Skip to main content

Abstract

Landslide is one of the destructive environmental hazards which causes a lot of damages to human lives and properties. Various approaches and techniques have been applied to assess the spatial distribution of landslides all over the world. Amongst them physical models, slope stability models, statistical and probabilistic models are very much important in the study of landslide assessment and prediction. In the present study, to assess the spatial distribution of landslide susceptibility in Darjeeling Himalaya several statistical models, i.e. frequency ratio (FR) model, modified information value (MIV) model, logistic regression (LR) model, artificial neural network (ANN) model, weighted overlay analysis (WOA) model, certainty factor (CF) model, analytical hierarchy process (AHP) model and fuzzy logic (FL) approach have been incorporated and finally a comparison has been made between the models on the basis of model validation results. Physical models with regard to landslides dealt with the assessment of various physical parameters of rocks and soil, i.e. shear stress, shear strength, cohesion, friction angle, pore-water pressure, grain size of soil, depth of the soil, saturated soil depth, density of water and soil, etc. All these parameters help to perform slope stability model as well as to identify the vulnerable slope in the mountain environment. In Darjeeling Himalaya, debris slide, rock fall, and earth slides are three common types of landslides. Statistical models based on RS and GIS help to identify susceptible landslide locations with accuracy. To perform all the statistical models, a landslide inventory was made based on historical landslides data, toposheet, Google earth image, and field investigation with GPS survey. The data layers, i.e. elevation, slope aspect, slope angle, slope curvature, geology, soil, lineament density, distance to lineament, drainage density, distance to drainage, stream power index (SPI), topographic wetted index (TWI), rainfall, normalized differential vegetation index (NDVI) and land use and land cover (LULC) were integrated on GIS platform to assess pixel wise landslide susceptibility index, and finally a classification was made to prepare landslide susceptibility zonation map of Darjeeling Himalaya in connection to each model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agarwal, A., & Narain, S. (1991). Floods, flood plain and environmental myths (State of India’s Environment: A Citizens’ Report, 3). New Delhi: Centre for Science and Environment.

    Google Scholar 

  • Akgun, A., & Turk, N. (2010). Landslide susceptibility mapping for Ayvalik (Western Turkey) and its vicinity by multicriteria decision analysis. Environmental Earth Sciences, 61, 595–611.

    Article  Google Scholar 

  • Akgun, A., Dag, S., & Bulut, F. (2007). Landslide susceptibility mapping for a landslide prone area (Findikli NE of Turkey) by likelihood-frequency ratio and weighted linear combination models. Environmental Geology, 54, 1127–1143.

    Article  Google Scholar 

  • Aleotti, P., & Chowdhury, R. (1999). Landslide hazard assessment: Summary review and new perspectives. Bulletin of Engineering Geology and the Environment, 58, 21–44.

    Article  Google Scholar 

  • Amaral, C., & Palmeiro, F. (1997). Local landslide inventory of Rio de Janeiro: State of the art and access. In ABMS ABGE & ISSMGE (Ed.), 2nd Pan-American Symposium on Landslides (II PSL/ 2a COBRAE) (pp. 195–200), Rio de Janeiro.

    Google Scholar 

  • Anbalagan, R., Srivastava, N. C. N., & Jain, V. (2000). Slope stability studies of Vyasi dma reservoir area, Garhwal Himalaya, U.P. India. In E. N. Bromhead, N. Dixon, & M.-L. Ibsen (Eds.), Landslides in research, theory and practice, Proceedings of the 8th International Symposium on Landslides, 26–30 June 2000 (pp. 51–56). Cardiff: Thomas Telford.

    Google Scholar 

  • Aniya, M. (1985). Landslide-susceptibility mapping in the Amahata River basin, Japan. Annals of Argentina, Earth Surface Processes and Landforms, 29, 255–266.

    Google Scholar 

  • Ardizzone, F., Cardinali, M., Carrara, A., Guzzetti, F., & Reichenbach, P. (2002). Impact of mapping errors on the reliability of landslide hazard maps. Natural Hazards and Earth Systems Sciences, 2, 3–14.

    Article  Google Scholar 

  • Ayalew, L. (2000). Factors affecting slope stability in the Blue Nile Basin. In E. N. Bromhead, N. Dixon, & M.-L. Ibsen (Eds.), Landslides in research, theory and practice, Proceedings of the 8th International Symposium on Landslides, 26–30 June 2000 (pp. 101–106). Cardiff: Thomas Telford.

    Google Scholar 

  • Ayalew, L., & Yamagishi, H. (2005). The application of GIS based logistic regression for landslide susceptibility mapping in the Kakuda-Yahiko Mountains, Central Japan. Geomorphology, 65, 15–31.

    Article  Google Scholar 

  • Ayalew, L., Yamagishi, H., Marui, H., & Kanno, T. (2005). Landslides in Sado Island of Japan: Part II, GIS-based susceptibility mapping with comparisons of results from two methods and verifications. Engineering Geology, 81, 432–445.

    Article  Google Scholar 

  • Baeza, C., & Corominas, J. (2001). Assessment of shallow landslide susceptibility by Means of multivariate statistical techniques. Earth Surface Processes and Landforms, 26, 1251–1263.

    Article  Google Scholar 

  • Basu, S. R., & De, S. K. (2003). Causes and consequences of Landslides in the Darjiling and Sikkim Himalayas. Geographia Polonica, 76(2), 37–57.

    Google Scholar 

  • Basu, S. R., & Ghatwar, L. (1988). Landslide and soil erosion in the Gish basin of the Darjiling Himalayas and their bearing on North Bengal Floods. Studia Geomorpholigica Carpatho-Balcanica (Vol. 22). Krakow.

    Google Scholar 

  • Basu, S. R., & Maiti, R. K. (2001). Unscientific mining and degradation of slopes in the Darjeeling Himalayas, Changing environment. Scenario of the Indian Subcontinent (Bd), 390–399.

    Google Scholar 

  • Basu, S. R., & Sarkar, S. (1985). Some consideration on recent landslides at Tindharia and their control. Indian Journal of Power and River Valley Development, 1985, 190–194.

    Google Scholar 

  • Barros, W. T., Amaral, C., & D’Orsi, R. N. (1991). Landslide susceptibility map of Rio de Janeiro, in D. H. Bell (Eds.), Landslides – Proceedings of the Sixth International Symposium, 10–14 February 1992 (Rotterdam: A. A. Balkema), 869–871.

    Google Scholar 

  • Basu, S. R., De, S. K., & Bera, B. (2009). Progress of research in landslide studies in India. In S. Singh, H. S. Sharma, S. K. De, H. S. Sharma, & V. S. Kale (Eds.), Geomorphology in India (pp. 171–198). Allahabad: Prayag Pustak Bhawan.

    Google Scholar 

  • Bhandari, R. K. (1987). Slope stability in the fragile Himalaya and strategy for development, Ninth IGS Lecture. Journal of the IGE, 17(1), 1–78.

    Google Scholar 

  • Bhattacharya, S. K. (1999). A constructive approach to landslides through susceptibility zoning and case study in the Rakti Basin of Eastern Himalaya, Transactions, Japanese Geomorphological.

    Google Scholar 

  • Binaghi, E., Luzi, L., Madella, P., Pergalani, F., & Rampini, A. (1998). Slope Instability Zonation: A comparison between certainty factor and Fuzzy Dempster-Shafer approaches. Natural Hazards, 17(1), 77–97.

    Article  Google Scholar 

  • Brabb, E. E., Guzzetti, F., Mark, R., & Simpson, R. W. (1989). The extent of landsliding in Northern New Mexico and similar semi-arid regions. In D. M. Sadler & P. M. Morton (Eds.), Landslides in a semi-arid environment (Vol. 2, pp. 163–173). Publications of the Inland Geological Society.

    Google Scholar 

  • Brardinoni, F., Slaymaker, O., & Hassan, M. A. (2003). Landslide inventory in a rugged forested watershed: A comparison between air-photo and field survey data. Geomorphology, 54, 179–195. https://doi.org/10.1016/S0169-555X(02)00355-0.

    Article  Google Scholar 

  • Carrara, A. (1989). Landslide hazard mapping by statistical methods: A “black-box” model approach (pp. 205–224). In Proceedings International Workshop on Natural Disasters in European-Mediterranean Countries, Perugia, June 27–July 1, 1988, CNR-ESNSF.

    Google Scholar 

  • Carrara, A., Catalano, E., Sorriso Valvo, M., Reali, C., Merenda, L,. & Rizzo, V. (1977). Bulletin of the International Association of Engineering Geology, 16(1), 8–13.

    Google Scholar 

  • Carrara, A., Cardinali, M., Guzzetti, F., & Reichenbach, P. (1995). GIS technology in mapping landslide hazard. Geographical information systems in assessing natural hazards (pp. 135–175). Dordrecht: Kluwer Academic Publishers.

    Google Scholar 

  • Chakraborty, I., Ghosh, S., Bhattacharya, D., & Bora, A. (2011). Earthquake induced landslides in the Sikkim-Darjeeling Himalayas—An aftermath of the 18th September 2011 Sikkim earthquake. Geological Society of India.

    Google Scholar 

  • Champati ray, P. K., Dimri, S., Lakhera, R. C., & Sati, S. (2007). Fuzzy-based method for landslide hazard assessment in active seismic zone of Himalaya. Landslides, 4, 101–111.

    Article  Google Scholar 

  • Chandler, R. J. (1972). Lias clay: weathering processes and their effect on shear strength. Geotechnique, 15, 403–431.

    Article  Google Scholar 

  • Chang, J. C., & Slaymaker, O. (2002). Frequency and spatial distribution of landslides in a mountainous drainage basin: Western Foothills, Taiwan. Catena, 46, 285–307.

    Article  Google Scholar 

  • Chen, C. L. (1997). Debris-flow hazard mitigation: Mechanics, prediction and assessment. San-Francisco: American Society of Civil Engineers.

    Google Scholar 

  • Cheng, K. S., Wei, C., & Chang, S. C. (2004). Locating landslides using multi-temporal satellite images. Advances in Space Research, 33, 296–301.

    Article  Google Scholar 

  • Cheng, T. A., Lateh, H., & Peng, K. S. (2008). Intelligence explanation system on landslide dissemination: A case study in Malaysia (pp. 330–333). In Proceedings of the first world landslide forum report: Implementing the 2006 Tokyo action plan on the international program on landslides (IPL).

    Google Scholar 

  • Cherkez, Y., Kozlova, V., Shmourakto, V., Kharitonov, V., & Karavan, A. (2000). Landslide in the North-Western Black sea region. In E. N. Bromhead, N. Dixon, & M.-L. Ibsen (Eds.), Landslides in research, theory and practice, Proceedings of the 8th International Symposium on Landslides, 26–30 June 2000 (pp. 251–254). Cardiff: Thomas Telford.

    Google Scholar 

  • Choi, J., Oh, H. J., Lee, H., Lee, C., & Lee, S. (2011). Combining landslide susceptibility maps obtained from frequency ratio, logistic regression, and artificial neural network models using aster images and GIS. Engineering Geology, 124, 12–23.

    Article  Google Scholar 

  • Chung, C. F., & Fabbri, A. G. (1999). Probabilistic prediction models for landslide hazard mapping. Photogrammetric Engineering and Remote Sensing, 65(12), 1389–1399.

    Google Scholar 

  • Chung, C.-J. F., Fabbri, A. G., & van Westen, C. J. (1995). Multivariate regression analysis for landslide hazard zonation. In A. Carrara & F. Guzzetti (Eds.), Geographical information systems.

    Google Scholar 

  • Claessens, L., Verburg, P. H., Schoorl, J. M., & Veldkamp, A. (2006). Contribution of topographically based landslide hazard modelling to the analysis of the spatial distribution and ecology of kauri (Agathis australis). Landscape Ecology, 21, 63–76.

    Article  Google Scholar 

  • Committee on the Review of the National Landslide Hazards Mitigation Strategy. (2004). Partnerships for reducing landslide risk, assessment of the National Landslide Hazards Mitigation Strategy, Board on Earth Sciences and Resources, Division on Earth and Life Studies, The National Academic Press, Washington, D.C. (p. 143).

    Google Scholar 

  • Coussot, P., Laigle, D., Arattano, M., Deganutti, A. M., & Marchi, L. (1998). Direct determination of rheological characteristics of debris-flow. Journal of Hydraulic Engineering, 124, 865–868.

    Article  Google Scholar 

  • Crovelli, R. A. (2000). Probability Models for estimation of number and costs of landslides, United States Geological Survey Open –File Report, 00–249.

    Google Scholar 

  • Cuesta, M. J. D., Sánchez, M. J., & García, A. R. (1999). Press archives as temporal records of landslides in the North of Spain: Relationships between rainfall and instability slope events. Geomorphology, 30, 125–132.

    Article  Google Scholar 

  • Dai, F. C., & Lee, C. F. (2001). Terrain-based mapping of landslide susceptibility using a geographical information system: A case study. Canadian Geotechnical Journal, 38, 911–923.

    Article  Google Scholar 

  • Dai, F. C., & Lee, C. F. (2002). Landslides on natural terrain—Physical characteristics and susceptibility mapping in Hong Kong. Mountain Research and Development, 22, 40–47.

    Article  Google Scholar 

  • Dai, F. C., Lee, C. F., & Ngai, Y. Y. (2002). Landslide risk assessment and management: An overview. Engineering Geology, 64, 65–87.

    Article  Google Scholar 

  • Das, I., Kumar, G., Stein, A., Bagchi, A., & Dadhwal, V. K. (2011). Stochastic landslide vulnerability modeling in space and time in a part of the northern Himalayas, India. Environmental Monitoring and Assessment, 178, 25–37.

    Article  Google Scholar 

  • De Jaeger, C. (2000). Influence on landsliding and slope development of the particular environment of the Dead Sea region: A case study for the Wadi Mujib Canyon (Jordan). In E. N. Bromhead, N. Dixon, & M.-L. Ibsen (Eds.), Landslides in research, theory and practice, Proceedings of the 8th International Symposium on Landslides, 26–30 June 2000 (pp. 421–426). Cardiff: Thomas Telford.

    Google Scholar 

  • Dehn, M., Burger, G., Buma, J., & Gasparetto, P. (2000). Impact of climate change on slope stability using expanded downscaling. Engineering Geology, 55, 193–204.

    Article  Google Scholar 

  • Devkota, K. C., Regmi, A. D., Pourghasemi, H. R., Yoshida, K., Pradhan, B., Ryu, I. C., Dhital, M. R., & Althuwaynee, O. F. (2013). Landslide susceptibility mapping using certainty factor index of entropy and logistic regression models in GIS and their comparison at Mugling-Narayanghat road section in Nepal Himalaya. Natural Hazards, 65, 135–165.

    Article  Google Scholar 

  • Dhakal, A. S., Amada, T., & Aniya, M. (2000). Landslide hazard mapping and its evaluation using GIS: An investigation of sampling schemes for a grid-cell based quantitative method. Photogrammetric Engineering & Remote Sensing, 66, 981–989.

    Google Scholar 

  • Dikau, R., Brunsden, D., Schrott, L., & Ibsen, M. L. (Eds.). (1996). Landslide recognition: Identification, movement, and causes (p. 210). New York: Wiley.

    Google Scholar 

  • Donati, L., & Turrini, M. C. (2002). An objective method to rank the importance of the factors predisposing to landslides with the GIS methodology: Application to an area of the Apennines (Valnerina; Perugia, Italy). Engineering Geology, 63, 277–289.

    Article  Google Scholar 

  • Doratti, M., McColl, C., & Tweeddale, C. (2002). Landslide prediction study BCIT, Geographical Information Systems advanced diploma. giswww1bcitca/giscentre/projects/projects2002/prj_09_final_reportpdf.

    Google Scholar 

  • Erickson, G. E., Ramirez, C. F., Concha, J. F., Tisnado, G. M., & Urquidi, F. B. (1989). Landslide hazards in the central and southern Andes. In E. E. Brabb & B. L. Harrod (Eds.), Landslides: extent and economic significance (pp. 111–118). Rotterdam: A.A. Balkema.

    Google Scholar 

  • Evans, S. G., & DeGraff, J. V. (Eds.). (2002). Catastrophic landslides, reviews in engineering geology. Boulder: Geological Society of America.

    Google Scholar 

  • Evans, S. G., & Hungr, O. (1993). The assessment of rock fall hazards at the base of talus slopes. Canadian Geotechnical Journal, 30, 620–636.

    Article  Google Scholar 

  • Fabbri, A. G., Chung, C.-J., Napolitano, P., Remondo, J., & Zêzere, J. L. (2002). Prediction rate functions of landslide susceptibility applied in the Iberian Peninsula, In C. A. Brebbia (Ed.), Third International Conference on Risk Analysis, 19–21 June 2002, Sintra, Portugal, pp. 703–718.

    Google Scholar 

  • Fernandez-Steeger, T. M., Rohn, J., & Czurda, K. (2002). Identification of landslide areas with neural networks for hazard analysis. Landslides. In: Proceedings of the first European conference on landslides, (pp. 163–168). Prague, Czech Republic; Rotterdam, Balkema.

    Google Scholar 

  • Garfi, G., & Bruno, D. E. (2007). Fan morphodynamics and slope instability in the Mucone River basin (Sila Massif southern Italy): Significance of weathering and role of land use changes. Catena, 50, 181–196.

    Article  Google Scholar 

  • Ghosh, S., Van Westen, C. J., Carranza, E., & Jetten, V. (2009). Generation of event-based landslide inventory maps in a data-scarce environment; case study around Kurseong, Darjiling District, West Bengal, India. In P. Malet, A. Remaitre, & T. Bogaard (Eds.), Landslide processes: From geomorphologic mapping to dynamic modeling: Proceedings of the landslide processes (pp. 37–44). Strasbourg: European Centre on Geomorphological Hazards (CERG).

    Google Scholar 

  • Giannecchini, R., Duccio Naldini, D., Avanzi, G. D., & Puccinelli, A. (2007). Modelling of the initiation of rainfall-induced debris flows in the Cardoso basin (Apuan Alps, Italy). Quaternary International, 171, 108–117.

    Article  Google Scholar 

  • Glade, T. (1997). The temporal and spatial occurrence of rainstorm-triggered landslide events in New Zealand. PhD Thesis, Victoria University of Wellington, Wellington.

    Google Scholar 

  • Glade, T. (2001). Landslide hazard assessment and historical landslide data—An inseparable couple? In T. Glade, F. Frances, & P. Albini (Eds.), The use of historical data in natural hazard assessments (Vol. 7, pp. 153–168). Dordrecht: Kluwer Academic Publishers.

    Chapter  Google Scholar 

  • Gorsevski, P. V., Jankowski, P., & Gessler, P. E. (2006). An heuristic approach for mapping landslide hazard by integrating fuzzy logic with analytic hierarchy process. Control and Cybernetics, 35(1), 121–146.

    Google Scholar 

  • Gupta, S. K. (2000). 1897 Great Assam earthquake-generated landslides: Distribution, pattern and correlation with landslide potentiality of Northeastern India. In E. N. Bromhead, N. Dixon, & M.-L. Ibsen (Eds.), Landslides in research, theory and practice, Proceedings of the 8th International Symposium on Landslides, 26–30 June 2000 (Vol. 2, pp. 677–682). Cardiff: Thomas Telford.

    Google Scholar 

  • Guzzetti, F., Carrara, A., Cardinali, M., & Reichenbach, P. (1999). Landslide hazard evaluation: A review of current techniques and their application in a multi-scale study central Italy. Geomorphology, 31(1–4), 181–216.

    Article  Google Scholar 

  • Guzzetti, F., Crosta, G., Detti, R., & Agliardi, F. (2002). STONE: A computer programme for the three-dimensional simulation of rock-falls. Computers and Geosciences, 28, 1079–1093.

    Article  Google Scholar 

  • Guzzetti, F., Reichenbach, P., Cardinali, M., Galli, M., & Ardizzone, F. (2005). Probabilistic Landslide hazard assessment at the basin scale. Geomorphology, 72, 272–299.

    Article  Google Scholar 

  • Guzzetti, F., Galli, M., Reichenbach, P., Ardizzone, F., & Cardinali, M. (2006). Landslide hazard assessment in the Collazzone area, Umbria, Central Italy. Natural Hazards and Earth System Science 6(1):115–131.

    Google Scholar 

  • Hayne, M. C., & Gordon, D. (2001). Regional landslide hazard estimation, a GIS/decision tree analysis: Southeast Queensland, Australia. In K. K. S. Ho & K. S. Li (Eds.), Geotechnical Engineering–Meeting Society’s Needs, Proceedings of the 14th Southeast Asian Geotechnical Conference,10–14 December 2001 (pp. 115–121). Hong Kong: A.A. Balkema.

    Google Scholar 

  • Heckerman, D. E. (1986). Probabilistic interpretation of MYCIN’s certainty factors. In Reading in uncertain reasoning (pp. 298–312). San Francisco: Morgan Kaufmann Publishers Inc.

    Google Scholar 

  • Highland, L. M., & Bobrowsky, P. (2008). The landslide handbook—A guide to understanding landslides (p. 129). Reston: U.S. Geological Survey Circular 1325.

    Google Scholar 

  • Holm, K., Bovis, M., & Jakob, M. (2004). The landslide response of alpine basins to post-Lille Ice Age glacial thinning and retreat in southwestern British Columbia. Geomorphology, 57, 201–216 Honolulu, HI. Gen. Tech. Rep. WO-26. Washington, DC: U.S. Department of Agriculture, Forest Service: 401–420.

    Article  Google Scholar 

  • Hungr, O. (2005). Classification and terminology. In M. Jakob & O. Hungr (Eds.), Debris flow hazard and related phenomena. Heidelberg: Springer.

    Google Scholar 

  • Hutchinson, J. N. (1995). Landslide hazard assessment (Vol. 1, pp. 1805–1842). In Proc VI Int Symp on Landslides, Christchurch.

    Google Scholar 

  • Hutchinson, J. N., & Bromhead, E. N. (2002). Isle of Wight landslides. In R. G. McInnes & J. Jakeways (Eds.), Instability planning and management (pp. 3–72). Isle of Wight: Thomas Telford.

    Google Scholar 

  • Jibson, R. (2000). A method for producing digital probabilistic seismic landslide hazard maps. Engineering Geology, 58, 271–289.

    Article  Google Scholar 

  • Jibson, R. W., Harp, E. L., & Michael, J. A. (2000). A method for producing digital probabilistic seismic landslide hazard maps. Engineering Geology, 58, 271–289.

    Article  Google Scholar 

  • Jonasson, C., Nyberg, R., & Rapp, A. (1997). Dating of rapid mass movements in Scandinavia: Talus rockfalls, large rockslides, debris flows and slush avalanches. In J. A. Matthews, D. Brunsden, B. Frenzel, B. Gläser, & M. M. Weiß (Eds.), Rapid mass movement as a source of climatic evidence for the Holocene (Vol. 12, pp. 267–282). Stuttgart, Jena, Lübeck and Ulm: Gustav Fischer Verlag.

    Google Scholar 

  • Jones, C. L., Higgins, J. D., & Andrew, R. D. (2000). Colorado rockfall simulation programme. Denver: Colorado Department of Transportation.

    Google Scholar 

  • Kamai, T., Kobayashi, Y., Jinbo, C., & Shuzui, H. (2000). Earthquake risk assessments of fill-slope instability in urban residential areas in Japan. In E. N. Bromhead, N. Dixon, & M.-L. Ibsen (Eds.).

    Google Scholar 

  • Kanungo, D. P., Arora, M. K., Sarkar, B. S., & Gupta, R. P. (2006). A comparative study of conventional ANN black box fuzzy and combined neural and fuzzy weighting procedures for landslide susceptibility zonation in Darjeeling Himalayas. Engineering Geology, 85, 347–366.

    Article  Google Scholar 

  • Kayastha, P., Dhital, M. R., & De Smedt, F. (2013). Application of the analytical hierarchy process (AHP) for landslide susceptibility mapping: A case study from the Tinau watershed, west Nepal. Computers & Geosciences, 52, 398–408.

    Article  Google Scholar 

  • Kim, W. Y., Chae, B. G., Kim, K. S., & Cho, Y. C. (2001). Approach to quantitative prediction of landslides on natural mountain slopes, Korea. In K. K. S. Ho & K. S. Li (Eds.), Geotechnical Engineering—Meeting Society’s Needs, Proceedings of the 14th Southeast Asian Geotechnical Conference, 10–14 December 2001 (pp. 795–799). Hong Kong: A.A. Balkema.

    Google Scholar 

  • Korup, O. (2003). Landslide-induced river disruption—Geomorphic imprints and scaling effects in alpine catchments of South Westland and Fiordland, New Zealand. Unpubl. PhD thesis. Victoria, University of Wellington, p. 314.

    Google Scholar 

  • Larsen, M. C., & Torres-Sanchez, A. J. (1998). The frequency and distribution of recent landslides.

    Google Scholar 

  • Lee, E. M., & Clark, A. R. (2000). The use of archive records in landslide risk assessment: historical landslide events on the Scarborough coast, UK. In E. N. Bromhead, N. Dixon, & M.-L. Ibsen (Eds.), Landslides in research, theory and practice, Proceedings of the 8th International Symposium on Landslides, 26–30 June 2000 (pp. 905–910). Cardiff: Thomas Telford.

    Google Scholar 

  • Lee, S., & Pradhan, B. (2006). Probabilistic landslide hazard and risk mapping on Penang Island, Malaysia. Journal of Earth System Science, 115, 661–672. https://doi.org/10.1007/s12040-006-0004-0.

    Article  Google Scholar 

  • Lee, S., & Pradhan, B. (2007). Landslide hazard mapping at Selangor, Malaysia using frequency ratio and logistic regression models. Landslides, 4(1), 33–41.

    Article  Google Scholar 

  • Lee, S., & Sambath, T. (2006). Landslide susceptibility mapping in the Damrei Romel area Cambodia using frequency ratio and logistic regression models. Environmental Geology, 50, 847–855.

    Article  Google Scholar 

  • Lee, C. F., Ye, H., Yeung, M. R., Shan, X., & Chen, G. (2001). AIGIS-based methodology for natural terrain landslide susceptibility mapping in Hong Kong. Episodes, 24(3), 150–159.

    Google Scholar 

  • Lee, S., Chwae, U., & Min, K. D. (2002). Landslide susceptibility mapping by correlation between topography and geological structure: The Janghung area, Korea. Geomorphology, 46, 149–162.

    Article  Google Scholar 

  • Lee, S., Ryu, J. H., Min, K. D., & Won, J. S. (2003). Landslide susceptibility analysis using GIS and artificial neural network. Earth Surface Processes and Landforms, 27, 1361–1376.

    Article  Google Scholar 

  • Lee, S., Choi, J., & Woo, I. (2004). The effect of spatial resolution on the accuracy of landslide susceptibility mapping: A case study in Boun, Korea. Geosciences Journal, 8, 51–60.

    Article  Google Scholar 

  • Lee, S., Ryu, J. H., & Kim, I. S. (2007). Landslide susceptibility analysis and its verification using likelihood ratio logistic regression and artificial neural network models: Case study of Youngin Korea. Landslides, 4, 327–338.

    Article  Google Scholar 

  • Li, C., Ma, T., Sun, L., Li, W., & Zheng, A. (2011). Application and verification of fractal approach to landslide susceptibility mapping. Natural Hazards. https://doi.org/101007/s11069-011-9804-x.

  • Lorente, A., Garcia-Ruiz, J. M., Begueria, S., & Arnaez, J. (2002). Factors explaining the spatial distribution of hill slope debris flow: A case study in the flysch sector of the central Spanish Pyrenees. Mountain Research and Development, 22, 32–39.

    Article  Google Scholar 

  • Maharaj, R. J. (1993). Landslide processes and landslide susceptibility analysis from an upland watershed: A case study from St. Andrew, Jamaica, West Indies. Engineering Geology, 34, 53–79.

    Article  Google Scholar 

  • Maiti, R. (2007). Identification of potential slope failure zones of shiv-khola watershed; Darjiling Himalaya, through critical analysis of slope instability—A step towards rational and scientific management of land, soil and water. UGC sponsored minor research project [F.31-210/2005 (31.03.2007)].

    Google Scholar 

  • Mancini, F., Ceppi, C., & Ritrovato, G. (2010). GIS and statistical analysis for landslide susceptibility mapping in the Daunia area, Italy. Natural Hazards and Earth System Sciences, 10, 1851–1864. https://doi.org/10.5194/nhess-10-1851-2010.

    Article  Google Scholar 

  • Mandal, S., & Maiti, R. (2013). Integrating the Analytical Hierarchy Process (AHP) and the frequency ratio (FR) model in landslide susceptibility mapping of Shiv-khola watershed, Darjeeling Himalaya. International Journal of Disaster Risk Science, 4(4), 200–212.

    Article  Google Scholar 

  • Mandal, B., & Mandal, S. (2016). Assessment of mountain slope instability in the Lish River basin of Eastern Darjeeling Himalaya using frequency ratio model (FRM). Modeling Earth Systems and Environment, 2, 121.

    Article  Google Scholar 

  • Mansouri Daneshvar, M. R. (2014). Landslide susceptibility zonation using analytical hierarchy process and GIS for the Bojnurd region, northeast of Iran. Landslides, 11, 1079–1091.

    Article  Google Scholar 

  • Mark, R. K., & Ellen, S. D. (1995). Statistical and Simulation Models for mapping Debris-flow hazard. In A. Carrara & F. Guzzetti (Eds.), Geographical information systems in assessing natural hazards (Vol. 5, pp. 93–106). Dordrecht: Kluwer Academic Publishers.

    Chapter  Google Scholar 

  • Martinez, J. M., Avila, G., Agudelo, A., Schuster, R. L., Casadevall, T. J., & Scott, K. M. (1995). Landslides and debris flows triggered by the 6 June 1994 Paez earthquake, southwestern Columbia. Landslide News, 9, 13–15.

    Google Scholar 

  • Meng, X., Derbyshire, E., & Du, Y. (2000). Landslide hazard in the eastern part of Gansu Province, China. Zeitschrift der Geologischen Gesellschaft, 151, 31–47.

    Google Scholar 

  • Moeyersons, J., Tre’fois, P. H., Lavreau, J., Alimasi, D., Badriyo, I., Mitima, B., Mundala, M., Munganga, D. O., & Nahimana, L. (2004). A geomorphological assessment of landslide origin at Bukavu, Democratic Republic of the Congo. Engineering Geology, 72, 73–87.

    Article  Google Scholar 

  • Mondal, S., & Maiti, R. (2012). Landslide susceptibility analysis of Shiv-Khola watershed, Darjiling: A remote sensing & GIS based Analytical Hierarchy Process (AHP). Journal of the Indian Society of Remote Sensing, 40, 483–496.

    Article  Google Scholar 

  • Mondal, S., & Mandal, S. (2017). Application of frequency ratio (FR) model in spatial prediction of landslides in the Balason River Basin, Darjeeling Himalaya. Spatial Information Research, 25(3), 337–350. https://doi.org/10.1007/s41324-017-0101-y.

    Article  Google Scholar 

  • Monma, K., Kojima, S., & Kobayashi, T. (2000). Rock slope monitoring and rock fall prediction. Landslide News, 13, 33–35.

    Google Scholar 

  • Moreiras, S. (2004). Landslide incidence zonation in the Rio Mendoza valley, Mendoza Province, morphometry and typology in two zones, Calabria, Italy. Bulletin of the International Association of Engineering Geology, 16, 8–13.

    Google Scholar 

  • Moser, M. (2002). Geotehnical aspects of landslides in the Alps. In J. Rybar, J. Stemberk, & P. Wagner (Eds.), Landslides, 24–26 June 2002, Prague, Czech Republic (pp. 23–44). Rotterdam: A.A.Balkema.

    Google Scholar 

  • Mousavi, S. Z., Kavian, A., Soleimani, K., Mousavi, S. R., & Shirzadi, A. (2011). GIS-based spatial prediction of landslide susceptibility using logistic regression model. Geomatics Natural Hazards and Risk, 2, 33–50.

    Article  Google Scholar 

  • Naranjo, J. L., van Westen, C. J., & Soeters, R. (1994). Evaluating the use of training areas in bivariate statistical landslide hazard analysis—A case study in Columbia. ITC Journal, 3.

    Google Scholar 

  • NDMA. (2009). Management of Landslides and Snow Avalanches, National Disaster Management Authority (NDMA) Government of India New Delhi, 144.

    Google Scholar 

  • Page, M. J., Trustrum, N. A., & Dymond, J. R. (1994). Sediment budget to assess the geomorphic effect of a cyclonic storm, New Zealand. Geomorphology, 9, 169–188.

    Article  Google Scholar 

  • Panizza, M., Pasuto, A., Silvano, S., & Soldati, M. (1996). Temporal occurrence and activity of Perugia, 27 June–1 July 1988 (CNR-ESNSF), 205-224.

    Google Scholar 

  • Pistocchi, A., Luzi, L., & Napolitano, P. (2002). The use of predictive modeling techniques for optimal exploitation of spatial databases: A case study in landslide hazard mapping with expert system-like methods. Environmental Geology, 41, 765–775.

    Article  Google Scholar 

  • Pradhan, B. (2010). Remote sensing and GIS-based landslide hazard analysis and cross validation using multivariate logistic regression model on three test areas in Malaysia. Advances in Space Research, 45, 1244–1256.

    Article  Google Scholar 

  • Pradhan, B., & Lee, S. (2009). Delineation of landslide hazard areas using frequency ratio logistic regression and artificial neural network model at Penang Island Malaysia. Environmental Earth Science, 60, 1037–1054.

    Article  Google Scholar 

  • Rautelal, P., & Lakheraza, R. C. (2000). Landslide risk analysis between Giri and Tons Rivers in Himachal Himalaya, India. International Journal of Applied Earth Observation and Geoinformation, 2, 153–160.

    Article  Google Scholar 

  • Rickenmann, D., & Chen, C. L. (2003). Debris-flow hazard mitigation: Mechanics, prediction and assessment, 10–12 September 2003, Davos, Switzerland (p. 1335). Rotterdam: Millpress.

    Google Scholar 

  • Saaty, T. L. (1980). The analytical hierarchy process (p. 350). New York: McGraw Hill.

    Google Scholar 

  • Saaty, T. L. (1990). The analytical hierarchy process: planning, priority setting, resource allocation (1st ed.p. 502). Pittsburgh: RWS Publication.

    Google Scholar 

  • Saaty, T. L. (1994). Fundamentals of decision making and priority theory with analytic hierarchy process (1st ed.p. 527). Pittsburgh: RWS Publication.

    Google Scholar 

  • Sabto, M. (1991). Probabilistic modeling applied to landslides in Central Colombia using GIS procedures. Unpublished MSc thesis, ITC, Enschede, Netherlands, p. 26.

    Google Scholar 

  • Saha, A. K., Gupta, R. P., Sarkar, I., Arora, M. K., & Csaplovics, E. (2005). An approach for GIS based statistical landslide susceptibility zonation with a case study in the Himalayas. Landslides, 2, 61–69.

    Article  Google Scholar 

  • Sarkar, S. (1999a). Landslides in Darjeeling Himalayas, India. Transactions, Japanese Geomorphological Union, 20, 299–315.

    Google Scholar 

  • Sarkar, S. (1999b). Landslides in Darjiling Himalayas. Transactions, Japanese Geomorphological Union, 20(3), 299–315.

    Google Scholar 

  • Sarkar, S., Kanungo, D., Patra, A., & Kumar, P. (2006). Disaster mitigation of debris flows, slope failures and landslides, GIS based landslide susceptibility mapping—A case study in Indian Himalaya (pp. 617–624). Tokyo: Universal Academy Press.

    Google Scholar 

  • Schmidt, K. H., & Beyer, I. (2001). Factors controlling mass movement susceptibility on the Wellenkalk-scarp in Hesse and Thuringia. Zeitschrift für Geomorphologie, Supplementband, 125, 43–63.

    Google Scholar 

  • Schmidt, K. H., & Beyer, I. (2003). High magnitude landslide-events on a limestone-scarp in central Germany—Morphometric characteristics and climatic controls. Geomorphology, 49, 323–342.

    Article  Google Scholar 

  • Schmidt, K. M., Roering, J. J., Stock, J. D., Dietrich, W. E., Montgomery, D. R. & Schaub, T. (2001). Root cohesion variability and shallow landslide susceptibility in the Oregon Coast Range. Canadian Geotechnical Journal 38(1): 995–1024.

    Google Scholar 

  • Schoeneich, P., & Bouzou, I. (1996). Landslides in Niger (West Africa). In Senneset (Ed.), Landslides (pp. 1967–1972). Rotterdam: Balkema.

    Google Scholar 

  • Sharpe, C. F. S. (1938). Landslides and related phenomena. New York: Columbia University Press.

    Google Scholar 

  • Shorthliffe, E. H., & Buchanan, G. G. (1975). A model of inexact reasoning in medicine. Mathematical Biosciences, 23, 351–379.

    Article  Google Scholar 

  • Shroder, J. F., & Bishop, M. P. (1998). Mass Movement in the Himalaya: New insights and research directions. Geomorphology, 26, 13–35.

    Article  Google Scholar 

  • Soeters, R., & van Westen, C. J. (1996). Slope instability, recognition, analysis and zonation. In A. K. Turner & R. L. Schuster (Eds.), Landslide: investigations and mitigation. Special Report 247. Transportation Research Board. National Research Council (pp. 129–177). Washington, D.C.: National Academy Press.

    Google Scholar 

  • Song, Y., Gong, J., Gao, S., Wang, D., Cui, T., Li, Y., & Wei, B. (2012). Susceptibility assessment of earthquake induced landslides using Bayesian network: A case study in Beichuan China. Computational Geosciences, 42, 189–199.

    Article  Google Scholar 

  • Spang, R. M., & Sonser, T. (1995). Optimized rockfall protection by ‘Rockfall’. In T. Fuji (Ed.), 8, International Congress on Rock Mechanics (Tokyo, Japan) (pp. 1233–1242).

    Google Scholar 

  • Starkel, L. (1972). The role of catastrophic rainfall in the shaping of the relief of the Lower Himalaya (Darjeeling Hills). Geographia Polonica, 21, 103–147.

    Google Scholar 

  • Starkel, L., & Basu, S. R. (2000). Rains, landslides and floods in the Darjiling Himalayas. New Delhi: Indian Science Academy.

    Google Scholar 

  • Stead, D. S., Eberhardt, E., Coggan, J., & Bemko, B. (2001). Advanced numerical techniques in rock slope stability analysis—Application and limitations. In M. Kuhne, H. H. Einstein, E. Krauter, H. Klapperich, & R. Pottler (Eds.), Landslides-causes, impacts and counter measures, 17–21 June 2001. Davos: Verlag Gluckauf Essen.

    Google Scholar 

  • Swanson, F. J., & Dyrness, C. T. (1975). Impact of clearcutting and road construction on soil erosion by Landslides in the Western Cascade Range, Oregon. Geology, 3, 393–396.

    Article  Google Scholar 

  • Tang, C., & Grunert, J. (1999). Inventory of landslides triggered by the 1996 Lijiang earthquake, Yunnan Province, China. Transactions, Japanese Geomorphological Union, 20, 335–349.

    Google Scholar 

  • Tavares, A. O., & Soares, A. F. (2002). Instability relevance on land use planning in Coimbra municipality (Portugal). In R. G. McInnes & J. Jakeways (Eds.), Instability planning and management (pp. 177–184). Isle of Wight: Thomas Telford.

    Google Scholar 

  • Tazik, E., Jahantab, Z., Bakhtiari, M., Rezaei, A., & Alavipanah, S. K. (2014). Landslide susceptibility mapping by combining the three methods Fuzzy Logic, Frequency Ratio and Analytical Hierarchy Process in Dozain basin, The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-2/W3, 2014. In 1st ISPRS International Conference on Geospatial Information Research, 15–17 November 2014, Iran: Tehran.

    Google Scholar 

  • The Hindu. (2015). 30 killed in Darjeeling landslides. New Delhi: The Hindu.

    Google Scholar 

  • Tibaldi, A., Ferrari, L., & Pasquare, G. (1995). Landslides triggered by earthquakes and their relations with faults and mountain slope geometry—An example from Ecuador. Geomorphology, 11, 215–226.

    Article  Google Scholar 

  • Twidale, C. R. (2000). The Lochiel landslip, a mass movement developing in 1974 but originating 600–700 million years earlier. In E. N. Bromhead, N. Dixon, & M.-L. Ibsen (Eds.), Landslides in union (Vol. 20, pp. 317–333).

    Google Scholar 

  • Uromeihy, A. (2000). Use of landslide hazard zonation map in the evaluation of slope instability in the Jiroft-dam watershed. In E. N. Bromhead, N. Dixon, & M.-L. Ibsen (Eds.), Landslides in research, theory and practice, Proceedings of the 8th International Symposium on Landslides, 26–30 June 2000 (pp. 1501–1508). Cardiff: Thomas Telford.

    Google Scholar 

  • van Westen, C. J., & Getahun, L. F. (2003). Analyzing the evolution of the Tessina landslide using aerial photographs and digital elevation models. Geomorphology, 54, 77–89.

    Article  Google Scholar 

  • van Westen, C. J., Rengers, N., Terlien, M. T. J., & Soeters, R. (1997). Prediction of the occurrence of slope instability phenomena through GIS-based hazard zonation. Geologische Rundschau, 86(2), 404–414.

    Article  Google Scholar 

  • van Westen, C. J., Van Asch, T. W. J., & Soeters, R. (2006). Landslide zonation and risk hazard—Why is it still so difficult? Bulletin Engineering Geology and Environment, 65, 167–184.

    Google Scholar 

  • Varnes, D. J. (1978). Slope movement types and processes. In: Schuster, R. L, & Krizek, R. J. (Eds.), Landslides, analysis and control, special report 176: Transportation research board, National Academy of Sciences, (pp. 11–33). Washington, DC.

    Google Scholar 

  • Varnes, D. J. (1984). Landslide Hazard Zonation: A review of principles and practice, Commission on Landslides of the IAEG, UNESCO. Natural Hazards, 3, 61.

    Google Scholar 

  • Wan, S. (2012) Entropy-based particle swarm optimization with clustering analysis on landslide susceptibility mapping. Environmental Earth Sciences. https://doi.org/101007/s12665-012-1832-7.

  • Wieczorek, G. F., & Naeser, N. D. (2000). Proceeding of the Second International Conference on Debris-flow hazard mitigation, 16-18 August 2000 Debris-flow hazard mitigation: Mechanics, prediction and Assessment, Taipei, Taiwan (p. 608). Rotterdam: Balkema.

    Google Scholar 

  • Wu, C. H., & Chen, S. C. (2009). Determining landslide susceptibility in Central Taiwan from rainfall and six site factors using the analytical hierarchy process method. Geomorphology, 11, 190–204.

    Article  Google Scholar 

  • Xie, M., Esaki, T., & Cai, M. (2004). A GIS-based method for locating the critical 3D slip surface in a slope. Computers and Geotechnics, 31, 267–277.

    Article  Google Scholar 

  • Xu, C., Dai, F., Xu, X., & Lee, Y. H. (2012). GIS-based support vector machine modeling of earthquake-triggered landslide susceptibility in the Jianjiang River watershed China. Geomorphology, 145–146, 70–80.

    Article  Google Scholar 

  • Yamagami, T., Jiang, J. C., & Yokino, K. (2001). An identification of DEM parameters for rock fall analysis. In K. K. S. Ho & K. S. Li (Eds.), Geotechnical Engineering-Meeting Society’s Needs, Proceedings of the 14th South East Asian Geotechnical Conference, 10–14 December 2001 (pp. 953–958). Hong Kong: A.A. Balkema.

    Google Scholar 

  • Yu, F. C., Che, T. C., Lin, K. L., Chen, C. Y., & Yu, W. H. (2006). Landslides and rainfall characteristics analysis in Taipei city during the Typhoon Nari event. Natural Hazards, 37, 153–167.

    Article  Google Scholar 

  • Zezere, J. L. (2002). Landslide susceptibility assessment considering landslide typology, a case study in the area north of Lisbon (Portugal). Natural Hazards and Earth System Sciences, 2, 73–82.

    Article  Google Scholar 

  • Zhou, C. H., Lee, C. F., Li, J., & Xu, Z. W. (2002). On the spatial relationship between landslides and causative factors on Lantau Island, Hong Kong. Geomorphology, 43, 197–207.

    Article  Google Scholar 

  • Zorn, M., & Komac, B. (2004). Deterministic modeling of landslide and rockfall risk. Acta Geographica Slovenica, 44, 53–100.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mandal, S., Mondal, S. (2019). Concept on Landslides and Landslide Susceptibility. In: Statistical Approaches for Landslide Susceptibility Assessment and Prediction. Springer, Cham. https://doi.org/10.1007/978-3-319-93897-4_1

Download citation

Publish with us

Policies and ethics