Skip to main content

Gravitropism in Higher Plants: Molecular Aspects

  • Chapter
  • First Online:
Gravitational Biology I

Part of the book series: SpringerBriefs in Space Life Sciences ((BRIEFSSLS))

Abstract

The pervasive influence of gravity on life on Earth presents barriers to our identifying and understanding of the signaling pathways which have evolved in response to it. Plants are at the same time positively and negatively gravitropic, using the Earth’s gravity to define their stature both above and below ground. Here we review some of the signaling pathways which use the plant hormone auxin to carry information on orientation from regions of perception to regions of growth response. The regulation of these pathways is at once diverse and as yet poorly understood but involves the control of members of a family of polarly localized cellular auxin efflux carriers, the PINs, by factors such as phosphorylation. Auxin transport is also influenced by the availability of calcium ions; this interaction is likely to emerge as a key node in a plant’s responses to gravity. It is hoped that understanding the mechanism of these responses will not only allow more efficient cultivation of plants in space, but open paths to greater control over plant stature which will enable us, in the future, better to respond to the challenges of feeding those of us still living on Earth.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aloni R, Langhans M, Aloni E, Ullrich CI (2004) Role of cytokinin in the regulation of root gravitropism. Planta 220:177–182

    Article  PubMed  CAS  Google Scholar 

  • Aloni R, Aloni E, Langhans M, Ullrich CI (2006) Role of Cytokinin and Auxin in shaping root architecture: regulating vascular differentiation, lateral root initiation, root apical dominance and root Gravitropism. Ann Bot 97:883–893

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Aubry-Hivet D, Nziengui H, Rapp K, Oliveira O, Paponov IA, Li Y, Hauslage J, Vagt N, Braun M, Ditengou FA, Dovzhenko A, Palme K (2014) Analysis of gene expression during parabolic flights reveals distinct early gravity responses in Arabidopsis roots. Plant Biol 16:129–141

    Article  PubMed  Google Scholar 

  • Barlow PW (2015) Leaf movements and their relationship with the lunisolar gravitational force. Ann Bot 116:149–187

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Barlow PW, Fisahn J (2012) Lunisolar tidal force and the growth of plant roots, and some other of its effects on plant movements. Ann Bot 110:301–318

    Article  PubMed  PubMed Central  Google Scholar 

  • Bennett MJ, Marchant A, Green HG, May ST, Ward SP, Millner PA, Walker AR, Schulz B, Feldmann KA (1996) Arabidopsis AUX1 gene: a permease-like regulator of root gravitropism. Science 273:948–950

    Article  CAS  PubMed  Google Scholar 

  • Boonsirichai K, Sedbrook JC, Chen RJ, Gilroy S, Masson PH (2003) ALTERED RESPONSE TO GRAVITY is a peripheral membrane protein that modulates gravity-induced cytoplasmic alkalinization and lateral auxin transport in plant statocytes. Plant Cell 15:2612–2625

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Braybrook SA (2017) Plant development: lessons from getting it twisted. Curr Biol 27:R758–R760

    Article  PubMed  CAS  Google Scholar 

  • Briegleb W (1992) Some qualitative and quantitative aspects of the fast-rotating clinostat as a research tool. ASGSB Bull 5:23–30

    PubMed  CAS  Google Scholar 

  • Buer CS, Muday GK (2004) The transparent testa4 mutation prevents flavonoid synthesis and alters auxin transport and the response of Arabidopsis roots to gravity and light. Plant Cell 16:1191–1205

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Buer CS, Muday GK, Djordjevic MA (2007) Flavonoids are differentially taken up and transported long distances in Arabidopsis. Plant Physiol 145:478–490

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cho M, Henry EM, Lewis DR, Wu GS, Muday GK, Spalding EP (2014) Block of ATP-binding cassette B19 ion channel activity by 5-Nitro-2-(3-Phenylpropylamino)-benzoic acid impairs polar auxin transport and toot gravitropism. Plant Physiol 166:2091–2099

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Corydon TJ, Kopp S, Wehland M, Braun M, Schutte A, Mayer T, Hulsing T, Oltmann H, Schmitz B, Hemmersbach R, Grimm D (2016) Alterations of the cytoskeleton in human cells in space proved by life-cell imaging. Sci Rep 6:20043

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Darwin C (1880) The power of movement in plants. John Murray, London

    Book  Google Scholar 

  • De Bortoli S, Teardo E, Szabò I, Morosinotto T, Alboresi A (2016) Evolutionary insight into the ionotropic glutamate receptor superfamily of photosynthetic organisms. Biophys Chem 218:14–26

    Article  PubMed  CAS  Google Scholar 

  • De Smet I, Tetsumura T, De Rybel B, Frey NFD, Laplaze L, Casimiro I, Swarup R, Naudts M, Vanneste S, Audenaert D, Inze D, Bennett MJ, Beeckman T (2007) Auxin-dependent regulation of lateral root positioning in the basal meristem of Arabidopsis. Development 134:681–690

    Article  PubMed  CAS  Google Scholar 

  • Dindas J, Scherzer S, Roelfsema MRG, von Meyer K, Muller HM, Al-Rasheid KAS, Palme K, Dietrich P, Becker D, Bennett MJ, Hedrich R (2018) AUX1-mediated root hair auxin influx governs SCF(TIR1/AFB)-type Ca(2+) signaling. Nat Commun 9:1174

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ditengou FA, Teale WD, Kochersperger P, Flittner KA, Kneuper I, Van Der Graaff E, Nziengui H, Pinosa F, Li X, Nitschke R, Laux T, Palme K (2008) Mechanical induction of lateral root initiation in Arabidopsis thaliana. Proc Natl Acad Sci U S A 105:18818–18823

    Article  PubMed  PubMed Central  Google Scholar 

  • Ditengou FA, Gomes D, Nziengui H, Kochersperger P, Lasok H, Medeiros V, Paponov IA, Nagy SK, Nadai TV, Meszaros T, Barnabas B, Ditengou BI, Rapp K, Qi LL, Li XG, Becker C, Li CY, Doczi R, Palme K (2018) Characterization of auxin transporter PIN6 plasma membrane targeting reveals a function for PIN6 in plant bolting. New Phytol 217:1610–1624

    Article  PubMed  CAS  Google Scholar 

  • Dory M, Hatzimasoura E, Kallai BM, Nagy SK, Jager K, Darula Z, Nadai TV, Meszaros T, Lopez-Juez E, Barnabas B, Palme K, Bogre L, Ditengou FA, Doczi R (2018) Coevolving MAPK and PID phosphosites indicate an ancient environmental control of PIN auxin transporters in land plants. FEBS Lett 592:89–102

    Article  PubMed  CAS  Google Scholar 

  • Dummer M, Michalski C, Essen LO, Rath M, Galland P, Forreiter C (2016) EHB1 and AGD12, two calcium-dependent proteins affect gravitropism antagonistically in Arabidopsis thaliana. J Plant Physiol 206:114–124

    Article  PubMed  CAS  Google Scholar 

  • Fasano JM, Swanson SJ, Blancaflor EB, Dowd PE, Kao TH, Gilroy S (2001) Changes in root cap pH are required for the gravity response of the Arabidopsis root. Plant Cell 13:907–921

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fisahn J, Yazdanbakhsh N, Klingele E, Barlow P (2012) Arabidopsis thaliana root growth kinetics and lunisolar tidal acceleration. New Phytol 195:346–355

    Article  PubMed  Google Scholar 

  • Fisahn J, Klingele E, Barlow P (2015) Lunar gravity affects leaf movement of Arabidopsis thaliana in the international Space Station. Planta 241:1509–1518

    Article  PubMed  CAS  Google Scholar 

  • Friml J, Wisniewska J, Benkova E, Mendgen K, Palme K (2002) Lateral relocation of auxin efflux regulator PIN3 mediates tropism in Arabidopsis. Nature 415:806–809

    Article  PubMed  Google Scholar 

  • Fukaki H, Fujisawa H, Tasaka M (1997) The RHG gene is involved in root and hypocotyl gravitropism in Arabidopsis thaliana. Plant Cell Physiol 38:804–810

    Article  PubMed  CAS  Google Scholar 

  • Ganguly A, Cho H-T (2012) The phosphorylation code is implicated in cell type-specific trafficking of PIN-FORMEDs. Plant Signal Behav 7:1215–1218

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Grossmann G, Guo WJ, Ehrhardt DW, Frommer WB, Sit RV, Quake SR, Meier M (2011) The RootChip: an integrated microfluidic chip for plant science. Plant Cell 23:4234–4240

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Guan CH, Rosen ES, Boonsirichai K, Poff KL, Masson PH (2003) The ARG1-LIKE2 gene of Arabidopsis functions in a gravity signal transduction pathway that is genetically distinct from the PGM pathway. Plant Physiol 133:100–112

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Harper JE, Breton G, Harmon A (2004) Decoding Ca2+ signals through plant protein kinases. Annu Rev Plant Biol 55:263–288

    Article  PubMed  CAS  Google Scholar 

  • Harrison BR, Masson PH (2008) ARL2, ARG1 and PIN3 define a gravity signal transduction pathway in root statocytes. Plant J 53:380–392

    Article  PubMed  CAS  Google Scholar 

  • Hayatsu M, Suzuki S (2015) Electron probe X-ray microanalysis studies on the distribution change of intra- and extracellular calcium in the elongation zone of horizontally reoriented soybean roots. Microscopy (Oxf) 64:327–334

    Article  CAS  Google Scholar 

  • He W, Brumos J, Li H, Ji Y, Ke M, Gong X, Zeng Q, Li W, Zhang X, An F, Wen X, Li P, Chu J, Sun X, Yan C, Yan N, Xie DY, Raikhel N, Yang Z, Stepanova AN, Alonso JM, Guo H (2011) A small-molecule screen identifies L-kynurenine as a competitive inhibitor of TAA1/TAR activity in ethylene-directed auxin biosynthesis and root growth in Arabidopsis. Plant Cell 23:3944–3960

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hejnowicz Z, Sondag C, Alt W, Sievers A (1998) Temporal course of graviperception in intermittently stimulated cress roots. Plant Cell Environ 21:1293–1300

    Article  PubMed  CAS  Google Scholar 

  • Herranz R, Medina FJ (2014) Cell proliferation and plant development under novel altered gravity environments. Plant Biol 16:23–30

    Article  PubMed  Google Scholar 

  • Herranz R, Anken R, Boonstra J, Braun M, Christianen PCM, de Geest M, Hauslage J, Hilbig R, Hill JA, Lebert M, Medina J, Vagt N, Ullrich O, van JWA L, Hemmersbach R (2013a) Ground-based facilities for simulation of microgravity, including terminology and organism-specific recommendations for their use. Astrobiology 13. https://doi.org/10.1089/ast.2012.0876

    Article  PubMed  PubMed Central  Google Scholar 

  • Herranz R, Anken R, Boonstra J, Braun M, Christianen PCM, de Geest M, Hauslage J, Hilbig R, Hill RJA, Lebert M, Medina FJ, Vagt N, Ullrich O, van Loon JJWA, Hemmersbach R (2013b) Ground-based facilities for simulation of microgravity: organism-specific recommendations for their use, and recommended terminology. Astrobiology 13:1–17

    Article  PubMed  PubMed Central  Google Scholar 

  • Hou G, Kramer VL, Wang YS, Chen R, Perbal G, Gilroy S, Blancaflor EB (2004) The promotion of gravitropism in Arabidopsis roots upon actin disruption is coupled with the extended alkalinization of the columella cytoplasm and a persistent lateral auxin gradient. Plant J 39:113–125

    Article  CAS  PubMed  Google Scholar 

  • Joo JH, Bae YS, Lee JS (2001) Role of auxin-induced reactive oxygen species in root gravitropism. Plant Physiol 126:1055–1060

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kircher S, Schopfer P (2016) Priming and positioning of lateral roots in Arabidopsis. An approach for an integrating concept. J Exp Bot 67:1411–1420

    Article  PubMed  CAS  Google Scholar 

  • Kiss JZ, Wright JB, Caspar T (1996) Gravitropism in roots of intermediate-starch mutants of Arabidopsis. Physiol Plant 97:237–244

    Article  PubMed  CAS  Google Scholar 

  • Kleine-Vehn J, Ding Z, Jones AR, Tasaka M, Morita MT, Friml J (2010) Gravity-induced PIN transcytosis for polarization of auxin fluxes in gravity-sensing root cells. Proc Natl Acad Sci U S A 107:22344–22349

    Article  PubMed  PubMed Central  Google Scholar 

  • Krieger G, Shkolnik D (2016) Reactive oxygen species tune root tropic responses. Plant Physiol 172:1209–1220

    PubMed  PubMed Central  CAS  Google Scholar 

  • Kuhn BM, Nodzynski T, Errafi S, Bucher R, Gupta S, Aryal B, Dobrev P, Bigler L, Geisler M, Zazimalova E, Friml J, Ringli C (2017) Flavonol-induced changes in PIN2 polarity and auxin transport in the Arabidopsis thaliana rol1-2 mutant require phosphatase activity. Sci Rep 7:41906

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lewis DR, Negi S, Sukumar P, Muday GK (2011) Ethylene inhibits lateral root development, increases IAA transport and expression of PIN3 and PIN7 auxin efflux carriers. Development 138:3485–3495

    Article  PubMed  CAS  Google Scholar 

  • Löfke C, Zwiewka M, Heilmann I, Van Montagu MCE, Teichmann T, Friml J (2013) Asymmetric gibberellin signaling regulates vacuolar trafficking of PIN auxin transporters during root gravitropism. Proc Natl Acad Sci U S A 110:3627–3632

    Article  PubMed  PubMed Central  Google Scholar 

  • Michniewicz M, Zago MK, Abas L, Weijers D, Schweighofer A, Meskiene I, Heisler MG, Ohno C, Zhang J, Huang F, Schwab R, Weigel D, Meyerowitz EM, Luschnig C, Offringa R, Friml J (2007) Antagonistic regulation of PIN phosphorylation by PP2A and PINOID directs auxin flux. Cell 130:1044–1056

    Article  CAS  PubMed  Google Scholar 

  • Middleton AM, Dal Bosco C, Chlap P, Bensch R, Harz H, Ren F, Bergmann S, Wend S, Weber W, Hayashi KI, Zurbriggen MD, Uhl R, Ronneberger O, Palme K, Fleck C, Dovzhenko A (2018) Data-driven modeling of intracellular auxin fluxes indicates a dominant role of the ER in controlling nuclear auxin uptake. Cell Rep 22:3044–3057

    Article  PubMed  CAS  Google Scholar 

  • Miller ND, Brooks TLD, Assadi AH, Spalding EP (2010) Detection of a Gravitropism phenotype in glutamate receptor-like 3.3 mutants of Arabidopsis thaliana using machine vision and computation. Genetics 186:585–U206

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Monshausen GB, Gilroy S (2009) The exploring root - root growth responses to local environmental conditions. Curr Opin Plant Biol 12:766–772

    Article  PubMed  CAS  Google Scholar 

  • Monshausen GB, Miller ND, Murphy AS, Gilroy S (2011) Dynamics of auxin-dependent Ca2+ and pH signaling in root growth revealed by integrating high-resolution imaging with automated computer vision-based analysis. Plant J 65:309–318

    Article  CAS  PubMed  Google Scholar 

  • Moreno-Risueno MA, Van Norman JM, Moreno A, Zhang J, Ahnert SE, Benfey PN (2010) Oscillating gene expression determines competence for periodic Arabidopsis root bBranching. Science 329:1306–1311

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Muday GK, Rahman A, Binder BM (2012) Auxin and ethylene: collaborators or competitors? Trends Plant Sci 17:181–195

    Article  PubMed  CAS  Google Scholar 

  • Mullen JL, Wolverton C, Ishikawa H, Evans ML (2000) Kinetics of constant gravitropic stimulus responses in Arabidopsis roots using a feedback system. Plant Physiol 123:665–670

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Müller A, Guan C, Gälweiler L, Tänzler P, Huijser P, Marchant A, Parry G, Bennett M, Wisman E, Palme K (1998) AtPIN2 defines a locus of Arabidopsis for root gravitropism. EMBO J 17:101–109

    Article  PubMed  PubMed Central  Google Scholar 

  • Nagashima A, Uehara Y, Sakai T (2008) The ABC subfamily B auxin transporter AtABCB19 is involved in the inhibitory effects of N-1-naphthyphthalamic acid on the phototropic and gravitropic responses of Arabidopsis hypocotyls. Plant Cell Physiol 49:1250–1255

    Article  PubMed  CAS  Google Scholar 

  • Naramoto S, Kleine-Vehn J, Robert S, Fujimoto M, Dainobu T, Paciorek T, Ueda T, Nakano A, Van Montagu MCE, Fukuda H, Friml J (2010) ADP-ribosylation factor machinery mediates endocytosis in plant cells. Proc Natl Acad Sci U S A 107:21890–21895

    Article  PubMed  PubMed Central  Google Scholar 

  • Negi S, Ivanchenko MG, Muday GK (2008) Ethylene regulates lateral root formation and auxin transport in Arabidopsis thaliana. Plant J 55:175–187

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Noll F (1900) Über den bestimmenden Einfluss von Wurzelkrümmungen auf Entstehung und Anordnung der Seitenwurze. Landwirtschaftliche Jahrbucher 29:361–426

    Google Scholar 

  • Ottenschlager I, Wolff P, Wolverton C, Bhalerao RP, Sandberg G, Ishikawa H, Evans M, Palme K (2003) Gravity-regulated differential auxin transport from columella to lateral root cap cells. Proc Natl Acad Sci U S A 100:2987–2991

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Paul A-L, Manak MS, Mayfield JD, Reyes MF, Gurley WB, Ferl RJ (2011) Parabolic flight iInduces changes in gene expression patterns in Arabidopsis thaliana. Astrobiology 11:743–758

    Article  PubMed  CAS  Google Scholar 

  • Paul AL, Amalfitano CE, Ferl RJ (2012) Plant growth strategies are remodeled by spaceflight. BMC Plant Biol 12:232

    Article  PubMed  PubMed Central  Google Scholar 

  • Perbal G, Driss-Ecole D (2003) Mechanotransduction in gravisensing cells. Trends Plant Sci 8:498–504

    Article  PubMed  CAS  Google Scholar 

  • Perbal G, Driss-Ecole D, Tewinkel M, Volkmann D (1997) Statocyte polarity and gravisensitivity in seedling roots grown in microgravity. Planta 203:S57–S62

    Article  PubMed  CAS  Google Scholar 

  • Perbal G, Jeune B, Lefranc A, Carnero-Diaz E, Driss-Ecole D (2002) The dose-response curve of the gravitropic reaction: a re-analysis. Physiol Plant 114:336–342

    Article  PubMed  CAS  Google Scholar 

  • Philosoph-Hadas S, Friedman H, Meir S (2005) Gravitropic bending and plant hormones. Plant Horm 72:31–78

    Article  CAS  Google Scholar 

  • Ponce G, Corkidi G, Eapen D, Lledias F, Cardenas L, Cassab G (2017) Root hydrotropism and thigmotropism in Arabidopsis thaliana are differentially controlled by redox status. Plant Signal Behav 12:e1305536

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Provart NJ, Alonso J, Assmann SM, Bergmann D, Brady SM, Brkljacic J, Browse J, Chapple C, Colot V, Cutler S, Dangl J, Ehrhardt D, Friesner JD, Frommer WB, Grotewold E, Meyerowitz E, Nemhauser J, Nordborg M, Pikaard C, Shanklin J, Somerville C, Stitt M, Torii KU, Waese J, Wagner D, McCourt P (2016) 50 years of Arabidopsis research: highlights and future directions. New Phytol 209:921–944

    Article  PubMed  CAS  Google Scholar 

  • Richter GL, Monshausen GB, Krol A, Gilroy S (2009) Mechanical Stimuli Modulate Lateral Root Organogenesis. Plant Physiol 151:1855–1866

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rigo G, Ayaydin F, Tietz O, Zsigmond L, Kovacs H, Pay A, Salchert K, Darula Z, Medzihradszky KF, Szabados L, Palme K, Koncz C, Cseplo A (2013) Inactivation of plasma membrane-localized CDPK-RELATED KINASE5 decelerates PIN2 exocytosis and root gravitropic response in Arabidopsis. Plant Cell 25:1592–1608

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Roux SJ (2012) Root waving and skewing - unexpectedly in micro-g. BMC Plant Biol 12:231

    Article  PubMed  PubMed Central  Google Scholar 

  • Roy R, Bassham DC (2014) Root growth movements: waving and skewing. Plant Sci 221:42–47

    Article  PubMed  CAS  Google Scholar 

  • Roy R, Bassham DC (2017) TNO1, a TGN-localized SNARE-interacting protein, modulates root skewing in Arabidopsis thaliana. BMC Plant Biol 17:73

    Article  PubMed  PubMed Central  Google Scholar 

  • Roy SJ, Gilliham M, Berger B, Essah PA, Cheffings C, Miller AJ, Davenport RJ, Liu LH, Skynner MJ, Davies JM, Richardson P, Leigh RA, Tester M (2008) Investigating glutamate receptor-like gene co-expression in Arabidopsis thaliana. Plant Cell Environ 31:861–871

    Article  PubMed  CAS  Google Scholar 

  • Ruzicka K, Ljung K, Vanneste S, Podhorska R, Beeckman T, Friml J, Benkova E (2007) Ethylene regulates root growth through effects on auxin biosynthesis and transport-dependent auxin distribution. Plant Cell 19:2197–2212

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Salmi ML, ul Haque A, Bushart TJ, Stout SC, Roux SJ, Porterfield DM (2011) Changes in gravity rapidly alter the magnitude and direction of a cellular calcium current. Planta 233:911–920

    Article  PubMed  CAS  Google Scholar 

  • Santelia D, Henrichs S, Vincenzetti V, Sauer M, Bigler L, Klein M, Bailly A, Lee Y, Friml J, Geisler M, Martinoia E (2008) Flavonoids redirect PIN-mediated polar auxin fluxes during root gravitropic responses. J Biol Chem 283:31218–31226

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sato EM, Hijazi H, Bennett MJ, Vissenberg K, Swarup R (2015) New insights into root gravitropic signalling. J Exp Bot 66:2155–2165

    Article  PubMed  CAS  Google Scholar 

  • Schmidt T, Pasternak T, Liu K, Blein T, Aubry-Hivet D, Dovzhenko A, Duerr J, Teale W, Ditengou FA, Burkhardt H, Ronneberger O, Palme K (2014) The iRoCS toolbox - 3D analysis of the plant root apical meristem at cellular resolution. Plant J 77:806–814

    Article  PubMed  CAS  Google Scholar 

  • Schultz ER, Zupanska AK, Sng NJ, Paul AL, Ferl RJ (2017) Skewing in Arabidopsis roots involves disparate environmental signaling pathways. BMC Plant Biol 17:31

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Scott AC, Allen NS (1999) Changes in cytosolic pH within Arabidopsis root columella cells play a key role in the early signaling pathway for root gravitropism. Plant Physiol 121:1291–1298

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sedbrook JC, Chen R, Masson PH (1999) ARG1 (altered response to gravity) encodes a DnaJ-like protein that potentially interacts with the cytoskeleton. Proc Natl Acad Sci U S A 96:1140–1145

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Singh R, Singh S, Parihar P, Mishra RK, Tripathi DK, Singh VP, Chauhan DK, Prasad SM (2016) Reactive oxygen species (ROS): beneficial companions of plants’ developmental processes. Front Plant Sci 7:1299

    PubMed  PubMed Central  Google Scholar 

  • Steinmann T, Geldner N, Grebe M, Mangold S, Jackson CL, Paris S, Galweiler L, Palme K, Jurgens G (1999) Coordinated polar localization of auxin efflux carrier PIN1 by GNOM ARF GEF. Science 286:316–318

    Article  PubMed  CAS  Google Scholar 

  • Stepanova AN, Alonso JM (2005) Arabidopsis ethylene signaling pathway. Sci STKE 2005:1–4

    Google Scholar 

  • Stepanova AN, Hoyt JM, Hamilton AA, Alonso JM (2005) A link between ethylene and auxin uncovered by the characterization of two root-specific ethylene-insensitive mutants in Arabidopsis. Plant Cell 17:2230–2242

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Stepanova AN, Yun J, Likhacheva AV, Alonso JM (2007) Multilevel interactions between ethylene and auxin in Arabidopsis roots. Plant Cell 19:2169–2185

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Stepanova AN, Robertson-Hoyt J, Yun J, Benavente LM, Xie DY, Dolezal K, Schlereth A, Jurgens G, Alonso JM (2008) TAA1-mediated auxin biosynthesis is essential for hormone crosstalk and plant development. Cell 133:177–191

    Article  PubMed  CAS  Google Scholar 

  • Street IH, Mathews DE, Yamburkenko MV, Sorooshzadeh A, John RT, Swarup R, Bennett MJ, Kieber JJ, Schaller GE (2016) Cytokinin acts through the auxin influx carrier AUX1 to regulate cell elongation in the root. Development 143:3982–3993

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tan TH, Silverberg JL, Floss DS, Harrison MJ, Henley CL, Cohen I (2015) How grow-and-switch gravitropism generates root coiling and root waving growth responses in Medicago truncatula. Proc Natl Acad Sci U S A 112:12938–12943

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Taylor LP, Grotewold E (2005) Flavonoids as developmental regulators. Curr Opin Plant Biol 8:317–323

    Article  PubMed  CAS  Google Scholar 

  • Teale W, Palme K (2018) Naphthylphthalamic acid and the mechanism of polar auxin transport. J Exp Bot 69:303–312

    Article  PubMed  Google Scholar 

  • Tsuchisaka A, Theologis A (2004) Unique and overlapping expression patterns among the Arabidopsis 1-amino-cyclopropane-1-carboxylate synthase gene family members. Plant Physiol 136:2982–3000

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vandenbussche F, Petrasek J, Zadnikova P, Hoyerova K, Pesek B, Raz V, Swarup R, Bennett M, Zazimalova E, Benkova E, Van Der Straeten D (2010) The auxin influx carriers AUX1 and LAX3 are involved in auxin-ethylene interactions during apical hook development in Arabidopsis thaliana seedlings. Development 137:597–606

    Article  PubMed  CAS  Google Scholar 

  • Vandenbussche F, Vaseva I, Vissenberg K, Van Der Straeten D (2012) Ethylene in vegetative development: a tale with a riddle. New Phytol 194:895–909

    Article  PubMed  CAS  Google Scholar 

  • Weerasinghe RR, Swanson SJ, Okada SF, Garrett MB, Kim SY, Stacey G, Boucher RC, Gilroy S, Jones AM (2009) Touch induces ATP release in Arabidopsis roots that is modulated by the heterotrimeric G-protein complex. FEBS Lett 583:2521–2526

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Weller B, Zourelidou M, Frank L, Barbosa ICR, Fastner A, Richter S, Juergens G, Hammes UZ, Schwechheimer C (2017) Dynamic PIN-FORMED auxin efflux carrier phosphorylation at the plasma membrane controls auxin efflux-dependent growth. Proc Natl Acad Sci USA 114:E887–E896

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Woeste KE, Ye C, Kieber JJ (1999) Two Arabidopsis mutants that overproduce ethylene are affected in the posttranscriptional regulation of 1-aminocyclopropane-1-carboxylic acid synthase. Plant Physiol 119:521–530

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wolverton C, Mullen JL, Ishikawa H, Evans ML (2002) Root gravitropism in response to a signal originating outside of the cap. Planta 215:153–157

    Article  PubMed  CAS  Google Scholar 

  • Wolverton C, Paya AM, Toska J (2011) Root cap angle and gravitropic response rate are uncoupled in the Arabidopsis pgm-1 mutant. Physiol Plant 141:373–382

    Article  PubMed  CAS  Google Scholar 

  • Xuan W, Audenaert D, Parizot B, Moller BK, Njo MF, De Rybel B, De Rop G, Van Isterdael G, Mahonen AP, Vanneste S, Beeckman T (2015) Root cap-derived auxin pre-patterns the longitudinal axis of the Arabidopsis root. Curr Biol 25:1381–1388

    Article  PubMed  CAS  Google Scholar 

  • Zajaczkowska U, Barlow PW (2017) The effect of lunisolar tidal acceleration on stem elongation growth, nutations and leaf movements in peppermint (Menthaxpiperita L.). Plant Biol 19:630–642

    Article  PubMed  CAS  Google Scholar 

  • Zheng ZY, Zou JJ, Li HH, Xue S, Wang YR, Le J (2015) Microrheological insights into the dynamics of amyloplasts in root gravity-sensing cells. Mol Plant 8:660–663

    Article  PubMed  CAS  Google Scholar 

  • Zourelidou M, Absmanner B, Weller B, Barbosa ICR, Willige BC, Fastner A, Streit V, Port S, Colcombet J, van Bentem SDLF, Hirt H, Kuster B, Schulze WX, Hammes UZ, Schwechheimer C (2014) Auxin efflux by PIN-FORMED proteins is activated by two different protein kinases, D6 PROTEIN KINASE and PINOID. elife 3

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 The Author(s), under exclusive licence to Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Palme, K., Teale, W., Ditengou, F. (2018). Gravitropism in Higher Plants: Molecular Aspects. In: Gravitational Biology I. SpringerBriefs in Space Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-319-93894-3_7

Download citation

Publish with us

Policies and ethics