Skip to main content

Algorithms of Laser Scanner Data Processing for Ground Surface Reconstruction

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2018 (ICCSA 2018)

Abstract

Laser scanning data processing is widely used to solve regional planning problems in a GIS environment including Digital Terrain Models (DTMs) analysis and ground surface reconstruction. Some gaps in algorithms for processing of raw laser scanning data during DTM creation are analyzed. Algorithms for filtration, triangulation and defragmentation of laser scanning point clouds are proposed. Advantages and disadvantages of the algorithms proposed are discussed. The proposed triangulation algorithm is used for defragmentation of laser scanning point clouds into semantic component parts. Defragmentation includes recognition of engineering objects and other objects of the terrain, and their delineation. The results of real problems’ solutions described in the paper show the robustness of the proposed algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Puente, I., González-Jorge, H., Martínez-Sánchez, J., Arias, P.: Review of mobile mapping and surveying technologies. Measurement 46(7), 2127–2145 (2013)

    Article  Google Scholar 

  2. Guan, H., Li, J., Cao, S., Yu, Y.: Use of mobile LiDAR in road information inventory: a review. Int. J. Image Data Fusion 7(3), 219–242 (2016)

    Article  Google Scholar 

  3. Vosselman, G., Coenen, M., Rottensteiner, F.: Contextual segment-based classification of airborne laser scanner data. ISPRS J. Photogramm. Remote Sens. 128, 354–371 (2017)

    Article  Google Scholar 

  4. Dore, C., Murphy, M.: Current state of the art historic building information modelling. Int. Archiv. Photogramm. Remote Sens. Spat. Inf. Sci. 42, 185–192 (2017)

    Article  Google Scholar 

  5. Badenko, V., Zotov, D., Fedotov, A.: Hybrid processing of laser scanning data. In: E3S Web of Conferences – EDP Sciences, vol. 33, id.01047 (2018)

    Article  Google Scholar 

  6. Badenko, V., Kurtener, D., Yakushev, V., Torbert, A., Badenko, G.: Evaluation of current state of agricultural land using problem-oriented fuzzy indicators in GIS environment. In: Gervasi, O., Murgante, B., Misra, S., Rocha, A.M.A.C., Torre, C., Taniar, D., Apduhan, Bernady O., Stankova, E., Wang, S. (eds.) ICCSA 2016. LNCS, vol. 9788, pp. 57–69. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-42111-7_6

    Chapter  Google Scholar 

  7. Kukko, A., Kaartinen, H., Hyyppä, J., Chen, Y.: Multiplatform mobile laser scanning: usability and performance. Sensors 12(9), 11712–11733 (2012)

    Article  Google Scholar 

  8. Tomljenovic, I., Höfle, B., Tiede, D., Blaschke, T.: Building extraction from airborne laser scanning data: an analysis of the state of the art. Remote Sens. 7(4), 3826–3862 (2015)

    Article  Google Scholar 

  9. Liu, X., Chen, Y., Cheng, L., Yao, M., Deng, S., Li, M., Cai, D.: Airborne laser scanning point clouds filtering method based on the construction of virtual ground seed points. J. Appl. Remote Sens. 11(1), 016032 (2017)

    Article  Google Scholar 

  10. Murphy, M., McGovern, E., Pavia, S.: Historic building information modelling–adding intelligence to laser and image based surveys of European classical architecture. ISPRS J. Photogramm. Remote Sens. 76, 89–102 (2013)

    Article  Google Scholar 

  11. Hichri, N., Stefani, C., De Luca, L., Veron, P., Hamon, G.: From point cloud to BIM: a survey of existing approaches. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. ISPRS Arch. 40(5W2), 343–348 (2013)

    Article  Google Scholar 

  12. Liu, X., Meng, W., Guo, J., Zhang, X.: A survey on processing of large-scale 3D point cloud. In: El Rhalibi, A., Tian, F., Pan, Z., Liu, B. (eds.) Edutainment 2016. LNCS, vol. 9654, pp. 267–279. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-40259-8_24

    Chapter  Google Scholar 

  13. Heo, J., Jeong, S., Park, H.-K., Jung, J., Han, S., Hong, S., Sohn, H.-G.: Productive high-complexity 3D city modeling with point clouds collected from terrestrial LiDAR. Comput. Environ. Urban Syst. 41, 26–38 (2013)

    Article  Google Scholar 

  14. Barazzetti, L.: Parametric as-built model generation of complex shapes from point clouds. Adv. Eng. Inform. 30(3), 298–311 (2016)

    Article  Google Scholar 

  15. Sithole, G., Vosselman, G.: Experimental comparison of filter algorithms for bare-Earth extraction from airborne laser scanning point clouds. ISPRS J. Photogramm. Remote Sens. 59(1), 85–101 (2004)

    Article  Google Scholar 

  16. Kobler, A., Pfeifer, N., Ogrinc, P., Todorovski, L., Oštir, K., Džeroski, S.: Repetitive interpolation: a robust algorithm for DTM generation from Aerial Laser Scanner Data in forested terrain. Remote Sens. Environ. 108(1), 9–23 (2007)

    Article  Google Scholar 

  17. Pirotti, F., Guarnieri, A., Vettore, A.: Ground filtering and vegetation mapping using multi-return terrestrial laser scanning. ISPRS J. Photogramm. Remote Sens. 76, 56–63 (2013)

    Article  Google Scholar 

  18. Kuzin, A.A., Kovshov, S.V.: Accuracy evaluation of terrain digital models for landslide slopes based on aerial laser scanning results. Ecol. Environ. Conserv. 23(2), 908–914 (2017)

    Google Scholar 

  19. Tang, P., Huber, D., Akinci, B., Lipman, R., Lytle, A.: Automatic reconstruction of as-built building information models from laser-scanned point clouds: a review of related techniques. Autom. Constr. 19(7), 829–843 (2010)

    Article  Google Scholar 

  20. Gruszczyński, W., Matwij, W., Ćwiąkała, P.: Comparison of low-altitude UAV photogrammetry with terrestrial laser scanning as data-source methods for terrain covered in low vegetation. ISPRS J. Photogramm. Remote Sens. 126, 168–179 (2017)

    Article  Google Scholar 

  21. Xiong, L., Wang, G., Wessel, P.: Anti-aliasing filters for deriving high-accuracy DEMs from TLS data: a case study from Freeport. Tex. Comput. Geosci. 100, 125–134 (2017)

    Article  Google Scholar 

  22. Cățeanu, M., Arcadie, C.: ALS for terrain mapping in forest environments: an analysis of lidar filtering algorithms. EARSeL eProceedings 16(1), 9–20 (2017)

    Google Scholar 

  23. Axelsson, P.: Processing of laser scanner data - algorithms and applications. ISPRS J. Photogramm. Remote Sens. 54(2–3), 138–147 (1999)

    Article  Google Scholar 

  24. Hu, H., Ding, Y., Zhu, Q., Wu, B., Lin, H., Du, Z., Zhang, Y., Zhang, Y.: An adaptive surface filter for airborne laser scanning point clouds by means of regularization and bending energy. ISPRS J. Photogramm. Remote Sens. 92, 98–111 (2014)

    Article  Google Scholar 

  25. Chen, C., Li, Y.: A robust method of thin plate spline and its application to DEM construction. Comput. Geosci. 48, 9–16 (2012)

    Article  Google Scholar 

  26. Pingel, T.J., Clarke, K.C., McBride, W.A.: An improved simple morphological filter for the terrain classification of airborne LIDAR data. ISPRS J. Photogramm. Remote Sens. 77, 21–30 (2013)

    Article  Google Scholar 

  27. Susaki, J.: Adaptive slope filtering of airborne LiDAR data in urban areas for digital terrain model (DTM) generation. Remote Sens. 4(6), 1804–1819 (2012)

    Article  Google Scholar 

  28. Yan, M., Blaschke, T., Liu, Y., Wu, L.: An object-based analysis filtering algorithm for airborne laser scanning. Int. J. Remote Sens. 33(22), 7099–7116 (2012)

    Article  Google Scholar 

  29. Lin, X., Zhang, J.: Segmentation-based ground points detection from mobile laser scanning point cloud. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 40(7), 99–102 (2015)

    Article  Google Scholar 

  30. Masuda, H., He, J.: TIN generation and point-cloud compression for vehicle-based mobile mapping systems. Adv. Eng. Inform. 29(4), 841–850 (2015)

    Article  Google Scholar 

  31. Panholzer, H., Prokop, A.: Wedge-filtering of geomorphologic terrestrial laser scan data. Sensors 13(2), 2579–2594 (2013)

    Article  Google Scholar 

  32. Wei, Z., Ma, H., Chen, X., Liu, L.: An improved progressive triangulation algorithm for vehicle-borne laser point cloud. Int. Arch. Photogramm. Remote Sen. Spat. Inf. Sci. 42(2W7), 929–933 (2017)

    Article  Google Scholar 

  33. Yilmaz, M., Uysal, M.: Comparison of data reduction algorithms for LiDAR-derived digital terrain model generalisation. Area 48(4), 521–532 (2016)

    Article  Google Scholar 

  34. Fedorov, M.P., Maslikov, V.I., Badenko, V.L., Chusov, A.N., Molodtsov, D.V.: Reducing the risk of flooding by using hydro complexes distributed on the drainage basin. Power Technol. Eng. 51(4), 365–370 (2017)

    Article  Google Scholar 

  35. Badenko, V.L., Topaj, A.G., Yakushev, V.V., Mirschel, W., Nendel, C.: Crop models as research and interpretative tools. Sel’skokhozyaistvennaya Biologiya 52, 437–445 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

The research was supported by Ministry of Education and Science of Russia within the framework of the Federal Program “Research and Development in Priority Areas for the Development of the Russian the Science and Technology Complex for 2014-2020” (project ID RFMEFI58417X0025).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir Badenko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Badenko, V., Fedotov, A., Vinogradov, K. (2018). Algorithms of Laser Scanner Data Processing for Ground Surface Reconstruction. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2018. ICCSA 2018. Lecture Notes in Computer Science(), vol 10961. Springer, Cham. https://doi.org/10.1007/978-3-319-95165-2_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-95165-2_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-95164-5

  • Online ISBN: 978-3-319-95165-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics