Skip to main content

A Hexapod Walking Robot Mimicking Navigation Strategies of Desert Ants Cataglyphis

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10928))

Abstract

In this study, a desert ant-inspired celestial compass and a bio-inspired minimalist optic flow sensor named M\(^2\)APix (which stands for Michaelis Menten Auto-adaptive Pixels), were embedded onboard our 2 kg-hexapod walking robot called AntBot, in order to reproduce the homing behavior observed in desert ants Cataglyphis fortis. The robotic challenge here was to make the robot come back home autonomously after being displaced from its initial location. The navigation toolkit of AntBot comprises the celestial-based heading direction, and both stride- and ventral optic flow-based odometry, as observed in desert ants. Experimental results show that our bio-inspired approach can be useful for autonomous outdoor navigation robotics in case of GPS or magnetometer failure, but also to compensate for a drift of the inertial measurement unit. In addition, our strategy requires few computational resources due to the small number of pixels (only 14 here), and a high robustness and precision (mean error of 4.8 cm for an overall path ranging from 2 m to 5 m). Finally, this work presents highly interesting field results of ant-based theoretical models for homing tasks that have not been tested yet in insectoid robots.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Muller, M., Wehner, R.: Path integration in desert ants, cataglyphis fortis. Proc. Nat. Acad. Sci. 85(14), 5287–5290 (1988)

    Article  Google Scholar 

  2. Collett, M., Collett, T.S., Bisch, S., Wehner, R.: Local and global vectors in desert ant navigation. Nature 394(6690), 269 (1998)

    Article  Google Scholar 

  3. Wehner, R.: Desert ant navigation: how miniature brains solve complex tasks. J. Comp. Physiol. A. 189(8), 579–588 (2003)

    Article  Google Scholar 

  4. Wehner, R.: The desert ant’s navigational toolkit: procedural rather than positional knowledge. Navigation 55(2), 101–114 (2008)

    Article  Google Scholar 

  5. Labhart, T., Meyer, E.P.: Detectors for polarized skylight in insects: a survey of ommatidial specializations in the dorsal rim area of the compound eye. Microsc. Res. Tech. 47(6), 368–379 (1999)

    Article  Google Scholar 

  6. Labhart, T.: Polarization-opponent interneurons in the insect visual system. Nature 331(6155), 435 (1988)

    Article  Google Scholar 

  7. Wittlinger, M., Wehner, R., Wolf, H.: The desert ant odometer: a stride integrator that accounts for stride length and walking speed. J. Exp. Biol. 210(2), 198–207 (2007)

    Article  Google Scholar 

  8. Ronacher, B., Gallizzi, K., Wohlgemuth, S., Wehner, R.: Lateral optic flow does not influence distance estimation in the desert ant Cataglyphis fortis. J. Exp. Biol. 203(7), 1113–1121 (2000)

    Google Scholar 

  9. Lambrinos, D., Kobayashi, H., Pfeifer, R., Maris, M., Labhart, T., Wehner, R.: An autonomous agent navigating with a polarized light compass. Adapt. Behav. 6(1), 131–161 (1997)

    Article  Google Scholar 

  10. Moller, R., Lambrinos, D., Roggendorf, T., Pfeifer, R., Wehner, R.: Insect strategies of visual homing in mobile robots. In: Proceedings of the Computer Vision and Mobile Robotics Workshop CVMR, vol. 98 (2001)

    Google Scholar 

  11. Chu, J., Zhao, K., Zhang, Q., Wang, T.: Construction and performance test of a novel polarization sensor for navigation. Sens. Actuators A: Phys. 148(1), 75–82 (2008)

    Article  Google Scholar 

  12. Chu, J.K., Wang, Z.W., Guan, L., Liu, Z., Wang, Y.L., Zhang, R.: Integrated polarization dependent photodetector and its application for polarization navigation. IEEE Photonics Technol. Lett. 26(5), 469–472 (2014)

    Article  Google Scholar 

  13. Chu, J., Wang, H., Chen, W., Li, R.: Application of a novel polarization sensor to mobile robot navigation. In: 2009 International Conference on Mechatronics and Automation, ICMA 2009, pp. 3763–3768. IEEE (2009)

    Google Scholar 

  14. Stürzl, W., Carey, N.: A fisheye camera system for polarisation detection on UAVs. In: Fusiello, A., Murino, V., Cucchiara, R. (eds.) ECCV 2012, Part II. LNCS, vol. 7584, pp. 431–440. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33868-7_43

    Chapter  Google Scholar 

  15. Stürzl, W.: A lightweight single-camera polarization compass with covariance estimation. In: IEEE International Conference on Computer Vision (2017)

    Google Scholar 

  16. Dupeyroux, J., Passault, G., Ruffier, F., Viollet, S., Serres, J.: Hexabot: a small 3D-printed six-legged walking robot designed for desert ant-like navigation tasks. In: 2017 20th IFAC Word Congress, Toulouse, France, pp. 16628–16631 (2017)

    Google Scholar 

  17. Dupeyroux, J., Diperi, J., Boyron, M., Viollet, S., Serres, J.: A novel insect-inspired optical compass sensor for a hexapod walking robot. In: IROS 2017-IEEE/RSJ International Conference on Intelligent Robots and Systems, Vancouver, Canada, pp. 3439–3445 (2017)

    Google Scholar 

  18. Dupeyroux, J., Diperi, J., Boyron, M., Viollet, S., Serres, J.: A bio-inspired celestial compass applied to an ant-inspired robot for autonomous navigation. In: ECMR-European Conference on Mobile Robotics, Paris, France (2017)

    Google Scholar 

  19. Mafrica, S., Godiot, S., Menouni, M., Boyron, M., Expert, F., Juston, R., Marchand, N., Ruffier, F., Viollet, S.: A bio-inspired analog silicon retina with Michaelis-Menten auto-adaptive pixels sensitive to small and large changes in light. Opt. Express 23(5), 5614–5635 (2015)

    Article  Google Scholar 

  20. Dupeyroux, J., Boutin, V., Serres, J., Perrinet, L., Viollet, S.: M\(^2\)APix: a bio-inspired auto-adaptive visual sensor for robust ground height estimation. In: 2018 IEEE International Symposium on Circuits and Systems (ISCAS), Florence, Italy (2018, Accepted)

    Google Scholar 

  21. Vanhoutte, E., Mafrica, S., Ruffier, F., Bootsma, R.J., Serres, J.: Time-of-travel methods for measuring optical flow on board a micro flying robot. Sensors 17(3), 571 (2017)

    Article  Google Scholar 

  22. Haferlach, T., Wessnitzer, J., Mangan, M., Webb, B.: Evolving a neural model of insect path integration. Adapt. Behav. 15(3), 273–287 (2007)

    Article  Google Scholar 

  23. Stone, T., Webb, B., Adden, A., Weddig, N.B., Honkanen, A., Templin, R., Wcislo, W., Scimeca, L., Warrant, E., Heinze, S.: An anatomically constrained model for path integration in the bee brain. Current Biol. 27(20), 3069–3085 (2017)

    Article  Google Scholar 

  24. Lin, P.C., Komsuoglu, H., Koditschek, D.E.: A leg configuration measurement system for full-body pose estimates in a hexapod robot. IEEE Trans. Robot. 21(3), 411–422 (2005)

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Marc Boyron and Julien Diperi for their technical support in the conception of the celestial compass.

Funding

This work was supported by the French Direction Générale de l’Armement (DGA), CNRS, Aix-Marseille University, the Provence-Alpes-Côte d’Azur region, and the French National Research Agency for Research (ANR) with the Equipex/Robotex project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stéphane Viollet .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dupeyroux, J., Serres, J., Viollet, S. (2018). A Hexapod Walking Robot Mimicking Navigation Strategies of Desert Ants Cataglyphis. In: Vouloutsi , V., et al. Biomimetic and Biohybrid Systems. Living Machines 2018. Lecture Notes in Computer Science(), vol 10928. Springer, Cham. https://doi.org/10.1007/978-3-319-95972-6_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-95972-6_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-95971-9

  • Online ISBN: 978-3-319-95972-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics