Skip to main content

Spin and Ferroic Glasses

  • Chapter
Springer Handbook of Glass

Part of the book series: Springer Handbooks ((SHB))

  • 7561 Accesses

Abstract

Spin glasses are a broad class of magnetic materials that exhibit varying degrees of disorder and magnetic frustration, resulting in characteristic glassy relaxation behavior including frequency-dependent susceptibility, aging, and memory. Ferroic glasses include spin glasses and also relaxor ferroelectrics and strain glasses, which exhibit glassy dynamics in polarization and strain respectively, in similar ways to spin glasses. This chapter introduces ferroic and spin glasses, their phenomenological classification, and some parallels with structural (amorphous) glasses. A brief theoretical treatment is given, including modeling of the relaxation phenomena in ferroic glasses. Strain glasses and relaxors are discussed, followed by a detailed taxonomy of spin glasses and comparison with collectively behaving particle systems and structurally amorphous magnetic materials. Finally, some characteristic experimental methods are discussed, and an outlook for the future involvement of glass scientists in the study of spin glasses is offered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 269.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 349.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • D. Sherrington: A spin glass perspective on ferroic glasses, Phys. Status Solidi (b) 251(10), 1967–1981 (2014)

    Article  CAS  Google Scholar 

  • K. Binder, A.P. Young: Spin glasses: Experimental facts, theoretical concepts, and open questions, Rev. Mod. Phys. 58(4), 801 (1986)

    Article  CAS  Google Scholar 

  • C.Y. Huang: Some experimental aspects of spin glasses: A review, J. Magn. Magn. Mater. 51(1–3), 1–74 (1985)

    Article  CAS  Google Scholar 

  • J.A. Mydosh: Spin glasses: Redux: An updated experimental/materials survey, Rep. Prog. Phys. 78(5), 052501 (2015)

    Article  CAS  Google Scholar 

  • P.A. Beck: Comments on mictomagnetism, J. Less Common Met. 28(1), 193–199 (1972)

    Article  CAS  Google Scholar 

  • V. Cannella, J.A. Mydosh: Magnetic Ordering in Gold-Iron Alloys, Phys. Rev. B 6(11), 4220–4237 (1972)

    Article  CAS  Google Scholar 

  • B. deMayo, C.D. Graham, J.J. Rhyne: Magnetism in gold-iron alloys below 14 at.% Fe, AIP Conf. Proc. 5(1), 492–496 (1972)

    Article  CAS  Google Scholar 

  • J.A. Mydosh: Spin Glasses: An Experimental Introduction (CRC, Boca Raton 1993)

    Google Scholar 

  • D.L. Stein: Spin Glasses: Still Complex After All These Years?, http://arxiv.org/abs/cond-mat/0301104v1 (2003)

  • D.L. Stein, C.M. Newman: Spin glasses: Old and new complexity, Complex Syst. 20(2), 115–126 (2011)

    Article  Google Scholar 

  • D.L. Stein, C.M. Newman: Spin Glasses and Complexity (Princeton Univ. Press, Princeton 2013)

    Book  Google Scholar 

  • J.C. Mauro, M.M. Smedskjaer: Statistical mechanics of glass, J. Non-Cryst. Solids 396/397(0), 41–53 (2014)

    Article  CAS  Google Scholar 

  • K. Trachenko: Understanding the spin glass transition as a dynamic phenomenon, J. Phys. Condens. Matter 23(36), 366003 (2011)

    Article  CAS  Google Scholar 

  • M.C. Angelini, G. Biroli: Super-Potts glass: A disordered model for glass-forming liquids, Phys. Rev. B 90(22), 220201 (2014)

    Article  CAS  Google Scholar 

  • Y. Wang, X. Ren, K. Otsuka, A. Saxena: Evidence for broken ergodicity in strain glass, Phys. Rev. B 76(13), 132201 (2007)

    Article  CAS  Google Scholar 

  • E.K.H. Salje, M.A. Carpenter: Domain glasses: Twin planes, Bloch lines, and Bloch points, Phys. Status Solidi (b) 252(12), 2639–2648 (2015)

    Article  CAS  Google Scholar 

  • J.A. Mydosh: Disordered magnetism and spin glasses, J. Magn. Magn. Mater. 157/158(0), 606–610 (1996)

    Article  CAS  Google Scholar 

  • X. Ren, Y. Wang, Y. Zhou, Z. Zhang, D. Wang, G. Fan, K. Otsuka, T. Suzuki, Y. Ji, J. Zhang, Y. Tian, S. Hou, X. Ding: Strain glass in ferroelastic systems: Premartensitic tweed versus strain glass, Philos. Mag. 90(1–4), 141–157 (2010)

    Article  CAS  Google Scholar 

  • S. Sarkar, X. Ren, K. Otsuka: Evidence for strain glass in the ferroelastic-martensitic system Ti50-xNi50+x, Phys. Rev. Lett. 95(20), 205702 (2005)

    Article  CAS  Google Scholar 

  • D. Xue, Y. Zhou, X. Ding, Y. Wang, J. Zhang, J. Sun, X. Ren: The transitions from glassy state to long-range-ordered state in ferroic glasses, Phys. Status Solidi (b) 251(10), 2019–2026 (2014)

    Article  CAS  Google Scholar 

  • J.A. Monroe, J.E. Raymond, X. Xu, M. Nagasako, R. Kainuma, Y.I. Chumlyakov, R. Arroyave, I. Karaman: Multiple ferroic glasses via ordering, Acta Mater. 101, 107–115 (2015)

    Article  CAS  Google Scholar 

  • T. Lookman, D. Xue, R. Vasseur, H. Zong, X. Ding: On glassy behavior in ferroics, Phys. Status Solidi (b) 251(10), 2003–2009 (2014)

    Article  CAS  Google Scholar 

  • K. Binder, W. Kob: Glassy Materials and Disordered Solids: An Introduction to Their Statistical Mechanics (World Scientific, Singapore 2011)

    Book  Google Scholar 

  • K.H. Fischer, J.A. Hertz: Spin Glasses (Cambridge Univ. Press, Cambridge 1991)

    Book  Google Scholar 

  • A.K. Varshneya: Fundamentals of Inorganic Glasses, 2nd edn. (Society of Glass Technology, Sheffield 2006)

    Google Scholar 

  • E.D. Zanotto: Do cathedral glasses flow?, Am. J. Phys. 66(5), 392–395 (1998)

    Article  CAS  Google Scholar 

  • A.T. Widdicombe, P. Ravindrarajah, A. Sapelkin, A.E. Phillips, D. Dunstan, M.T. Dove, V.V. Brazhkin, K. Trachenko: Measurement of bitumen viscosity in a room-temperature drop experiment: Student education, public outreach and modern science in one, Phys. Educ. 49(4), 406 (2014)

    Article  Google Scholar 

  • J.L. Dormann, D. Fiorani, E. Tronc: Magnetic relaxation in fine-particle systems. In: Advances in Chemical Physics, ed. by I. Prigogine, S.A. Rice (Wiley, New York 1997) pp. 283–494

    Google Scholar 

  • G. Bertotti: Hysteresis in Magnetism: for Physicists, Materials Scientists, and Engineers (Academic, San Diego 1998)

    Google Scholar 

  • J.L. Dormann, D. Fiorani, R. Cherkaoui, L. Spinu, F. Lucari, F. D'Orazio, J. Nogues, E. Tronc, J.P. Jolivet, A. Garcia: Collective glass state in a magnetic nanoparticle system, Nanostruct. Mater. 12, 757–762 (1999)

    Article  Google Scholar 

  • J.C. Mauro, Y. Yue, A.J. Ellison, P.K. Gupta, D.C. Allan: Viscosity of glass-forming liquids, Proc. Natl. Acad. Sci. 106(47), 19780–19784 (2009)

    Article  Google Scholar 

  • W.M. Saslow: Scenario for the Vogel-Fulcher “law”, Phys. Rev. B 37(1), 676 (1988)

    Article  CAS  Google Scholar 

  • J.L. Tholence: A.C. susceptibility of CuMn and AgMn spin-glasses, Physica B+C 108(1), 1287–1288 (1981)

    Article  CAS  Google Scholar 

  • E. Courtens: Vogel-Fulcher Scaling of the Susceptibility in a Mixed-Crystal Proton Glass, Phys. Rev. Lett. 52(1), 69 (1984)

    Article  CAS  Google Scholar 

  • D. Viehland, S.J. Jang, L.E. Cross, M. Wuttig: Freezing of the polarization fluctuations in lead magnesium niobate relaxors, J. Appl. Phys. 68(6), 2916–2921 (1990)

    Article  CAS  Google Scholar 

  • A.E. Glazounov, A.K. Tagantsev: Phenomenological model of dynamic nonlinear response of relaxor ferroelectrics, Phys. Rev. Lett. 85(10), 2192 (2000)

    Article  CAS  Google Scholar 

  • C.J. Stringer, M.J. Lanagan, T.R. Shrout, C.A. Randall: Scaling parameters in frustrated systems: Spin glasses and relaxor ferroelectrics, Jpn. J. Appl. Phys. 46(3A), 1090–1093 (2007)

    Article  CAS  Google Scholar 

  • S. Shtrikman, E.P. Wohlfarth: The theory of the Vogel-Fulcher law of spin glasses, Phys. Lett. A 85(8/9), 467–470 (1981)

    Article  Google Scholar 

  • S. Chandra, H. Khurshid, W. Li, G.C. Hadjipanayis, M.H. Phan, H. Srikanth: Spin dynamics and criteria for onset of exchange bias in superspin glass Fe/\({\upgamma}\)-Fe2O3 core-shell nanoparticles, Phys. Rev. B 86(1), 014426 (2012)

    Article  CAS  Google Scholar 

  • J.-L. Tholence: Spin-glass and superconducting properties. In: Magnetic Susceptibility of Superconductors and Other Spin Systems, ed. by R.A. Hein (Plenum, New York 1991) pp. 503–518

    Chapter  Google Scholar 

  • J. Hessinger, K. Knorr: Shear elasticity of mixed cyanide orientational glass, Phys. Rev. B 47(22), 14813–14822 (1993)

    Article  CAS  Google Scholar 

  • D.L. Leslie-Pelecky, N.O. Birge: Universal scaling of the relaxation near a model glass transition, Phys. Rev. Lett. 72(8), 1232–1235 (1994)

    Article  CAS  Google Scholar 

  • R.V. Chamberlin: Time decay of the thermoremanent magnetization in spin-glasses as a function of the time spent in the field-cooled state, Phys. Rev. B 30(9), 5393–5395 (1984)

    Article  CAS  Google Scholar 

  • X. Chen, S. Sahoo, W. Kleemann, S. Cardoso, P.P. Freitas: Universal and scaled relaxation of interacting magnetic nanoparticles, Phys. Rev. B 70(17), 172411 (2004)

    Article  CAS  Google Scholar 

  • S. Sahoo, O. Petracic, B. Ch, W. Kleemann, J.B. Sousa, S. Cardoso, P.P. Freitas: Magnetic relaxation phenomena in the superspin-glass system [Co80Fe20/Al2O3]10, J. Phys. Condens. Matter 14(26), 6729 (2002)

    Article  CAS  Google Scholar 

  • D. Samal, R. Kundu, M.K. Dalai, B.R. Sekhar, P.S.A. Kumar: Time evolution of resistance in response to magnetic field: Evidence of glassy transport in La0.85Sr0.15CoO3, Phys. Status Solidi (b) 249(11), 2190–2193 (2012)

    Article  CAS  Google Scholar 

  • W. Kleemann, V.V. Shvartsman, P. Borisov, A. Kania: Coexistence of antiferromagnetic and spin cluster glass order in the magnetoelectric relaxor multiferroic PbFe0.5Nb0.5O3, Phys. Rev. Lett. 105(25), 257202 (2010)

    Article  CAS  Google Scholar 

  • I.A. Campbell: Critical exponents of spin-glass systems, Phys. Rev. B 37(16), 9800–9801 (1988)

    Article  CAS  Google Scholar 

  • J.A. De Toro, S.S. Lee, D. Salazar, J.L. Cheong, P.S. Normile, P. Muñiz, J.M. Riveiro, M. Hillenkamp, F. Tournus, A. Tamion, P. Nordblad: A nanoparticle replica of the spin-glass state, Appl. Phys. Lett. 102(18), 183104 (2013)

    Article  CAS  Google Scholar 

  • R. Mathieu, Y. Tokura: The nanoscale phase separation in hole-doped manganites, J. Phys. Soc. Jpn. 76(12), 124706 (2007)

    Article  CAS  Google Scholar 

  • P. Nordblad: Spin glasses: Model systems for non-equilibrium dynamics, J. Phys. Condens. Matter 16(11), S715 (2004)

    Article  CAS  Google Scholar 

  • P.E. Jönsson, R. Mathieu, P. Nordblad, H. Yoshino, H.A. Katori, A. Ito: Nonequilibrium dynamics of spin glasses: Examination of the ghost domain scenario, Phys. Rev. B 70(17), 174402 (2004)

    Article  CAS  Google Scholar 

  • S. Guchhait, G.G. Kenning, R.L. Orbach, G.F. Rodriguez: Spin glass dynamics at the mesoscale, Phys. Rev. B 91(1), 014434 (2015)

    Article  CAS  Google Scholar 

  • R. Mathieu, J.A. De Toro, D. Salazar, S.S. Lee, J.L. Cheong, P. Nordblad: Phase transition in a super superspin glass, Europhys. Lett. 102, 67002 (2013)

    Article  CAS  Google Scholar 

  • R. Mathieu, A. Asamitsu, Y. Kaneko, J.P. He, Y. Tokura: Eu0.5Sr1.5MnO4: A three-dimensional XY spin glass, Phys. Rev. B 72(1), 014436 (2005)

    Article  CAS  Google Scholar 

  • E.L. Papadopoulou, P. Nordblad, P. Svedlindh, R. Schöneberger, R. Gross: Magnetic aging in Bi2Sr2CaCu2O8 displaying the paramagnetic Meissner effect, Phys. Rev. Lett. 82(1), 173–176 (1999)

    Article  CAS  Google Scholar 

  • I.A. Campbell, D.C.M.C. Petit: Heisenberg spin glass experiments and the chiral ordering scenario, J. Phys. Soc. Jpn. 79(1), 011006 (2010)

    Article  CAS  Google Scholar 

  • S. Stølen, T. Grande: Chemical Thermodynamics of Materials: Macroscopic and Microscopic Aspects (Wiley, Chichester 2004)

    Google Scholar 

  • E.M. Kirkpatrick, D. Thirumalai: Random first-order phase transition theory of the structural glass transition. In: Structural Glasses and Supercooled Liquids: Theory, Experiment, and Applications, ed. by P.G. Wolynes, V. Lubchenko (Wiley, Hoboken 2012)

    Google Scholar 

  • C. Pappas, F. Mezei, G. Ehlers, P. Manuel, I.A. Campbell: Dynamic scaling in spin glasses, Phys. Rev. B 68(5), 054431 (2003)

    Article  CAS  Google Scholar 

  • M. Picco, F. Ritort: Dynamical ac study of the critical behavior in Heisenberg spin glasses, Phys. Rev. B 71(10), 100406 (2005)

    Article  CAS  Google Scholar 

  • A.P. Murani: Spectral distribution of relaxation times in spin glasses, J. Magn. Magn. Mater. 22(3), 271–281 (1981)

    Article  CAS  Google Scholar 

  • K. Trachenko, V.V. Brazhkin: Heat capacity at the glass transition, Phys. Rev. B 83(1), 014201 (2011)

    Article  CAS  Google Scholar 

  • A.P. Ramirez: Strongly Geometrically Frustrated Magnets, Annu. Rev. Mater. Sci. 24(1), 453–480 (1994)

    Article  CAS  Google Scholar 

  • J.J. Alonso: Low-temperature spin-glass behavior in a diluted dipolar Ising system, Phys. Rev. B 91(9), 094406 (2015)

    Article  CAS  Google Scholar 

  • C. Castelnovo, R. Moessner, S.L. Sondhi: Spin ice, fractionalization, topological order, Annu. Rev. Condens. Matter Phys. 3(1), 35–55 (2012)

    Article  CAS  Google Scholar 

  • C. Nisoli, R. Moessner, P. Schiffer: Colloquium: Artificial spin ice: Designing and imaging magnetic frustration, Rev. Mod. Phys. 85(4), 1473–1490 (2013)

    Article  CAS  Google Scholar 

  • C. Lacroix, P. Mendels, F. Mila: Introduction to Frustrated Magnetism: Materials, Experiments, Theory (Springer, Berlin, Heidelberg 2011)

    Book  Google Scholar 

  • H.T. Diep: Frustrated Spin Systems (World Scientific, Singapore 2004)

    Google Scholar 

  • A.S. Wills, V. Dupuis, E. Vincent, J. Hammann, R. Calemczuk: Aging in a topological spin glass, Phys. Rev. B 62(14), R9264–R9267 (2000)

    Article  CAS  Google Scholar 

  • J.M.D. Coey: Magnetism and Magnetic Materials (Cambridge Univ. Press, Cambridge 2010)

    Book  Google Scholar 

  • S.F. Edwards, P.W. Anderson: Theory of spin glasses, J. Phys. F Met. Phys. 5(5), 965–974 (1975)

    Article  Google Scholar 

  • S.F. Edwards, P.W. Anderson: Theory of spin glasses. II, J. Phys. F Met. Phys. 6(10), 1927–1937 (1976)

    Article  Google Scholar 

  • D. Sherrington, S. Kirkpatrick: Solvable model of a spin-glass, Phys. Rev. Lett. 35(26), 1792–1796 (1975)

    Article  Google Scholar 

  • G. Parisi: The physical meaning of replica symmetry breaking, arXiv:cond-mat/0205387v1 [cond-mat.stat-mech] (2002)

    Google Scholar 

  • M. Baity-Jesi, R.A. Baños, A. Cruz, L.A. Fernandez, J.M. Gil-Narvion, A. Gordillo-Guerrero, D. Iñiguez, A. Maiorano, F. Mantovani, E. Marinari, V. Martin-Mayor, J. Monforte-Garcia, A.M. Sudupe, D. Navarro, G. Parisi, S. Perez-Gaviro, M. Pivanti, F. Ricci-Tersenghi, J.J. Ruiz-Lorenzo, S.F. Schifano, B. Seoane, A. Tarancon, R. Tripiccione, D. Yllanes: Critical parameters of the three-dimensional Ising spin glass, Phys. Rev. B 88(22), 224416 (2013)

    Article  CAS  Google Scholar 

  • A.W. Sandvik: Computational studies of quantum spin systems, AIP Conf. Proc. 1297, 135–338 (2010)

    Article  CAS  Google Scholar 

  • C. Brangian, W. Kob, K. Binder: The high-temperature dynamics of a mean-field Potts glass, Philos. Mag. Part B 82(6), 663–668 (2002)

    Article  CAS  Google Scholar 

  • K. Binder, J.D. Reger: Theory of orientational glasses models, concepts, simulations, Adv. Phys. 41(6), 547–627 (1992)

    Article  CAS  Google Scholar 

  • Y. Kamiya, Y. Kato, J. Nasu, Y. Motome: Magnetic three states of matter: A quantum Monte Carlo study of spin liquids, Phys. Rev. B 92(10), 100403 (2015)

    Article  CAS  Google Scholar 

  • R.W. Cahn: Wanted – A taxonomist for magnetism, Nature 246(5434), 445 (1973)

    Google Scholar 

  • C.M. Hurd: Varieties of magnetic order in solids, Contemp. Phys. 23(5), 469–493 (1982)

    Article  CAS  Google Scholar 

  • D.C. Mattis: The Theory of Magnetism II: Thermodynamics and Statistical Mechanics, Springer Series in Solid-State Sciences (Springer, Berlin 2012), ed. by M. Cardona, P. Fulde, H.-J. Queisser

    Google Scholar 

  • N.W. Ashcroft, N.D. Mermin: Solid State Physics (Brooks/Cole Thompson Learning, London 1976)

    Google Scholar 

  • S. Chakravorty, P. Panigrahy, P.A. Beck: Mictomagnetism in Pd–Cr and V–Mn Alloys, J. Appl. Phys. 42(4), 1698–1699 (1971)

    Article  CAS  Google Scholar 

  • J.K. Furdyna: Diluted magnetic semiconductors, J. Appl. Phys. 64(4), R29–R64 (1988)

    Article  CAS  Google Scholar 

  • S. Viticoli, D. Fiorani, M. Nogués, J.L. Dormann: Magnetic resonance of the insulating spin-glass spinel solid solution CdC2xIn2-2xS4 (0.25≤x≤0.85), Phys. Rev. B 26(11), 6085 (1982)

    Article  CAS  Google Scholar 

  • S. Mørup, M.F. Hansen, C. Frandsen: Magnetic interactions between nanoparticles, Beilstein J. Nanotechnol. 1, 182–190 (2010)

    Article  CAS  Google Scholar 

  • E.L. Nagaev: Physics of Magnetic Semiconductors (MIR, Moscow 1983)

    Google Scholar 

  • J.L. Tholence: Spin-glass versus “blocking” in dilute EuxSr1-xS, J. Appl. Phys. 50(B11), 7369–7371 (1979)

    Article  CAS  Google Scholar 

  • J.L. Dormann, A. Saifi, V. Cagan, M. Nogues: Frequency dependence of the AC susceptibility of the reentrant system CdCr2xIn2-2xS4 (0.85<x<1), Phys. Status Solidi (b) 131(2), 573–583 (1985)

    Article  CAS  Google Scholar 

  • L.I. Koroleva, T.V. Virovets, A.I. Abramovich, J.A. Kessler: Semiconductor spin glasses and Cu0.5In0.5Cr2Se4. Critical behaviour and giant negative magnetoresistance, J. Magn. Magn. Mater. 116(1/2), 86–88 (1992)

    Article  CAS  Google Scholar 

  • K. Ohgushi, Y. Okimoto, T. Ogasawara, S. Miyasaka, Y. Tokura: Magnetic, optical, magnetooptical properties of spinel-type ACr2X4 (A = Mn, Fe, Co, Cu, Zn, Cd; X = O, S, Se), J. Phys. Soc. Jpn. 77(3), 034713 (2008)

    Article  CAS  Google Scholar 

  • C.P. Poole, H.A. Farach: Magnetic phase diagram of spinel spin-glasses, Z. Phys. B Condens. Matter 47(1), 55–57 (1982)

    Article  CAS  Google Scholar 

  • S. Mukherjee, R. Ranganathan, P.S. Anilkumar, P.A. Joy: Static and dynamic response of cluster glass in La0.5Sr0.5CoO3, Phys. Rev. B 54(13), 9267 (1996)

    Article  CAS  Google Scholar 

  • P.S.A. Kumar, P.A. Joy, S.K. Date: Origin of the cluster-glass-like magnetic properties of the ferromagnetic system La0.5Sr0.5CoO3, J. Phys. Condens. Matter 10(29), L487–L493 (1998)

    Article  CAS  Google Scholar 

  • B. Roy, A. Poddar, S. Das: Electrical transport properties and magnetic cluster glass behavior of Nd0.7Sr0.3MnO3 nanoparticles, J. Appl. Phys. 100(10), 104318–104310 (2006)

    Article  CAS  Google Scholar 

  • A.K. Kundu, P. Nordblad, C.N.R. Rao: Glassy behaviour of the ferromagnetic and the non-magnetic insulating states of the rare earth manganates Ln0.7Ba0.3MnO3 (Ln = Nd or Gd), J. Phys. Condens. Matter 18(20), 4809 (2006)

    Article  CAS  Google Scholar 

  • A. Poddar, C. Mazumdar: Cluster glass behaviour in Co-substituted double perovskite Ca2FeMoO6, Mater. Res. Bull. 46(5), 682–686 (2011)

    Article  CAS  Google Scholar 

  • Y. Mao, J. Parsons, J.S. McCloy: Magnetic properties of double perovskite La2BMnO6 (B = Ni or Co) nanoparticles, Nanoscale 5(11), 4720–4728 (2013)

    Article  CAS  Google Scholar 

  • R.N. Bhowmik, R. Ranganathan: Cluster glass behaviour in Co0.2Zn0.8Fe2-xRhxO4 (x = 0–1.0), J. Magn. Magn. Mater. 237(1), 27–40 (2001)

    Article  CAS  Google Scholar 

  • R.N. Bhowmik, R. Ranganathan: Anomaly in cluster glass behaviour of Co0.2Zn0.8Fe2O4 spinel oxide, J. Magn. Magn. Mater. 248(1), 101–111 (2002)

    Article  CAS  Google Scholar 

  • M. Seki, A.K.M.A. Hossain, T. Kawai, H. Tabata: High-temperature cluster glass state and photomagnetism in Zn- and Ti-substituted NiFe2O4 films, J. Appl. Phys. 97(8), 083541–083546 (2005)

    Article  CAS  Google Scholar 

  • M.H. Phan, N.A. Frey, H. Srikanth, M. Angst, B.C. Sales, D. Mandrus: Magnetism and cluster glass dynamics in geometrically frustrated LuFe2O4, J. Appl. Phys. 105(7), 07E308-3 (2009)

    Article  CAS  Google Scholar 

  • J.S. McCloy, C. Leslie, T. Kaspar, W. Jiang, R.K. Bordia: Magnetic behavior of Ni and Co doped CuMn2O4 spinels, J. Appl. Phys. 111(7), E149–3 (2012)

    Article  CAS  Google Scholar 

  • K. Vijayanandhini, C. Simon, V. Pralong, V. Caignaert, B. Raveau: Spin glass to cluster glass transition in geometrically frustrated CaBaFe4-xLixO7 ferrimagnets, Phys. Rev. B 79(22), 224407 (2009)

    Article  CAS  Google Scholar 

  • Q.Z. Tao, C.F. Hu, S. Lin, H.B. Zhang, F.Z. Li, D. Qu, M.L. Wu, Y.P. Sun, Y. Sakka, M.W. Barsoum: Coexistence of Ferromagnetic and a Re-entrant Cluster Glass State in the Layered Quaternary (Cr1-x,Mnx)2GeC, Mater. Res. Lett. 2(4), 192–198 (2014)

    Article  CAS  Google Scholar 

  • P. Entel, M.E. Gruner, D. Comtesse, V.V. Sokolovskiy, V.D. Buchelnikov: Interacting magnetic cluster-spin glasses and strain glasses in Ni–Mn based Heusler structured intermetallics, Phys. Status Solidi (b) 251, 2135–2148 (2014)

    Article  CAS  Google Scholar 

  • X. Chen, S. Bedanta, O. Petracic, W. Kleemann, S. Sahoo, S. Cardoso, P.P. Freitas: Superparamagnetism versus superspin glass behavior in dilute magnetic nanoparticle systems, Phys. Rev. B 72(21), 214436 (2005)

    Article  CAS  Google Scholar 

  • S. Nakamae: Out-of-equilibrium dynamics in superspin glass state of strongly interacting magnetic nanoparticle assemblies, J. Magn. Magn. Mater. 355(0), 225–229 (2014)

    Article  CAS  Google Scholar 

  • O. Mihaela: Study about the possibility to control the superparamagnetism–superferromagnetism transition in magnetic nanoparticle systems, J. Magn. Magn. Mater. 343(0), 189–193 (2013)

    Article  CAS  Google Scholar 

  • M. Sasaki, P.E. Jönsson, H. Takayama, H. Mamiya: Aging and memory effects in superparamagnets and superspin glasses, Phys. Rev. B 71(10), 104405 (2005)

    Article  CAS  Google Scholar 

  • D. Parker, V. Dupuis, F. Ladieu, J.P. Bouchaud, E. Dubois, R. Perzynski, E. Vincent: Spin-glass behavior in an interacting \({\upgamma}\)-Fe2O3 nanoparticle system, Phys. Rev. B 77(10), 104428 (2008)

    Article  CAS  Google Scholar 

  • J. Zhang, C. Boyd, W. Luo: Two mechanisms and a scaling relation for dynamics in ferrofluids, Phys. Rev. Lett. 77(2), 390 (1996)

    Article  CAS  Google Scholar 

  • D. Peddis, M. Hudl, C. Binns, D. Fiorani, P. Nordblad: Aging experiments in a superspin glass system of Co particles in Mn matrix, J. Phys. Conf. Ser. 200(7), 072074 (2010)

    Article  CAS  Google Scholar 

  • J.A. De Toro, P.S. Normile, S.S. Lee, D. Salazar, J.L. Cheong, P. Muñiz, J.M. Riveiro, M. Hillenkamp, F. Tournus, A. Tamion, P. Nordblad: Controlled close-packing of ferrimagnetic nanoparticles: An assessment of the role of interparticle superexchange versus dipolar interactions, J. Phys. Chem. C 117(19), 10213–10219 (2013)

    Article  CAS  Google Scholar 

  • W. Jiang, J.S. McCloy, A.S. Lea, J.A. Sundararajan, Q. Yao, Y. Qiang: Magnetization and susceptibility of ion-irradiated granular magnetite films, Phys. Rev. B 83(13), 134435 (2011)

    Article  CAS  Google Scholar 

  • J.M.D. Coey: Amorphous magnetic order, J. Appl. Phys. 49(3), 1646–1652 (1978)

    Article  CAS  Google Scholar 

  • J.M.D. Coey, P.W. Readman: Characterisation and magnetic properties of natural ferric gel, Earth Planet. Sci. Lett. 21(1), 45–51 (1973)

    Article  CAS  Google Scholar 

  • R. Reisser, M. Seeger, H. Kronmüller: The magnetic phase transition in amorphous rare earth-transition metal alloys, J. Magn. Magn. Mater. 128(3), 321–340 (1993)

    Article  CAS  Google Scholar 

  • J.M.D. Coey, P.W. Readman: New spin structure in an amorphous ferric gel, Nature 246(5434), 476–478 (1973)

    Article  CAS  Google Scholar 

  • J.M.D. Coey, D.W. Schindler: Magnetic order in freshwater ferromanganese nodules, Physica B+C 86-88(Part 2), 823–824 (1977)

    Article  Google Scholar 

  • R.I. Bewley, R. Cywinski, S.H. Kilcoyne: Random anisotropy and exchange in amorphous R7-xR'xNi3, J. Magn. Magn. Mater. 104, 133–134 (1992)

    Article  Google Scholar 

  • J.M. Costantini, J.M. Desvignes, A. Perez, F. Studer: Local order and magnetic behavior of amorphous and nanocrystalline yttrium iron garnet produced by swift heavy ion irradiations, J. Appl. Phys. 87(4), 1899–1907 (2000)

    Article  CAS  Google Scholar 

  • P. Beauvillain, J.P. Renard, M. Matecki, J.J. Prejean: Critical dynamics in spin glasses: Experimental study and fractal model interpretation, EPL (Europhys. Lett.) 2(1), 23 (1986)

    Article  CAS  Google Scholar 

  • A.C. Wright, R.N. Sinclair, J.L. Shaw, R. Haworth, G.K. Marasinghe, D.E. Day, P.A. Bingham, S.D. Forder, G.J. Cuello, H.E. Fischer: The atomic and magnetic structure and dynamics of iron phosphate glasses, Phys. Chem. Glass. Eur. J. Glass Sci. Technol. B 53(6), 227–244 (2012)

    CAS  Google Scholar 

  • D. Spišák, J. Hafner, R. Lorenz, C. Becker: Asperomagnetism in amorphous Fe-Y alloys, J. Non-Cryst. Solids 205–207(Part 2), 624–628 (1996)

    Article  Google Scholar 

  • D.H. Ryan, J.O. Ström-Olsen, W.B. Muir, J.M. Cadogan, J.M.D. Coey: Magnetic properties of iron-rich Fe-Sc glasses, Phys. Rev. B 40(16), 11208–11214 (1989)

    Article  CAS  Google Scholar 

  • R. Lorenz, J. Hafner: Noncollinear magnetic structures in amorphous iron and iron-based alloys, J. Magn. Magn. Mater. 139(1/2), 209–227 (1995)

    Article  CAS  Google Scholar 

  • A. Wildes, N. Al-Senany, N. Cowlam: Speromagnetism at the ferrimagnetic compensation point in an Fe64Er19B17 metallic glass — the head of a dandelion, or the spokes of a wheel?, J. Korean Phys. Soc. 63(3), 517–520 (2013)

    Article  CAS  Google Scholar 

  • N. Cowlam, A.R. Wildes: Sperimagnetism in Fe78Er5B17 and Fe64Er19B17 metallic glasses: II. Collinear components and ferrimagnetic compensation, J. Phys. Condens. Matter 23(49), 496005 (2011)

    Article  CAS  Google Scholar 

  • M.A. Willard, M. Daniil: Nanocrystalline soft magnetic alloys two decades of progress. In: Handbook of Magnetic Materials, Vol. 21, ed. by K.H.J. Buschow (Elsevier, Amsterdam 2013) pp. 173–342

    Google Scholar 

  • M.A. Willard, D.E. Laughlin, M.E. McHenry, D. Thoma, K. Sickafus, J.O. Cross, V.G. Harris: Structure and magnetic properties of (Fe0.5Co0.5)88Zr7B4Cu1 nanocrystalline alloys, J. Appl. Phys. 84(12), 6773–6777 (1998)

    Article  CAS  Google Scholar 

  • Y. Wang, X.B. Ren, K. Otsuka: Strain glass: Glassy martensite, Mater. Sci. Forum 583, 67–84 (2008)

    Article  CAS  Google Scholar 

  • E.K.H. Salje, X. Ding, O. Aktas: Domain glass, Phys. Status Solidi (b) 251, 2061–2066 (2014)

    Article  CAS  Google Scholar 

  • D. Bourgault, L. Porcar, S. Rivoirard, P. Courtois, V. Hardy: Entropy change of a Ni45.5Co4.5Mn37In13 single crystal studied by scanning calorimetry in high magnetic fields: Field dependence of the magnetocaloric effect, Appl. Phys. Lett. 107(9), 092403 (2015)

    Article  CAS  Google Scholar 

  • P.A. Sharma, S.B. Kim, T.Y. Koo, S. Guha, S.W. Cheong: Reentrant charge ordering transition in the manganites as experimental evidence for a strain glass, Phys. Rev. B 71(22), 224416 (2005)

    Article  CAS  Google Scholar 

  • T. Tsurumi, J. Li, T. Hoshina, H. Kakemoto, M. Nakada, J. Akedo: Ultrawide range dielectric spectroscopy of BaTiO3-based perovskite dielectrics, Appl. Phys. Lett. 91(18), 182905–182903 (2007)

    Article  CAS  Google Scholar 

  • T. Teranishi, T. Hoshina, H. Takeda, T. Tsurumi: Polarization behavior in diffuse phase transition of BaxSr1-xTiO3 ceramics, J. Appl. Phys. 105(5), 054111–054115 (2009)

    Article  CAS  Google Scholar 

  • T. Takashi, S. Tsuyoshi, H. Hidetaka, K. Akira, F. Kazuhiro: Ferroelectric Domain Contribution to the Tunability of Ba0.8Sr0.2TiO3 Ceramics, Jpn. J. Appl. Phys. 52(9S1), 09KF06 (2013)

    Article  CAS  Google Scholar 

  • L.E. Cross: Relaxor ferroelectrics: An overview, Ferroelectrics 151, 305–320 (1994)

    Article  CAS  Google Scholar 

  • B.E. Vugmeister, H. Rabitz: Reconstruction of the nonequilibrium spin glass order parameter in relaxor ferroelectric lead magnesium niobate, J. Phys. Chem. Solids 61(2), 261–264 (2000)

    Article  CAS  Google Scholar 

  • D. Fu, H. Taniguchi, M. Itoh, S. Mori: Pb(Mg1/3Nb2/3)O3 (PMN) relaxor: Dipole glass or nano-domain ferroelectric? In: Advances in Ferroelectrics, ed. by A.P. Barranco (Intech, London 2012)

    Google Scholar 

  • D. Viehland, J.F. Li, S.J. Jang, L.E. Cross, M. Wuttig: Dipolar-glass model for lead magnesium niobate, Phys. Rev. B 43(10), 8316 (1991)

    Article  CAS  Google Scholar 

  • R. Grigalaitis, J. Banys, A. Brilingas, A. Sternberg, K. Bormanis, V. Zauls: Distribution of relaxation times in 0.5PMN-0.5PSN ceramics, J. Phys. Conf. Ser. 93, 012019 (2007)

    Article  CAS  Google Scholar 

  • V. Bobnar, Z. Kutnjak, R. Pirc, A. Levstik: Electric-field–temperature phase diagram of the relaxor ferroelectric lanthanum-modified lead zirconate titanate, Phys. Rev. B 60(9), 6420–6427 (1999)

    Article  CAS  Google Scholar 

  • W. Kleemann: Random fields in relaxor ferroelectrics – A jubilee review, J. Adv. Dielectr. 02(02), 1241001 (2012)

    Article  CAS  Google Scholar 

  • A.J. Moulson, J.M. Herbert: Electroceramics: Materials, Properties, Applications, 2nd edn. (Wiley, Chischester 2003)

    Book  Google Scholar 

  • S.-E. Park, T.R. Shrout: Characteristics of relaxor-based piezoelectric single crystals for ultrasonic transducers, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 44(5), 1140–1147 (1997)

    Article  Google Scholar 

  • G. Singh, V.S. Tiwari: Crystallographic phase change in relaxor to ferroelectric behavior in (1-x)PMN-xPZ ceramics, J. Appl. Phys. 101(1), 014115–014117 (2007)

    Article  CAS  Google Scholar 

  • E.V. Colla, E.Y. Koroleva, N.M. Okuneva, S.B. Vakhrushev: Long-time relaxation of the dielectric response in lead magnoniobate, Phys. Rev. Lett. 74(9), 1681 (1995)

    Article  CAS  Google Scholar 

  • M. Tyunina, J. Levoska: Effect of ac field on the dielectric behavior in epitaxial films of relaxor ferroelectric PbMg1/3Nb2/3O3, Phys. Rev. B 72(10), 104112 (2005)

    Article  CAS  Google Scholar 

  • G.M. Rotaru, B. Roessli, A. Amato, S.N. Gvasaliya, C. Mudry, S.G. Lushnikov, T.A. Shaplygina: Spin-glass state and long-range magnetic order in Pb(Fe1/2Nb1/2)O3 seen via neutron scattering and muon spin rotation, Phys. Rev. B 79(18), 184430 (2009)

    Article  CAS  Google Scholar 

  • S. Sharma, T. Basu, A. Shahee, K. Singh, N.P. Lalla, E.V. Sampathkumaran: Multiglass properties and magnetoelectric coupling in the uniaxial anisotropic spin-cluster-glass Fe2TiO5, Phys. Rev. B 90(14), 144426 (2014)

    Article  CAS  Google Scholar 

  • R.O. Kuzian, V.V. Laguta, A.M. Daré, I.V. Kondakova, M. Marysko, L. Raymond, E.P. Garmash, V.N. Pavlikov, A. Tkach, P.M. Vilarinho, R. Hayn: Mechanisms of magnetoelectricity in manganese-doped incipient ferroelectrics, Europhys. Lett. 92(1), 17007 (2010)

    Article  CAS  Google Scholar 

  • P. Entel, R. Arroyave, S. Fähler, R. Kainuma, A. Planes, X. Ren, A. Saxena: Ferroic glasses: Magnetic, polar and strain glass, Phys. Status Solidi (b) 251(10), 1965–1966 (2014)

    Article  CAS  Google Scholar 

  • M. Yin, J. Hasier, P. Nash: A review of phase equilibria in Heusler alloy systems containing Fe, Co or Ni, J. Mater. Sci. 51(1), 50–70 (2016)

    Article  CAS  Google Scholar 

  • T. Graf, C. Felser, S.S.P. Parkin: Simple rules for the understanding of Heusler compounds, Progr. Solid State Chem. 39(1), 1–50 (2011)

    Article  CAS  Google Scholar 

  • H. Schmid: Some symmetry aspects of ferroics and single phase multiferroics, J. Phys. Condens. Matter 20(43), 434201 (2008)

    Article  CAS  Google Scholar 

  • Y. Tokura, S. Seki, N. Nagaosa: Multiferroics of spin origin, Rep. Prog. Phys. 77(7), 076501 (2014)

    Article  CAS  Google Scholar 

  • D. Khomskii: Classifying multiferroics: Mechanisms and effects, Physics 2, 20 (2009)

    Article  Google Scholar 

  • H.K. Olsson, R.H. Koch, W. Eidelloth, R.P. Robertazzi: Observation of critical scaling behavior in the ac impedance at the onset of superconductivity in a large magnetic field, Phys. Rev. Lett. 66(20), 2661 (1991)

    Article  CAS  Google Scholar 

  • M.P.A. Fisher: Vortex-glass superconductivity: A possible new phase in bulk high-Tc oxides, Phys. Rev. Lett. 62(12), 1415–1418 (1989)

    Article  CAS  Google Scholar 

  • G. Blatter, M.V. Feigel'man, V.B. Geshkenbein, A.I. Larkin, V.M. Vinokur: Vortices in high-temperature superconductors, Rev. Mod. Phys. 66(4), 1125–1388 (1994)

    Article  CAS  Google Scholar 

  • C. Berthod: Vortex spectroscopy in the vortex glass: A real-space numerical approach, Phys. Rev. B 94(18), 184510 (2016)

    Article  Google Scholar 

  • S.O. Kasap: Principles of Electronic Materials and Devices, 3rd edn. (McGraw-Hill, New York 2005)

    Google Scholar 

  • A.P. Young: Numerical studies of spin glass problems in magnetism and superconductivity, Phys. B Condens. Matter 321(1-4), 183–188 (2002)

    Article  CAS  Google Scholar 

  • T. Nattermann, S. Scheidl: Vortex-glass phases in type-II superconductors, Adv. Phys. 49(5), 607–704 (2000)

    Article  CAS  Google Scholar 

  • A. Gardchareon, R. Mathieu, P.E. Jönsson, P. Nordblad: Strong rejuvenation in a chiral-glass superconductor, Phys. Rev. B 67(5), 052505 (2003)

    Article  CAS  Google Scholar 

  • A. Bussmann-Holder, A. Simon, H. Büttner: Possibility of a common origin to ferroelectricity and superconductivity in oxides, Phys. Rev. B 39(1), 207 (1989)

    Article  CAS  Google Scholar 

  • E. Nagaev: Colossal Magnetoresistance and Phase Separation in Magnetic Semiconductors (Imperial College Press, London 2002)

    Book  Google Scholar 

  • T. Zhang, X.P. Wang, Q.F. Fang, X.G. Li: Magnetic and charge ordering in nanosized manganites, Appl. Phys. Rev. 1(3), 031302 (2014)

    Article  CAS  Google Scholar 

  • H. Aliaga, D. Magnoux, A. Moreo, D. Poilblanc, S. Yunoki, E. Dagotto: Theoretical study of half-doped models for manganites: Fragility of CE phase with disorder, two types of colossal magnetoresistance, and charge-ordered states for electron-doped materials, Phys. Rev. B 68(10), 104405 (2003)

    Article  CAS  Google Scholar 

  • M.-H. Phan, T.-L. Phan, T.-N. Huynh, S.-C. Yu, J.R. Rhee, N. Van Khiem, N.X. Phuc: Spin dynamics and spin-glass state in Fe-doped cobaltites, J. Appl. Phys. 95, 7531–7533 (2004)

    Article  CAS  Google Scholar 

  • J.E. Davies, J. Wu, C. Leighton, K. Liu: Magnetization reversal and nanoscopic magnetic-phase separation in La1-xSrxCoO3, Phys. Rev. B 72(13), 134419 (2005)

    Article  CAS  Google Scholar 

  • J.L. Tholence: On the frequency dependence of the transition temperature in spin glasses, Solid State Commun. 35(2), 113–117 (1980)

    Article  CAS  Google Scholar 

  • J. Li, H. Kakemoto, S. Wada, T. Tsurumi, H. Kawaji: Dielectric relaxation in gigahertz region and phase transition of BaTiO3-based ceramics, J. Appl. Phys. 100(2), 024106–024106 (2006)

    Article  CAS  Google Scholar 

  • P.J. Ford: Spin glasses, Contemp. Phys. 23(2), 141–168 (1982)

    Article  CAS  Google Scholar 

  • T. Chakrabarty, A.V. Mahajan, S. Kundu: Cluster spin glass behavior in geometrically frustrated Zn3V3O8, J. Phys. Condens. Matter 26(40), 405601 (2014)

    Article  CAS  Google Scholar 

  • R. Mathieu, M. Hudl, P. Nordblad: Memory and rejuvenation in a spin glass, Europhys. Lett. 90(6), 67003 (2010)

    Article  CAS  Google Scholar 

  • M. Vasilakaki, K.N. Trohidou: Numerical study of the exchange-bias effect in nanoparticles with ferromagnetic core/ferrimagnetic disordered shell morphology, Phys. Rev. B 79(14), 144402 (2009)

    Article  CAS  Google Scholar 

  • M.S. Andersson, J.A. De Toro, S.S. Lee, R. Mathieu, P. Nordblad: Ageing dynamics of a superspin glass, Europhys. Lett. 108(1), 17004 (2014)

    Article  CAS  Google Scholar 

  • R. Mathieu, M. Hudl, P. Nordblad: Dynamical studies on model spin glasses, J. Phys. Conf. Ser. 200(3), 032042 (2010)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John S. McCloy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Cite this chapter

McCloy, J.S. (2019). Spin and Ferroic Glasses. In: Musgraves, J.D., Hu, J., Calvez, L. (eds) Springer Handbook of Glass. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-319-93728-1_20

Download citation

Publish with us

Policies and ethics