Skip to main content

Providing Automated Real-Time Technical Feedback for Virtual Reality Based Surgical Training: Is the Simpler the Better?

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10947))

Abstract

In surgery, where mistakes have the potential for dire consequences, proper training plays a crucial role. Surgical training has traditionally relied upon experienced surgeons mentoring trainees through cadaveric dissection and operating theatre practice. However, with the growing demand for more surgeons and more efficient training programs, it has become necessary to employ supplementary forms of training such as virtual reality simulation. However, the use of such simulations as autonomous training platforms is limited by the extent to which they can provide automated performance feedback. Recent work has focused on overcoming this issue by developing algorithms to provide feedback that emulates the advice of human experts. These algorithms can mainly be categorized into rule-based and machine learning based methods, and they have typically been validated through user studies against controls that received no feedback. To our knowledge, no investigations into the performance of the two types of feedback generation methods in comparison to each other have so far been conducted. To this end, we introduce a rule-based method of providing technical feedback in virtual reality simulation-based temporal bone surgery, implement a machine learning based method that has been proven to outperform other similar methods, and compare their performance in teaching surgical skills in practice through a user study. We show that simpler rule-based methods can be equally or more effective in teaching surgical skills when compared to more complex methods of feedback generation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Andersen, S.A.W., Foghsgaard, S., Konge, L., Cayé-Thomasen, P., Sørensen, M.S.: The effect of self-directed virtual reality simulation on dissection training performance in mastoidectomy. Laryngoscope 126(8), 1883–1888 (2016)

    Article  Google Scholar 

  2. Baddeley, A.: Working memory: looking back and looking forward. Nat. Rev. Neurosci. 4(10), 829 (2003)

    Article  Google Scholar 

  3. Burke, J.L., Prewett, M.S., Gray, A.A., Yang, L., Stilson, F.R., Coovert, M.D., Elliot, L.R., Redden, E.: Comparing the effects of visual-auditory and visual-tactile feedback on user performance: a meta-analysis. In: ICMI, pp. 108–117 (2006)

    Google Scholar 

  4. Copson, B., Wijewickrema, S., Zhou, Y., Piromchai, P., Briggs, R., Bailey, J., Kennedy, G., O’Leary, S.: Supporting skill acquisition in cochlear implant surgery through virtual reality simulation. Cochlear Implants Int. 18(2), 89–96 (2017)

    Article  Google Scholar 

  5. Crochet, P., Aggarwal, R., Dubb, S.S., Ziprin, P., Rajaretnam, N., Grantcharov, T., Ericsson, K.A., Darzi, A.: Deliberate practice on a virtual reality laparoscopic simulator enhances the quality of surgical technical skills. Ann. Surg. 253(6), 1216–1222 (2011)

    Article  Google Scholar 

  6. Crossan, A., Brewster, S., Reid, S., Mellor, D.: Multimodal feedback cues to aid veterinary training simulations (2000)

    Google Scholar 

  7. Cui, Z., Chen, W., He, Y., Chen, Y.: Optimal action extraction for random forests and boosted trees. In: KDD, pp. 179–188 (2015)

    Google Scholar 

  8. Ericsson, K.A.: Deliberate practice and the acquisition and maintenance of expert performance in medicine and related domains. Acad. Med. 79(10), S70–S81 (2004)

    Article  Google Scholar 

  9. Francis, H.W., Malik, M.U., Diaz Voss Varela, D.A., Barffour, M.A., Chien, W.W., Carey, J.P., Niparko, J.K., Bhatti, N.I.: Technical skills improve after practice on virtual-reality temporal bone simulator. Laryngoscope 122(6), 1385–1391 (2012)

    Article  Google Scholar 

  10. Fried, M.P., Satava, R., Weghorst, S., Gallagher, A., Sasaki, C., Ross, D., Sinanan, M., Uribe, J., Zeltsan, M., Arora, H., et al.: Identifying and reducing errors with surgical simulation. Qual. Saf. Health Care 13(suppl 1), i19–i26 (2004)

    Article  Google Scholar 

  11. Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial examples. In: ICLR (2015)

    Google Scholar 

  12. Hall, R., Rathod, H., Maiorca, M., Ioannou, I., Kazmierczak, E., O’Leary, S., Harris, P.: Towards haptic performance analysis using k-metrics. In: Pirhonen, A., Brewster, S. (eds.) HAID 2008. LNCS, vol. 5270, pp. 50–59. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-87883-4_6

    Chapter  Google Scholar 

  13. Hattie, J., Timperley, H.: The power of feedback. Rev. Educ. Res. 77(1), 81–112 (2007)

    Article  Google Scholar 

  14. Kerwin, T., Wiet, G., Stredney, D., Shen, H.W.: Automatic scoring of virtual mastoidectomies using expert examples. Int. J. Comput. Assist. Radiol. Surg. 7(1), 1–11 (2012)

    Article  Google Scholar 

  15. Laeeq, K., Bhatti, N.I., Carey, J.P., Della Santina, C.C., Limb, C.J., Niparko, J.K., Minor, L.B., Francis, H.W.: Pilot testing of an assessment tool for competency in mastoidectomy. Laryngoscope 119(12), 2402–2410 (2009)

    Article  Google Scholar 

  16. Lamata, P., Gomez, E.J., Bello, F., Kneebone, R.L., Aggarwal, R., Lamata, F.: Conceptual framework for laparoscopic VR simulators. IEEE Comput. Graph. Appl. 26(6), 69–79 (2006)

    Article  Google Scholar 

  17. Liu, F.T., Ting, K.M., Zhou, Z.H.: Isolation forest. In: ICDM, pp. 413–422 (2008)

    Google Scholar 

  18. Ma, X., Bailey, J., Wijewickrema, S., Zhou, S., Mhammedi, Z., Zhou, Y., OLeary, S.: Adversarial generation of real-time feedback with neural networks for simulation-based training. In: IJCAI, pp. 3763–3769 (2017)

    Google Scholar 

  19. Ma, X., Wijewickrema, S., Zhou, Y., Zhou, S., O’Leary, S., Bailey, J.: Providing effective real-time feedback in simulation-based surgical training. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10434, pp. 566–574. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66185-8_64

    Chapter  Google Scholar 

  20. Mackel, T., Rosen, J., Pugh, C.: Data mining of the e-pelvis simulator database: a quest for a generalized algorithm for objectively assessing medical skill. Stud. Health Technol. Inf. 119, 355–360 (2006)

    Google Scholar 

  21. Martin, J., Regehr, G., Reznick, R., Macrae, H., Murnaghan, J., Hutchison, C., Brown, M.: Objective structured assessment of technical skill (OSATS) for surgical residents. Br. J. Surg. 84(2), 273–278 (1997)

    Article  Google Scholar 

  22. McGaghie, W.C., Issenberg, S.B., Petrusa, E.R., Scalese, R.J.: A critical review of simulation-based medical education research: 2003–2009. Med. Educ. 44(1), 50–63 (2010)

    Article  Google Scholar 

  23. Oviatt, S.: Human-centered design meets cognitive load theory: designing interfaces that help people think. In: ACMMM, pp. 871–880 (2006)

    Google Scholar 

  24. Rhienmora, P., Haddawy, P., Suebnukarn, S., Dailey, M.N.: Intelligent dental training simulator with objective skill assessment and feedback. Artif. Intell. Med. 52(2), 115–121 (2011)

    Article  Google Scholar 

  25. Rosenthal, R., DiMatteo, M.R.: Meta-analysis: recent developments in quantitative methods for literature reviews. Annu. Rev. Psychol. 52(1), 59–82 (2001)

    Article  Google Scholar 

  26. Schmidt, R.A., Lee, T.D., et al.: Motor control and learning: a behavioral emphasis, vol. 4 (2005)

    Google Scholar 

  27. Schmidt, R.A., Young, D.E., Swinnen, S., Shapiro, D.C.: Summary knowledge of results for skill acquisition: support for the guidance hypothesis. J. Exp. Psychol. Learn. Mem. Cogn. 15(2), 352 (1989)

    Article  Google Scholar 

  28. Sewell, C., Morris, D., Blevins, N.H., Dutta, S., Agrawal, S., Barbagli, F., Salisbury, K.: Providing metrics and performance feedback in a surgical simulator. Comput. Aided Surg. 13(2), 63–81 (2008)

    Article  Google Scholar 

  29. Sigrist, R., Rauter, G., Riener, R., Wolf, P.: Augmented visual, auditory, haptic, and multimodal feedback in motor learning: a review. Psychon. Bull. Rev. 20(1), 21–53 (2013)

    Article  Google Scholar 

  30. Stefanidis, D.: Optimal acquisition and assessment of proficiency on simulators in surgery. Surg. Clin. North Am. 90(3), 475–489 (2010)

    Article  Google Scholar 

  31. Stefanidis, D., Heniford, B.T.: The formula for a successful laparoscopic skills curriculum. Arch. Surg. 144(1), 77–82 (2009)

    Article  Google Scholar 

  32. Wijewickrema, S., Ioannou, I., Zhou, Y., Piromchai, P., Bailey, J., Kennedy, G., OLeary, S.: Region-specific automated feedback in temporal bone surgery simulation. In: CBMS, pp. 310–315 (2015)

    Google Scholar 

  33. Wijewickrema, S., Ioannou, I., Zhou, Y., Promchai, P., Bailey, J., Kennedy, G., OLeary, S.: A temporal bone surgery simulator with real-time feedback for surgical training. In: NextMed/MMVR21, pp. 462–468 (2014)

    Google Scholar 

  34. Wijewickrema, S., Zhou, Y., Bailey, J., Kennedy, G., O’Leary, S.: Provision of automated step-by-step procedural guidance in virtual reality surgery simulation. In: VRST, pp. 69–72 (2016)

    Google Scholar 

  35. Zhou, Y., Bailey, J., Ioannou, I., Wijewickrema, S., Kennedy, G., O’Leary, S.: Constructive real time feedback for a temporal bone simulator. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013. LNCS, vol. 8151, pp. 315–322. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40760-4_40

    Chapter  Google Scholar 

  36. Zhou, Y., Bailey, J., Ioannou, I., Wijewickrema, S., O’Leary, S., Kennedy, G.: Pattern-based real-time feedback for a temporal bone simulator. In: VRST, pp. 7–16 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sudanthi Wijewickrema .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wijewickrema, S. et al. (2018). Providing Automated Real-Time Technical Feedback for Virtual Reality Based Surgical Training: Is the Simpler the Better?. In: Penstein Rosé, C., et al. Artificial Intelligence in Education. AIED 2018. Lecture Notes in Computer Science(), vol 10947. Springer, Cham. https://doi.org/10.1007/978-3-319-93843-1_43

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-93843-1_43

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-93842-4

  • Online ISBN: 978-3-319-93843-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics