., Schaafsma, B.J., Sebastiani, R.: A modular approach to MaxSAT modulo theories. In: Järvisalo, M., Van Gelder, A. (eds.) SAT 2013. LNCS, vol. 7962, pp. 150–165. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39071-5_12

    Chapter  Google Scholar 

  9. Côté, M.C., Gendron, B., Quimper, C.G., Rousseau, L.M.: Formal languages for integer programming modeling of shift scheduling problems. Constraints 16(1), 54–76 (2011)

    Article  MathSciNet  Google Scholar 

  10. Côté, M.-C., Gendron, B., Rousseau, L.-M.: Modeling the regular constraint with integer programming. In: Van Hentenryck, P., Wolsey, L. (eds.) CPAIOR 2007. LNCS, vol. 4510, pp. 29–43. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-72397-4_3

    Chapter  MATH  Google Scholar 

  11. Côté, M.C., Gendron, B., Rousseau, L.M.: Grammar-based integer programming models for multiactivity shift scheduling. Manag. Sci. 57(1), 151–163 (2011)

    Article  Google Scholar 

  12. Erkinger, C., Musliu, N.: Personnel scheduling as satisfiability modulo theories. In: International Joint Conference on Artificial Intelligence - IJCAI 2017, Melbourne, Australia, 19–25 August 2017, pp. 614–621 (2017)

    Google Scholar 

  13. Falcón, R., Barrena, E., Canca, D., Laporte, G.: Counting and enumerating feasible rotating schedules by means of Gröbner bases. Math. Comput. Simul. 125, 139–151 (2016)

    Article  Google Scholar 

  14. Gärtner, J., Musliu, N., Slany, W.: Rota: a research project on algorithms for workforce scheduling and shift design optimization. AI Commun. 14(2), 83–92 (2001)

    MATH  Google Scholar 

  15. Hashemi Doulabi, S.H., Rousseau, L.M., Pesant, G.: A constraint-programming-based branch-and-price-and-cut approach for operating room planning and scheduling. INFORMS J. Comput. 28(3), 432–448 (2016)

    Article  MathSciNet  Google Scholar 

  16. Kadioglu, S., Sellmann, M.: Efficient context-free grammar constraints. In: AAAI, pp. 310–316 (2008)

    Google Scholar 

  17. Laporte, G.: The art and science of designing rotating schedules. J. Oper. Res. Soc. 50, 1011–1017 (1999)

    Article  Google Scholar 

  18. Laporte, G., Nobert, Y., Biron, J.: Rotating schedules. Eur. J. Oper. Res. 4(1), 24–30 (1980)

    Article  Google Scholar 

  19. Laporte, G., Pesant, G.: A general multi-shift scheduling system. J. Oper. Res. Soc. 55(11), 1208–1217 (2004)

    Article  Google Scholar 

  20. Musliu, N.: Combination of local search strategies for rotating workforce scheduling problem. In: International Joint Conference on Artificial Intelligence - IJCAI 2005, Edinburgh, Scotland, UK, 30 July - 5 August 2005, pp. 1529–1530 (2005). http://ijcai.org/Proceedings/05/Papers/post-0448.pdf

  21. Musliu, N.: Heuristic methods for automatic rotating workforce scheduling. Int. J. Comput. Intell. Res. 2(4), 309–326 (2006)

    Article  Google Scholar 

  22. Musliu, N., Gärtner, J., Slany, W.: Efficient generation of rotating workforce schedules. Discrete Appl. Math. 118(1–2), 85–98 (2002)

    Article  MathSciNet  Google Scholar 

  23. Nethercote, N., Stuckey, P.J., Becket, R., Brand, S., Duck, G.J., Tack, G.: MiniZinc: towards a standard CP modelling language. In: Bessière, C. (ed.) CP 2007. LNCS, vol. 4741, pp. 529–543. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74970-7_38

    Chapter  Google Scholar 

  24. Pesant, G.: A regular language membership constraint for finite sequences of variables. In: Wallace, M. (ed.) CP 2004. LNCS, vol. 3258, pp. 482–495. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30201-8_36

    Chapter  MATH  Google Scholar 

  25. Quimper, C.G., Rousseau, L.M.: A large neighbourhood search approach to the multi-activity shift scheduling problem. J. Heuristics 16(3), 373–392 (2010)

    Article  Google Scholar 

  26. Restrepo, M.I., Gendron, B., Rousseau, L.M.: Branch-and-price for personalized multiactivity tour scheduling. INFORMS J. Comput. 28(2), 334–350 (2016)

    Article  MathSciNet  Google Scholar 

  27. Salvagnin, D., Walsh, T.: A hybrid MIP/CP approach for multi-activity shift scheduling. In: Milano, M. (ed.) CP 2012. LNCS, pp. 633–646. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33558-7_46

    Chapter  Google Scholar 

  28. Triska, M., Musliu, N.: A constraint programming application for rotating workforce scheduling. In: Mehrotra, K.G., Mohan, C., Oh, J.C., Varshney, P.K., Ali, M. (eds.) Developing Concepts in Applied Intelligence. SCI, vol. 363, pp. 83–88. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21332-8_12

    Chapter  Google Scholar 

Download references

Acknowledgments

This work was partially supported by the Asian Office of Aerospace Research and Development grant 15-4016 and by the Austrian Science Fund (FWF): P24814-N23.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Schutt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Musliu, N., Schutt, A., Stuckey, P.J. (2018). Solver Independent Rotating Workforce Scheduling. In: van Hoeve, WJ. (eds) Integration of Constraint Programming, Artificial Intelligence, and Operations Research. CPAIOR 2018. Lecture Notes in Computer Science(), vol 10848. Springer, Cham. https://doi.org/10.1007/978-3-319-93031-2_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-93031-2_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-93030-5

  • Online ISBN: 978-3-319-93031-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics