Skip to main content

“Coffee Bean-Related” Agroecological Factors Affecting the Coffee

  • Reference work entry
  • First Online:

Part of the book series: Reference Series in Phytochemistry ((RSP))

Abstract

Coffee is the most consumed processed beverage aside from water, and green coffee beans are the most traded agriculture commodity after petroleum in the world. The agricultural production of green coffee beans and consumption of coffee have been increasing by 17% and 2% at an annual rate during the previous decades, respectively. The credit of increasing coffee production and consumption goes to its alluring organoleptic characteristics. The organoleptic or final cup quality characteristic of coffee is a multifactorial and complex trait, and both agricultural and postharvest processing factors influence this multifaceted trait significantly. Agroproduction technology of coffee influences 40% cup quality attributes of coffee beverage, whereas remaining 60% quality attributes are determined by postharvest processing technology. In this chapter, the relationship of organoleptic or final cup quality attributes with agricultural and environmental factors was reviewed. The analysis focused on how these factors affect the physical quality attributes of coffee beans in addition to the biochemical cup quality attributes. An overview of agricultural and environmental factors of coffee identified a critical impact of these factors in determining the physical and biochemical cup quality attributes. Geographical topography (especially altitude, slope of attitude, its steepness) was found to be the major element which also dictated the scope of influence of subsequent agricultural and environmental factors. Coffee verities or genetics, rainfall, frost, temperature, soil fertilization status, sun and shade ecosystems, and harvesting strategies played a decisive role in shaping not only the final physical and biochemical cup quality attributes but also in postharvest processing approaches. Each coffee variety (both C. arabica and C. robusta) is specified to a specific region with a set of its own inherent quality characteristics which played an important role in the production of certified specialty, organic, or other same kind of coffees. Moreover, there are still some bottlenecks that need to be addressed in order to fully understand the critical relationship of agricultural and environmental factors with final physical and biochemical cup quality attributes.

This is a preview of subscription content, log in via an institution.

References

  1. Mussatto SI, Machado EMS, José SMA, Teixeira FMS (2011) Production, composition, and application of coffee and its industrial residues. Food Bioprocess Technol 4:661–672. https://doi.org/10.1007/s11947-011-0565-z

    Article  CAS  Google Scholar 

  2. International Coffee Organization (ICO) (2016) Statistics. Breakdown of exports of green Arabica and green Robusta of countries exporting significant volumes of both types of coffee, June 2016, January 2016. www.ico.org. Accessed 29 Sept 2016

  3. Fassio LH, Silva AES (2015) Importância econômica e social do café conilon. In: Ferrão RG, Fonseca AFA, Bragança SM, Ferrão MAG, De Muner LH (eds) Café Conilon. Seag/Incaper, Vitória, pp 37–49

    Google Scholar 

  4. Dias RCE, Benassi MDT (2015) Discrimination between Arabica and Robusta coffees using hydrosoluble compounds: is the efficiency of the parameters dependent on the roast degree? Beverages 1:127–139. https://doi.org/10.3390/beverages1030127

    Article  CAS  Google Scholar 

  5. Clarke RJ (2011) Coffee: green coffee/roast and ground. In: Caballero B, Trugo LC, Finglas P (eds) Encyclopedia of food science and nutrition, 2nd edn. Academic, Oxford 2003, vol 3. ABIC, 2011. Brazilian Association of Coffee Industry (Technical information)

    Google Scholar 

  6. DaMatta FM, Ronchi CP, Maestri M, Barros RS (2007) Ecophysiology of coffee growth and production. Braz J Plant Physiol 19(4):485–510

    Article  CAS  Google Scholar 

  7. Farah A (2012) Coffee: emerging health effects and disease prevention, coffee constituents, 1st edn. Wiley, Boca Raton, FL

    Chapter  Google Scholar 

  8. Bertrand B, Guyot B, Anthony F, Lashermes P (2003) Impact of the Coffea canephora gene introgression on beverage quality of C. arabica. Theor Appl Genet 107:387–394

    Article  CAS  PubMed  Google Scholar 

  9. Özdestan O, Ruth SM, Alewijn M, Koot A, Romano A, Cappellin L, Biasioli F (2013) Differentiation of specialty coffees by proton transfer reaction-mass spectrometry. Food Res Int 53:433–439

    Article  CAS  Google Scholar 

  10. Capuano E, van Ruth SM (2013) Analytical authentication of organic produce: an overview of markers. J Sci Food Agric 93:12–28

    Article  CAS  PubMed  Google Scholar 

  11. Arya M, Rao LJ (2007) An impression of coffee carbohydrates. Crit Rev Food Sci Nutr 47:51–67

    Article  CAS  PubMed  Google Scholar 

  12. Knopp S, Bytof G, Selmar D (2006) Influence of processing on the content of sugars in green Arabica coffee beans. Eur Food Res Technol 223(2):195–201

    Article  CAS  Google Scholar 

  13. Bytof G, Selmar D, Schieberle P (2000) New aspects of coffee processing: how do the different post harvest treatments influence the formation of potential flavour precursors? J Appl Bot 74(3–4):131–136

    CAS  Google Scholar 

  14. Sepúlveda RB, Carrillo AA (2015) Soil erosion and erosion thresholds in an agroforestry system of coffee (Coffea arabica) and mixed shade trees (Inga spp and Musa spp) in Northern Nicaragua. Agric Ecosyst Environ 210:25–35

    Article  Google Scholar 

  15. Toledo PRAB, Pezza L, Pezza HR, Toci AT (2016) Relationship between the different aspects related to coffee quality and their volatile compounds. Compr Rev Food Sci Food Saf. https://doi.org/10.1111/1541-4337.12205

    Article  PubMed  Google Scholar 

  16. International Standard ISO 9116 (2004) Green coffee – guidelines on methods of specification. 4 pp, NY, USA

    Google Scholar 

  17. Richard M, Charles A, Mitiku M (2007) Primary coffee processing in Ethiopia: patterns, constraints and determinates. Afr Crop Sci Conf Proceed 8:1417–1421

    Google Scholar 

  18. Bosselmann AS, Dons K, Oberthür T, Smith C, Raebild A, Usma H (2007) The influence of shade trees on coffee quality in small holder coffee agroforestry systems in Southern Colombia. Agric Ecosyst Environ 129:253–260

    Article  Google Scholar 

  19. Barham E (2003) Translating terroir: the global challenge of French AOC labelling. J Rural Stud 19:127–138

    Article  Google Scholar 

  20. Rodrigues CI, Maia R, Miranda M, Ribeirinho M, Nogueira JMF, Máguas C (2009) Stable isotope analysis for green coffee bean: a possible method for geographic origin discrimination. J Food Compos Anal 22:463–471. https://doi.org/10.1016/j.jfca.2008.06.010

    Article  CAS  Google Scholar 

  21. Vaast P, Cilas C, Perriot J, Davrieux J, Guyot B, Bolaños M (2005) Mapping of coffee quality in Nicaragua according to regions. Ecological conditions and farm management. In: ASIC conference, Bangalore, pp 842–850

    Google Scholar 

  22. Muschler R (2001) Shade improves coffee quality in a sub-optimal coffee-zone of Costa Rica. Agrofor Syst 85:131–139

    Article  Google Scholar 

  23. Farah A, Monteiro MC, Calado V, Franca AS, Trugo LC (2006) Correlation between cup quality and chemical attributes of Brazilian coffee. Food Chem 98:373–380

    Article  CAS  Google Scholar 

  24. Clifford MN (1985) Chlorogenic acids. In: Clarke RJ, Macrae R (eds) Coffee. Elsevier Applied Science, pp 153–202. https://doi.org/10.1016/0308-8146(87)90167-1

    Article  CAS  Google Scholar 

  25. Mazzafera P, Robinson SP (2000) Characterization of polyphenol oxidase in coffee. Phytochemistry 55:285–296. ISSN/ISBN: 00319422

    Article  CAS  PubMed  Google Scholar 

  26. Malta MR, Chagas SJR (2009) Avaliação de compostos não-voláteis em diferentes cultivares de cafeeiro produzidas na região Sul de Minas Gerais. Acta Sci Agron 31:57–61. https://doi.org/10.4025/actasciagron.v31i1.6629

    Article  CAS  Google Scholar 

  27. Amorim HV, Silva DM (1968) Relationship between the polyphenol oxidase activity of coffee beans and the quality of beverage. Nature 219:381–382. https://doi.org/10.1590/S0103-90161993000200008

    Article  PubMed  Google Scholar 

  28. Leonel LE, Philippe V (2007) Effects of altitude, shade, yield and fertilization on coffee quality (Coffea arabica L. var. Caturra) produced in agroforestry systems of the Northern Central zones of Nicaragua. Presented at 2nd International symposium on multi-strata agroforestry systems with perennial crops: making ecosystem services count for farmers, consumers and the environment, pp 17–21

    Google Scholar 

  29. Guyot B, Petnga E, Lotod’e R, Vincent JC (1988) Analyse qualitative d’un café Coffea canephora var. Robusta en function de la maturité. Partie II. Application de l’analyse statistique multidimensionnelle. Café Cacao Thé 32:229–242

    Google Scholar 

  30. Avelino J, Barboza B, Juan Carlos Araya JC, Fonseca C, Davrieux F, Guyot B, Cilas C (2005) Effects of slope exposure, altitude and yield on coffee quality in two altitude terroirs of Costa Rica, Orosi and Santa María de Dota. J Sci Food Agric 85:1869–1876. https://doi.org/10.1002/jsfa.2188

    Article  CAS  Google Scholar 

  31. Avelino J, Perriot JJ, Guyot B, Pineda C, Decazy F, Cilas C (2002) Identifying terroir coffees in Honduras. In: Research and coffee growing. CIRAD, Montpellier, pp 6–16

    Google Scholar 

  32. Decazy F, Avelino J, Guyot B, Perriot J, Pineda C, Cilas C (2003) Quality of different Honduran coffees in relation to several environments. J Food Sci 68(7):2356–2361

    Article  CAS  Google Scholar 

  33. Montavon P, Mauron AF, Duruz E (2003) Changes in green coffee protein profiles during roasting. J Agric Food Chem 51:2335–2343

    Article  CAS  PubMed  Google Scholar 

  34. Oberthür T, Läderach T, Posada P, Fisher H, Samper MJ, Julia Illera LF, Collet J, Moreno L, Alarcón RL, Villegas A, Usma Perez HP, Jarvis A (2011) Regional relationships between inherent coffee quality and growing environment for denomination of origin labels in Nariño and Cauca, Colombia. Food Policy 36:783–794

    Article  Google Scholar 

  35. Barbosa JN, Borém FM, Cirillo MA, Malta MR, Alvarenga AA, Alve HMR (2012) Coffee quality and its interactions with environmental factors in Minas Gerais. Braz J Agric Sci 4(5). https://doi.org/10.5539/jas.v4n5p181

  36. Ferreira WPM, Queiroz VDM, Silvac SA, Tomaz RS, Corrêa PC (2016) Effects of the orientation of the mountainside, altitude and varieties on the quality of the coffee beverage from the “Matas de Minas” Region, Brazilian Southeast. Am J Plant Sci 7:1291–1303. https://doi.org/10.4236/ajps.2016.78124

    Article  Google Scholar 

  37. Silva SA (2014) Characterization and delimitation of the terroir coffee in plantations in the municipal district of Araponga, Minas Gerais, Brazil. Rev Ciênc Agron 45:18–26

    Article  Google Scholar 

  38. Bertrand B, Vaast P, Alpizar E, Etienne H, Davrieux P, Pierre CP (2006) Comparison of bean biochemical composition and beverage quality of Arabica hybrids involving Sudanese-Ethiopian origins with traditional varieties at various elevations in Central America. Tree Physiol 26:1239–1124

    Article  CAS  PubMed  Google Scholar 

  39. Silva SA, Queiroz DM, Ferreira WPM, Corrêa PC, Rufino JLS (2015) Mapping the potential beverage quality of coffee produced in the Zona da Mata, Minas Gerais, Brazil. J Sci Food Agric. https://doi.org/10.1002/jsfa.7485

    Article  CAS  Google Scholar 

  40. Silva SA, Queiroz DM, Pinto FAC, Santos NT (2014) Characterization and delimitation of coffee terroirs in plantations in the municipal district of Araponga, Minas Gerais. Rev Ciênc Agron 45:18–26

    Article  Google Scholar 

  41. Castro-Tanzi S, Dietsch T, Urena N, Vindas L, Chandler M (2012) Analysis of management and site factors to improve the sustainability of smallholder coffee production in Tarrazú, Costa Rica. Agric Ecosyst Environ 155:172–181

    Article  Google Scholar 

  42. Taveira JHDS (2014) Metabolite profile and sensory quality of Arabica genotypes grown in different altitudes and processed by different post harvest methods. UFLA, Jose Henrique da Silva Taveira-Larvas, 71 p

    Google Scholar 

  43. Iwasa K, Setoyama D, Shimizu H, Fujimura Y, Miura D, Wariish H, Nagai C, Nakahara K (2015) Identification of 3-methylbutanol glycosides in green Coffea arabica beans as causative determinants for the quality of coffee flavors. J Food Chem 63(14):3742–3751

    Article  CAS  Google Scholar 

  44. Akitomi H, Tahara Y, Yasuura M, Kobayashi Y, Ikezaki H, Toko K (2013) Quantification of tastes of amino acids using taste sensors. Sensors Actuators B Chem 179(31):276–281

    Article  CAS  Google Scholar 

  45. Guyot B, Gueule D, Manez JC, Perriot JJ, Giron J, Villain L (1996) Influence de l’altitude et de l’ombrage des cafés Arabica. Plant Rech Dévelop 3:272–280

    Google Scholar 

  46. Daviron B, Ponte S (2005) The coffee paradox: global markets, commodity trade, and the elusive promise of development. Zed Books, London

    Google Scholar 

  47. Luz MPS (2014) Estudo da Relação de Fatores Climáticos com a Qualidade do Café na Mantiqueira de Minas. UFLA, Lavras

    Google Scholar 

  48. DaMatta FM, Ramalho JDC (2006) Impacts of drought and temperature stress on coffee physiology and production: a review. Braz J Plant Physiol 18:55–81

    Article  CAS  Google Scholar 

  49. Allinne C, Savary S, Avelino J (2016) Delicate balance between pest and disease injuries yield performance, and other ecosystem services in the complex coffee-based systems of Costa Rica. Agric Ecosyst Environ 222:1–12

    Article  Google Scholar 

  50. Cerda R (2016) Effects of shade, altitude and management on multiple ecosystem services in coffee agroecosystems. Eur J Agron. https://doi.org/10.1016/j.eja.2016.09.019

    Article  Google Scholar 

  51. Habte G, Hwang IM, Kim JS, Hong J, Hong YS, Choi JY, Nho EN, Jamila N, Khan N, Kim KS (2016) Elemental profiling and geographical differentiation of Ethiopian coffee samples through inductively coupled plasma-optical emission spectroscopy (ICP-OES), ICP-mass spectrometry (ICP-MS) and direct mercury analyzer (DMA). Food Chem 212:512–520

    Article  CAS  PubMed  Google Scholar 

  52. Oliveira M, Ramos S, Delerue-Matos C, Morais S (2015) Espresso beverages of pure origin coffee: mineral characterization, contribution for mineral intake and geographical discrimination. Food Chem 177:330–338

    Article  CAS  PubMed  Google Scholar 

  53. Rodrigues C, Brunner M, Steiman S, Bowen GJ, Nogueira JMF, Gautz L, Máguas C (2011) Isotopes as tracers of the Hawaiian coffee-producing regions. J Agric Food Chem 59(18):10239–10246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Grembecka M, Malinowska E, Szefer P (2007) Differentiation of market coffee and its infusions in view of their mineral composition. Sci Total Environ 383(1):59–69

    Article  CAS  PubMed  Google Scholar 

  55. Zaidi JH, Fatima I, Arif M, Qureshi IH (2006) Determination of trace elements in coffee beans and instant coffee of various origins by INAA. J Radioanal Nucl Chem 267(1):109–112

    Article  CAS  Google Scholar 

  56. dos Santos ÉJ, de Oliveira E (2001) Determination of mineral nutrients and toxic elements in Brazilian soluble coffee by ICP-AES. J Food Compos Anal 14(5):523–531

    Article  CAS  Google Scholar 

  57. Cannell MGR (1985) Physiology of the coffee crop. In: Clifford MN, Wilson K (eds) Coffee: botany, biochemistry and production of beans and beverage. Croom Helm, London, pp 108–134

    Chapter  Google Scholar 

  58. Rueda X, Thomas NE, Lambin EF (2013) Eco-certification and coffee cultivation enhance tree cover and forest connectivity in the Colombian coffee landscapes. Reg Environ Chang. https://doi.org/10.1007/s10113-014-0607-

  59. Leroy T, Ribeyre F, Bertrand B, Charmetant P, Dufour M, Montagnon C, Marraccini P, Pot D (2006) Genetics of coffee quality. Braz J Plant Physiol 18(1):229–242

    Article  CAS  Google Scholar 

  60. Wintgens JN (2001) Coffee: growing, processing, sustainable production. WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

    Google Scholar 

  61. Musebe RO, Njuki J, Mdemu S, Lukwago G, Shibru A, Saiba T (2009) Coffee wilt disease. In: Flood J (ed) Coffee wilt disease. CABI, Wallingford, pp 83–98

    Google Scholar 

  62. Steen I, Waehrens SS, Petersen MA, Münchow M, Bredie WL (2017) Influence of serving temperature on flavour perception and release of Bourbon Caturra coffee. Food Chem 219:61–68. https://doi.org/10.1016/j.foodchem.2016.09.113

    Article  CAS  PubMed  Google Scholar 

  63. Smale M, Bellon M, Gömez JAA (2001) Maize diversity, variety attributes and farmers’ choices in Southeastern Guanajuato, Mexico. Econ Dev Cult Chang 50(1):201–225

    Article  Google Scholar 

  64. Frankham R, Briscoe DA, Ballou JD (2002) Introduction to conservation genetics, 4th edn. Cambridge University Press, New York

    Book  Google Scholar 

  65. Mishra MK, Slater A (2012) Recent advances in the genetic transformation of coffee. Biotechnol Res Int. Article ID 580857, 17 p. https://doi.org/10.1155/2012/580857

    Article  Google Scholar 

  66. Filho OG, Silvarolla MB, Eskes AB (1999) Expression and mode of inheritance of resistance in coffee to leaf miner Perileucoptera coffeella. Euphytica 105(1):7–15

    Article  Google Scholar 

  67. Kitzberger CSG, Scholz MBS, Pereira LFP, Benassi MT (2013) Chemical composition of traditional and modern Arabica coffee cultivars. Pesq Agropec Brasília 48(11):1498–1506. https://doi.org/10.1590/S0100-204X2013001100011

    Article  Google Scholar 

  68. Raghuramulu Y, Thimmaraju KR (1998) Early observations on graft compatibility between commercial commercial Arabica coffee cultivars and desirable rootstocks. Plant Rech Dévelop 5:41–46

    Google Scholar 

  69. Melo M, Carvalho A, Monaco LC (1976) Contribution of the rootstock to the caffeine content of coffee beans. Bragantia 635:55–61

    Article  Google Scholar 

  70. Bertrand B, Etienne E, Eskes A (2001) Growth, production, and bean quality of Coffea arabica as affected by interspecific grafting: consequences for rootstock breeding. Hortscience 36(2):269–273

    Article  Google Scholar 

  71. Fassio LO, Malta MR, Carvalho GR, Liska GR, de Lima PM, Pimenta CJ (2016) Sensory description of cultivars (Coffea arabica L.) resistant to rust and its correlation with caffeine, trigonelline, and chlorogenic acid compounds. Beverages 2(1). https://doi.org/10.3390/beverages2010001

    Article  CAS  Google Scholar 

  72. Engelmann F, Dulloo ME, Astorga C, Dussert S, Anthony F (2007) Complementary strategies for ex situ conservation of coffee (Coffea arabica L.) genetic resources. A case study in CATIE, Costa Rica. Topical reviews in agricultural biodiversity. Bioversity International, Rome, x+63 pp

    Google Scholar 

  73. FAO (Food and Agriculture Organization of the United Nations) (2008) State of the world’s plant genetic resources for food and agriculture. FAO, Rome. 510 p

    Google Scholar 

  74. Dessalegn Y, Labuschagne MT, Osthoff G, Herselman L (2008) Genetic diversity and correlation of bean caffeine content with cup quality and green bean physical characteristics in coffee (Coffea arabica L.). J Sci Food Agric 88(10):1726–1730. https://doi.org/10.1002/jsfa.3271

    Article  CAS  Google Scholar 

  75. Ky CL, Barre P, Noirot M (2013) Genetic investigations on the caffeine and chlorogenic acid relationship in an interspecific cross between Coffea liberica dewevrei and C. pseudozanguebariae. Tree Genet Genomes 9:1043–1049. https://doi.org/10.1007/s11295-013-0616-x

    Article  Google Scholar 

  76. Campa C, Doulbeau S, Dussert S, Hamon S, Noirot M (2005) Qualitative relationship between caffeine and chlorogenic acid contents among wild Coffea species. Food Chem 93:135–139

    Article  CAS  Google Scholar 

  77. Montagnon C (2000) Optimisation des gains genetiques dans le schema de selection rkurrente reciproque de Cofea canephora Pierre. PhD thesis, Ecole Nationale Superieure Agronomique de Montpellier, France

    Google Scholar 

  78. Leroy T, De Bellis F, Legnate H, Kananura E, Gonzales G, Pereira LF, Andrade AC, Charmetant P, Montagnon C, Cubry P, Marraccini P, Pot D, de Kochko A (2011) Improving the quality of African robustas: QTLs for yield- and quality-related traits in Coffea canephora. Tree Genet Genomes 7:781–798. https://doi.org/10.1007/s11295-011-0374-6

    Article  Google Scholar 

  79. Sera T (2001) Coffee genetic breeding at IAPAR. Crop Breed Appl Biotechnol 1(2):179–199

    Article  Google Scholar 

  80. Läderach P, Oberthür T, Cook S, Iza ME, Pohlan JA, Fisher D, Lechug RR (2011) Systematic agronomic farm management for improved coffee quality. Field Crop Res 120:321–329

    Article  Google Scholar 

  81. Pereira LF, Kobayashi AK, Vieira LG (1999) Desenvolvimento de plantas modificadas geneticamente com vistas a uniformidade de maturação de frutos de café. In: Proceedings of international seminar on biotechnology in the coffee agroindustry, 3rd, Londrina, 1999. IAPAR, UFPR and IRD, Londrina, pp 37–41

    Google Scholar 

  82. Eskes AB (1991) Breeding for durable resistance of Arabica coffee to coffee rust (Hemileia vastatrix). Final report on FAO Consultancy in Indonesia. CIRAD, Montpellier

    Google Scholar 

  83. Carvalho A, Fazuoli LC (1993) Cafe. In: Furlani AMC, Viegas GP (eds) Melhoramento de Plantas no Instituto Agron6mico, vol 1. Instituto Agronomico, Campinas, pp 29–76

    Google Scholar 

  84. Sreenivasan MS (2003) Breeding coffee for leaf rust resistance in India. In: Kushalappa AC, Eskes AB (eds) Coffee rust: epidemiology, resistance and management. CRC Press, Boca Raton, pp 316–323

    Google Scholar 

  85. Berthouly M, Dufour M, Alvard D, Carasco C, Alemanno L, Teisson C (1995) Coffee micropropagation in a liquid medium using the temporary immersion technique. In: 16th International scientific colloquium on coffee, ASIC, Pans, pp 514–519

    Google Scholar 

  86. Carvalho A (1993) Historico do desenvolvimento do cultivo do cafe no Brazil. Docurnentos IAC 37. Instituto Agronomico, Campinas

    Google Scholar 

  87. Moreno RG, Castillo J (1984) La variedad Colombia. Cenicafe, Chinchina, Caldas, Colombia. Bol Tecn 9. CENICAFE, Colombia

    Google Scholar 

  88. Van Der Vossen HAM (1985) Coffee selection and breeding. In: Clifford MN, Willson KC (eds) Coffee, botany, biochemistry and production of beans and beverage. Croom Helm, London, 1996, 36, 18–31, 223–235, 48–96

    Google Scholar 

  89. Boot W (2006) Variety is the spice of coffee; Geisha and other varieties, pp 1–4, May/June issue of Roast

    Google Scholar 

  90. Wale E (2012) Addressing the information problem in agriculture via agrobiodiversity: streamlining the issues, challenges and policy questions. Afr J Agric Res 7(30):4187–4197. https://doi.org/10.5897/AJAR11.013

    Article  Google Scholar 

  91. Bertrand B, Etienne H, Lashermes P, Guyot B, Davrieux F (2005) Can near infrared reflectance of green coffee be used to detect introgression in Coffee arabica cultivars. J Sci Food Agric 85:955–962

    Article  CAS  Google Scholar 

  92. Kathurima CW, Kenji GM, Muhoho SM, Boulanger R, Gichimu BM, Gichuru EK (2012) Genetic diversity among commercial coffee varieties, advanced selections and museum collections in Kenya using molecular markers. Int J Biodivers Conserv 4(2):39–46. https://doi.org/10.5897/IJBC11.231

    Article  Google Scholar 

  93. Van der Vossen HAM (2001) Agronomy I: coffee breeding practices. In: Clarke RJ, Vitzthum OG (eds) Coffee: recent developments. Blackwell Science, Oxford, UK, pp 184–201

    Chapter  Google Scholar 

  94. Netsere A (2015) Recommendation on pre-sowing Arabica coffee seed management in Ethiopia. J Biol Agric Healthcare 5(9):99–103

    Google Scholar 

  95. Rosa SDVF, Carvalho AM, McDonald MB, Von Pinho ERV, Silva AP, Veiga AD (2011) The effect of storage conditions on coffee seed and seedling quality. Seed Sci Technol 39:151–164

    Article  Google Scholar 

  96. Rosa SDF, McDonald M (2007) Germination and seedling growth of Coffea arabica L. seeds. Conference/CISTR (Consortium for International Seed Technology Training)

    Google Scholar 

  97. Guimarães GC, Rosa SDVF, Coelho LFS, Veiga AD, Clemente ACS (2013) Minimum period to assess the potential of germination of coffee seeds. J Seed Sci 35(3):347–352

    Article  Google Scholar 

  98. Taye K, Alemseged Y (2007) Emergence and growth of Arabica coffee seedlings as influenced by some pre-sowing seed treatments. In: International conference on coffee science, 21st, Montpellier, 11th – 15th September 2007. ASIC, France, pp 1188–1195

    Google Scholar 

  99. Yabuta G, Koizumi Y, Namiki K, Hida M, Nameki M (2001) Structure of green pigment formed by the reaction of caffeic acid esters (or chlorogenic acid) with a primary amino compound. Biosci Biotechnol Biochem 65:2121–2130

    Article  CAS  PubMed  Google Scholar 

  100. Selmar D, Bytof G, Knopp ES (2008) The storage of green coffee (Coffea arabica): decrease of viability and changes of potential aroma precursors. Ann Bot 101:31–38. https://doi.org/10.1093/aob/mcm277

    Article  CAS  PubMed  Google Scholar 

  101. Pammenter NW, Berjak PA (1999) Review of recalcitrant seed physiology in relation to desiccation tolerance mechanisms. Seed Sci Res 9:13–37

    Article  Google Scholar 

  102. Huang Y, Lan QY, Hua Y, Luo L, Wang XF (2014) Desiccation and storage studies on three cultivars of Arabica coffee. Seed Sci Technol 42:60–67. https://doi.org/10.15258/sst.2014.42.1.06

    Article  Google Scholar 

  103. Santos GC, von Pinho EVR, Rosa SDVF (2013) Gene expression of coffee seed oxidation and germination processes during drying. Genet Mol Res 12(4):6968–6982. https://doi.org/10.4238/2013.December.19.16

    Article  CAS  PubMed  Google Scholar 

  104. Saath R, Borém FM, Alves E, Taveira JHS (2010) Scanning electron microscopy of the endosperm of coffee (Coffea arabica L.) during the drying process. Cienc Agrotec 34:196–203

    Article  Google Scholar 

  105. Walters WF, McCready S, Brandt WF, Lindsey G, Hoekstra FA (2001) Isolation and characterization of a D-7 LEA protein from pollen that stabilizes glasses in vitro. Biochim Biophys Acta 1544:196

    Article  Google Scholar 

  106. Leprince O, Harren FJM, Buitink J, Alberda M, Hoekstra FA (2000) Metabolic dysfunction and unabated respiration of germinating radicles. Plant Physiol 112:597–608

    Article  Google Scholar 

  107. Vieira AR, Oliveira JA, Guimarães RM, Pereira CE (2007) Armazenamento de sementes de cafeeiro: ambientes e métodos de secagem. Rev Bras Sementes 29:76–82

    Article  Google Scholar 

  108. Dussert S, Davey MW, Laffargue A, Doulbeau S, Swennen R, Etienne H (2006) Oxidative stress, phospholipids loss and lipid hydrolysis during drying and storage of intermediate seeds. Physiol Plant 127:192–204

    Article  CAS  Google Scholar 

  109. Eira MTS, Walters C, Caldas LS, Fazuoli LC (1999) Tolerance of Coffea spp. seeds to desiccation and low temperature. Rev Braz Fisiol Veg 11:97–105

    Google Scholar 

  110. Ellis RH, Hong TD, Roberts EH (1991) An intermediate category of seed storage behavior? II. Effects of provenance, immaturity and imbibition on desiccation tolerance in coffee. J Exp Bot 42:653–657

    Article  Google Scholar 

  111. Leubner-Metzge RG (2005) Glucanase gene expression in low-hydrated seeds as a mechanism for dormancy release during tobacco after-ripening. Plant J 41:133–145

    Article  CAS  Google Scholar 

  112. Abreu LAS, Veiga AD, Pinho EVRV, Monteiro FF, Veiga SD, Rosa F (2014) Behavior of coffee seeds to desiccation tolerance and storage. J Seed Sci 36(4):399–406. https://doi.org/10.1590/2317-1545v36n41008

    Article  Google Scholar 

  113. Soeda Y, Konings MC, Vorst O, van Houwelingen AM (2005) Gene expression programs during Brassica oleracea seed maturation, osmopriming, and germination are indicators of progression of the germination process and the stress tolerance level. Plant Physiol 137:354–368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Kramer D, Breitenstein B, Kleinwächter M, Selmar D (2010) Stress metabolism in green coffee beans (Coffea arabica L.): expression of dehydrins and accumulation of GABA during drying. Plant Cell Physiol 51:546–553

    Article  CAS  PubMed  Google Scholar 

  115. Nascimento RM, Ribeiro BG, Nery MC, Fernandes DR, Pinho ERV, Pires RMO, Fialho CMT (2016) Viability and enzyme activity of coffee seeds subjected to LERCAFE test. 11(15):1282–1288. https://doi.org/10.5897/AJAR2015.10473

    Article  Google Scholar 

  116. Selmar D, Bytof G, Knopp SE, Breitenstei B (2006) Germination of coffee seeds and its significance for coffee quality. Plant Biol 8(17):260–264

    Article  CAS  PubMed  Google Scholar 

  117. Selmar D, Bytof G, Knopp SE (2008) The storage of green coffee (Coffea arabica): decrease of viability and changes of potential aroma precursors. Ann Bot 101(1):31–38

    Article  CAS  PubMed  Google Scholar 

  118. Selmar D, Bytof G, Knopp SE, Bradbury A, Wilkens J, Becker R (2005) Biochemical insights into coffee processing: quality and nature of green coffees are interconnected with an active seed metabolism. In: Proceedings of the 20ème Colloque Scientifique International sur le Café. ASIC, Paris

    Google Scholar 

  119. Silva MC, Várzea V, Guerra-Guimarães L, Azinheira HG, Fernandez D, Petitot AS, Bertrand B, Lashermes P, Nicole M (2006) Coffee resistance to the main diseases: leaf rust and coffee berry disease. Braz J Plant Physiol 18:119–147

    Article  CAS  Google Scholar 

  120. Vaughan MJ, Mitchell T, Gardener BMM (2015) What is inside that seed we brew? A new approach to mining the coffee microbiome. Appl Environ Microbiol. https://doi.org/10.1128/AEM.01933-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Silva CF (2014) Microbial activity during coffee fermentation. In: Cocoa and coffee fermentations. CRC Press, Boca Raton, FL pp 397–382, 430

    Google Scholar 

  122. Dussert S, Engelmann F (2006) New determinants for tolerance of coffee (Coffea arabica L.) seeds to liquid nitrogen exposure. CryoLetters 27(3):169–178

    CAS  PubMed  Google Scholar 

  123. Dussert S, Engelmann F, Louarn J, Noirot M (2004) Inheritance of seed desiccation sensitivity in a coffee interspecific cross: evidence for polygenic determinism. J Exp Bot 55(402):1541–1547. https://doi.org/10.1093/jxb/erh174

    Article  CAS  PubMed  Google Scholar 

  124. Vasquez N, Salazar K, Anthony A, Chabrillange N, Engelmann F, Dussert S (2005) Seed Sci Technol 33:293–301

    Article  Google Scholar 

  125. Lopes JS, Trigo MFIQ, Lima JSS, Silva SS (2014) Spatial distribution of physiological quality of Arábica coffee seeds to cultivate Catuaí. IDESIA (Chile) Marzo-Mayo 32(2):65–74

    Google Scholar 

  126. Silva SA, Lima JSS (2012) Avaliacao da variabilidade do estado nutricional e produtividade de cafe por meio da analise de components principais e geoestatistica. Revista Ceres 59(2):271–277

    Article  CAS  Google Scholar 

  127. Silva SA, Lima JSS, Souza GS (2010) Estudo da fertilidade de um Latossolo Vermelho- Amarelo humico sob cultivo de cafe arabica por meio de geoestatistica. Revista Ceres 57(4):560–567

    Article  Google Scholar 

  128. Braun H, Zonta JH, Lima JSS, Rei EF, Silva DP (2009) Desenvolvimento inicial do cafe conillon (Coffea canephora Pierre) em solos de diferentes texturas com mudas produzidas em diferentes substratos. Idesia 27(3):35–40

    Article  Google Scholar 

  129. Souza ZM, Marques Junior J, Pereira GT, Moreira LF (2004) Variabilidade espacial do pH, Ca, Mg e V% do solo em diferentes formas do relevo sob cultivo de cana-de-acucar. Ciência Rural 34(6):1763–1771

    Article  Google Scholar 

  130. Buitink J, Hoekstra F, Leprince O (2002) Biochemistry and biophysics of tolerance systems. In: Black M, Pritchard HW (eds) Desiccation and survival in plants: drying without dying. CABI Publishing, Oxon, pp 293–318

    Chapter  Google Scholar 

  131. Sivetz M, Foote HE (1963) Coffee processing technology. Fruit – green, roast, and soluble coffee, vol 1. Avi Publishing, Westport

    Google Scholar 

  132. Pochet P (1990) The quality of coffee from plantlet to cup. Administration Generale de la Cooperation au Developpement

    Google Scholar 

  133. Mitchell HW (1988) Cultivation and harvesting of Arabica coffee tree. In: Clarkeand RJ, Macre R (eds) Coffee. Agronomy, vol 4. Elsevier Applied Science, London/New York, pp 43–90

    Google Scholar 

  134. Ali M (1999) Text book of coffee action and management. A teaching material, Jimma University, College of Agriculture and veterinary Medicine, pp 80–83

    Google Scholar 

  135. Tumwebaze SB, Byakagaba P (2016) Soil organic carbon stocks under coffee agroforestry systems and coffee monoculture in Uganda. Agric Ecosyst Environ 216:188–193

    Article  Google Scholar 

  136. Hue NV (2004) Responses of coffee seedlings to calcium and zinc amendments to two Hawaiian acid soils. J Plant Nutr 27:261–274

    Article  CAS  Google Scholar 

  137. Chadwick OA, Chorover J (2001) The chemistry of pedogenic thresholds. Geoderma 100:321–353

    Article  CAS  Google Scholar 

  138. Matsuyama N, Saigusa M, Sakaiya E, Tamakawa K, Oyamada Z, Kudo K (2005) Acidification and soil productivity of allophanic Andosols affected by heavy application of fertilizers. Soil Sci Plant Nutr 51:117–123

    Article  Google Scholar 

  139. Soto-Pinto L, Villalvazo-Lopez V, Jimenez-Ferrer G, Ramirez-Marcial N, Montoya G, Sinclair FL (2007) The role of local knowledge in determining shade composition of multistrata coffee systems in Chiapas, Mexico. Biodivers. Conserv. 16, 419–436

    Google Scholar 

  140. Bruno IP, Unkovich MJ, Bortolotto RP, Bacchi OOS, Dourado-Neto D & Reichardt K (2011) Fertilizer nitrogen in fertigated coffee crop: absorption changes in plant compartments over time. Field Crops Research, 124:369–377

    Google Scholar 

  141. Dessalegn Y (2005) Assessment of cup quality, morphological, biochemical and molecular diversity of C. arabica L. genotypes of Ethiopia. PhD dissertation presented to University Free State, p 197

    Google Scholar 

  142. Paulos D (1986) The effect of inorganic fertilization on the yield of Arabica coffee in some areas of Ethiopia. In: Beyene D (ed) Soil science research in Ethiopia, a review, proceedings of the first soil science research review work shop, 11–14 Feb 1986. Institute of agricultural Research (IAR), Addis Ababa, pp 49–59

    Google Scholar 

  143. Zake J, Pietsch Stephan A, Friedel Jürgen K, Sophie ZB (2015) Can agroforestry improve soil fertility and carbon storage in smallholder banana farming systems? J Plant Nutr Soil Sci 178:237–249

    Article  CAS  Google Scholar 

  144. Tully Katherine L, Lawrence D, Wood SA (2013) Organically managed coffee agroforests have larger soil phosphorus but smaller soil nitrogen pools than conventionally managed agroforests. Biogeochemistry 115:385–397. Springer, Unites States

    Article  CAS  Google Scholar 

  145. Xavier FAS, Almeida EF, Cardoso IM, de Sá Mendonca E (2011) Soil phosphorus distribution in sequentially extracted fractions in tropical coffee-agroforestryecosystems in the Atlantic Forest biome, Southeastern Brazil. Nutr Cycl Agroecosyst 89:31–44. Springer, Brazil

    Google Scholar 

  146. Tesfu K, Zebene M (2004) Effects of phosphorus fertilizer placement on the growth of Arabica coffee seedlings. Paper presented on the 20th International conference on coffee science, ASIC, Bangalore, 11–15 Oct 2004, pp 1016–1022

    Google Scholar 

  147. Núñez PA, Pimentel A, Almonte I, Sotomayor-Ramírez N, Martínez D, Pérez A, Céspedes CM (2011) Soil fertility evaluation of coffee (coffea spp.) production systems and management recommendations for the Barahona Province, Dominican Republic. J Soil Sci Plant Nutr 11(1):127–140

    Article  Google Scholar 

  148. Verbist B, Poesen J, Van Noordwijk M, Widianto Suprayogo D, Agus F, Deckers J (2010) Factors affecting soil loss at plot scale and sediment yield at catchment scale in a tropical volcanic agroforestry landscape. Catena 80:34–46

    Article  Google Scholar 

  149. Brunner AC, Park SJ, Ruecker GR, Dikau R, Vlek PLG (2004) Catenary soil development influencing erosion susceptibility along a hillslope in Uganda. Catena 58:1–22

    Article  Google Scholar 

  150. Annabi M, Le Bissonnais Y, Le Villio-Poitrenaud M, Houot S (2011) Improvement of soil aggregate stability by repeated applications of organic amendments to a cultivated silty loam soil. Agric Ecosyst Environ 144:382–389

    Article  Google Scholar 

  151. Jordán A, Zavala LM, Gil J (2010) Effects of mulching on soil physical properties and runoff under semi-arid conditions in southern Spain. Catena 81:77–85

    Article  Google Scholar 

  152. Mulumba LN, Lal R (2008) Mulching effects on selected soil physical properties. Soil Tillage Res 98:106–111

    Article  Google Scholar 

  153. Smets T, Poesen J, Knapen A (2008) Spatial scale effects on the effectiveness of organic mulches in reducing soil erosion by water. Earth-Sci Rev 89:1–12

    Article  Google Scholar 

  154. Nzeyimana I, Hartemink AE, Ritsema C, Stroosnijder L, Lwanga EH, Geissen V (2017) Mulching as a strategy to improve soil properties and reduce soil erodibility in coffee farming systems of Rwanda. Catena 149:43–51

    Article  CAS  Google Scholar 

  155. Romero-Alvarado Y, Soto-Pinto L, García-Barrios L, Barrera-Gaytán JF (2002) Coffee yields and soil nutrients under the shades of Inga sp. vs. multiple species in Chiapas, Mexico. Agrofor Syst 54:215–224, 2002

    Article  Google Scholar 

  156. Jiménez MA, Fernández-Ondoño E, Ripoll MA, Castro- Rodriguez J, Huntsinger L, Navarro FB (2013) Stones and organic mulches improve the Quercus Ilex L. Afforestation success under Mediterranean climatic conditions. Land Degrad Dev. https://doi.org/10.1002/ldr.2250

    Article  Google Scholar 

  157. Moreno-Ramón H, Quizembe SJ, Ibáñez-Asensio S (2014) Coffee husk mulch on soil erosion and runoff: experiences under rainfall simulation experiment. Solid Earth 5:851–862. https://doi.org/10.5194/se-5-851-2014

    Article  Google Scholar 

  158. Villatoro-Sánchez M, Bissonnais YE, Moussa R, Rapidel B (2015) Temporal dynamics of runoff and soil loss on a plot scale under a coffee plantation on steep soil (Ultisol), Costa Rica. J Hydrol 523:409–426

    Article  Google Scholar 

  159. Carvalho JM, Paiva EL, Vieira LM (2016) “Quality attributes of a high specification product: Evidences from the speciality coffee business”, British Food Journal, Vol. 118 Iss: 1, pp.132–149

    Google Scholar 

  160. López-Rodríguez G, Sotomayor-Ramírez D, Amador JA, Schröder EC (2015) Contribution of nitrogen from litter and soil mineralization to shade and sun coffee (Coffea Arabica L.) agroecosystems. Trop Ecol 56(2):155–167

    Google Scholar 

  161. Tully Katherine L, Lawrence D, Scanlon TM (2012) More trees less loss: Nitrogen leaching losses decrease with increasing biomass in coffee agroforests. Agric Ecosyst Environ 161:137–144. Elsevier: United States

    Article  CAS  Google Scholar 

  162. Praxedes SC, DaMatta FM, Loureiro ME, Ferrão MAG, Cordeiro AT (2006) Effects of long-term soil drought on photosynthesis and carbohydrate metabolism in mature Robusta coffee (Coffea canephora Pierre var. kouillou) leaves. Environ Exp Bot 56:263–273

    Article  CAS  Google Scholar 

  163. Soto-Pinto L (2000) Estudio agroecológico del sistema de café son sombra en comunidades indígenas de Chiapas, México. PhD thesis, Universidad Nacional Autónoma de México, México, 171 p

    Google Scholar 

  164. Leigh J, Hodge A, Fitter A (2009) Arbuscular mycorrhizal fungi can transfer substantial amounts of nitrogen to their host plant from organic material. New Phytol 181:199–207

    Article  CAS  PubMed  Google Scholar 

  165. Smith SE, Read DJ (2008) Mycorrhizal symbiosis. Academic, London. Sylvain PG (1955) Some observations on Coffea arabica (L.) in Ethiopia. Turrialba 5:37–53

    Google Scholar 

  166. Den Herder G, Van Isterdael G, Beeckman T, De Smet I (2010) The roots of a new green revolution. Trends Plant Sci 15:600–607

    Article  CAS  Google Scholar 

  167. Veresoglou SD, Rillig MC (2011) Suppression of fungal and nematode plant pathogens through arbuscular mycorrhizal fungi. Biol Lett 8:214e217

    Google Scholar 

  168. Raviv M (2010) The use of mycorrhiza in organically-grown crops under semi arid conditions: a review of benefits, constraints and future challenges. Symbiosis 52:65–74

    Article  Google Scholar 

  169. Jansa J, Erb A, Oberholzer HR, Smilauer P, Egli S (2014) Soil and geography are more important determinants of indigenous arbuscular mycorrhizal communities than management practices in Swiss agricultural soils. Mol Ecol 23:2118e2135

    Article  CAS  Google Scholar 

  170. De Beenhouwer M, Van Geel M, Ceulemans T, Muleta D, Lievens B, Honnay O (2015) Changing soil characteristics alter the arbuscular mycorrhizal fungi communities of Arabica coffee (Coffea arabica) in Ethiopia across a management intensity gradient. Soil Biol Biochem 91:133–139

    Article  CAS  Google Scholar 

  171. Johnson NC, Angelard C, Sanders IR, Kiers ET (2013) Predicting community and ecosystem outcomes of mycorrhizal responses to global change. Ecol Lett 16:140–153

    Article  PubMed  Google Scholar 

  172. Chemura A (2014) The growth response of coffee (Coffea arabica L.) plants to organic manure, inorganic fertilizers and integrated soil fertility management under different irrigation water supply levels. Int J Recycl Org Waste Agricult 3:59. https://doi.org/10.1007/s40093-014-0059-x

    Article  Google Scholar 

  173. Mazzafera P (2002) Degradation of caffeine by micro-organisms and potential use of decaffeinated coffee husk and pulp in animal feeding. Sci Agric 59(4):815–821

    Article  CAS  Google Scholar 

  174. Dzung NA, Dzung TT, Khanh VTP (2014) Evaluation of coffee husk compost for improving soil fertility and sustainable coffee production in rural Central Highland of Vietnam. Resour Environ 3(4):77–82. https://doi.org/10.5923/j.re.20130304.03

    Article  Google Scholar 

  175. Santos WPC, Hatje V, Lima LN, Trignano SV, Barros F, Castro JT, Korn MGA (2008) Evaluation of sample preparation (grinding and sieving) of bivalves, coffee and cowpea beans for multielement analysis. Microchem J 89:123–130

    Article  CAS  Google Scholar 

  176. Shemekite F, Brandón MG, Franke-Whittle IH, Praehauser B, Insam H, Assefa F (2014) Coffee husk composting: an investigation of the process using molecular and non-molecular tools. Waste Manag 34:642–652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Bunn C, Läderach P, Pérez-Jimenez JG, Montagnon C, Schilling T (2015) Multiclass classification of agro-ecological zones for Arabica coffee: an improved understanding of the impacts of climate change. PLoS ONE 10(10):e0140490. https://doi.org/10.1371/journal.pone.0140490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Masarirambi MT, Chingwara V, Shongwe VD (2009) The effect of irrigation on synchronization of coffee (Coffea arabica L.) flowering and berry ripening at Chipinge, Zimbabwe. Phys Chem Earth 34:786–789

    Article  Google Scholar 

  179. Jaramillo RA, Arcila-Pulgarín J (2009) Variabilidad climática en la zona cafeteria colombiana asociada al evento de La Niña y su efecto en la caficultura. Avances Técnicos Cenicafé n° 389, Colombia

    Google Scholar 

  180. Amarasinghe UA, Hoanh CT, D’haeze D, Hung TQ (2015) Toward sustainable coffee production in Vietnam: more coffee with less water. Agric Syst 136:96–105. https://doi.org/10.1016/j.agsy.2015.02.008

    Article  Google Scholar 

  181. Cortez JG (1997) Aptidão climática para qualidade da bebida nas principais regiões cafeeiras de Minas Gerais. Informe Agropecuário 18:27–31. https://doi.org/10.1590/S0100-204X2004000200013

    Article  Google Scholar 

  182. Barbosa JN, Borém FM, Cirillo MA, Malta MR, Alvarenga AA, Alves HMR (2012) Coffee quality and its interactions with environmental factors in Minas Gerais, Brazil. J Agric Sci 4(5). https://doi.org/10.5539/jas.v4n5p181

  183. Camargo AP, Santinato R, Cortez JG (1992) Aptidão climática para qualidade da bebida nas principais regiões cafeeiras de Arábica no Brasil. In: Anais do 18° Congresso Brasileiro de Pesquisas Cafeeiras, Araxá, pp 70–74

    Google Scholar 

  184. Rezende FC, Arantes KR, Oliveira SDR, de Faria MA (2010) Cafeeiro recepado e irrigado em diferentes épocas: produtividade e qualidade. Coffee Sci Lavras 5(3):229–237. set./dez. 2010

    Google Scholar 

  185. DaMatta FM, Ramalho JDC (2005) Impacts of drought and temperature stress on coffee physiology and production: a review. Braz J Plant Physiol 18(1):55–81, 2006

    Article  Google Scholar 

  186. DaMatta FM, Chaves ARM, Pinheiro HA, Ducatti C, Loureiro ME (2003) Drought tolerance of two field-grown clones of Coffea canephora. Plant Sci 164:111–117

    Article  CAS  Google Scholar 

  187. Oliveira EL, Faria MA, Reis RP, Silva MLO (2010) Manejo e viabilidade econômica da irrigação por gotejamento na cultura do cafeeiro acaiá considerando seis safras. Eng Agr 30(5):887–896

    Article  Google Scholar 

  188. Herpin U, Gloaguen TV, da Fonseca AF, Montes CLR, Mendonca FC, Piveli RP, Breulmann G, Forti MC, Melfi AJ (2007) Chemical effects on the soil–plant system in a secondary treated wastewater irrigated coffee plantation – a pilot field study in Brazil. Agric Water Manag 89:105–115. https://doi.org/10.1016/j.agwat.2007.01.001

    Article  Google Scholar 

  189. da Silva PA, da Silva AB, da Silva AC, de Sá Junior A, Mantovani JR, Putti FF (2015) The influence of several irrigation water depths in the growth and productivity of coffee shrubs in the Muzambinho Region, Southern Minas Gerais, Brazil. 10(39):3740–3747, 24. https://doi.org/10.5897/AJAR2015.9971

  190. Shimber GT, Ismail MR, Kausar H, Marziah M, Ramlan MF (2013) Plant water relations, crop yield and quality in coffee (Coffea arabica L.) as influenced by partial root zone drying and deficit irrigation. AJCS 7(9):1361–1368

    Google Scholar 

  191. Tesfaye SG, Ismail MR, Kausar H, Marziah M, Ramlan MF (2013) Plant water relations, crop yield and quality of Arabica coffee (Coffea arabica) as affected by supplemental deficit irrigation. Int J Agric Biol 15(4):665–672

    Google Scholar 

  192. Liu X, Li F, Zhang Y, Yang Q (2016) Effects of deficit irrigation on yield and nutritional quality of Arabica coffee (Coffea arabica) under different N rates in dry and hot region of southwest China. Agric Water Manag 172:1–8

    Article  Google Scholar 

  193. DaMatta FM, Loos RA, Silva EA, Loureiro ME, Ducatti C (2002) Effects of soil water deficit and nitrogen nutrition on water relations and photosynthesis of pot-grown Coffea canephora pierre. Trees 16(8):555–558

    Article  CAS  Google Scholar 

  194. Silva EA (2004) Influência de distintas condições edafoclimáticas e do manejo de irrigação no florescimento, produção e qualidade de bebida do café (Coffea arabica L.). PhD thesis, Universidade Estadual de Campinas, Campinas

    Google Scholar 

  195. Mazzafera P (1999) Chemical composition of defective coffee beans. Food Chem 64(4):547–554

    Article  CAS  Google Scholar 

  196. Ludwig E, Lipke U, Raczek U, Jager A (2000) Investigations of peptides and proteases in green coffee beans. Eur Food Res Technol 211(2):111–116

    Article  CAS  Google Scholar 

  197. Montavon P, Duruz E, Rumo G, Pratz G (2003) Evolution of green coffee protein profiles with maturation and relationship to coffee cup quality. J Agric Food Chem 51(8):2328–2334

    Article  CAS  PubMed  Google Scholar 

  198. Silveira HRDO, Santos MDO, Alves JD, de Souza KRD, Andrade CA, Alves RGM (2014) Growth effects of water excess on coffee seedlings (Coffea arabica L.). Maringá 36(2):211–218. https://doi.org/10.4025/actasciagron.v36i2.17557

    Article  Google Scholar 

  199. Flament I (2008) Coffee flavor chemistry. Wiley, Chichester, 2002

    Google Scholar 

  200. Toci AT, Farah A (2008) Volatile compounds as potential defective coffee seeds’ markers. Food Chem 108:1133–1141

    Article  CAS  PubMed  Google Scholar 

  201. Bertrand B, Boulanger R, Dussert S, Ribeyre F, Berthiot L, Descroix F, Joët T (2012) Climatic factors directly impact the volatile organic compound fingerprint in green Arabica coffee bean as well as coffee beverage quality. Food Chem 135:2575–2583. https://doi.org/10.1016/j.foodchem.2012.06.060

    Article  CAS  PubMed  Google Scholar 

  202. Joët T, Laffargue A, Descroix F, Doulbeau S, Bertrand B, de kochko D, Dussert S (2010) Influence of environmental factors, wet processing and their interactions on the biochemical composition of green Arabica coffee beans. Food Chem 118:693–701. https://doi.org/10.1016/j.foodchem.2009.05.048

    Article  CAS  Google Scholar 

  203. Abreu et al (2012)

    Google Scholar 

  204. Silva EA, Mazzafera P, Brunini B, Sakai E, Arruda FB, Mattoso LHC, Carvalho CRL, Pires RCM (2005) The influence of water management and environmental conditions on the chemical composition and beverage quality of coffee beans. Braz J Plant Physiol 17(2):229–238. https://doi.org/10.1590/S1677-04202005000200006

    Article  Google Scholar 

  205. United Nations Development (UNDP) (2005)

    Google Scholar 

  206. Intergovernmental Panel on Climate Change (IPCC). IPCC fourth assessment report. Climate change 2007: working group II: impacts, adaptation and vulnerability

    Google Scholar 

  207. Fischlin A, Midgley GF, Price J, Leemans R, Gopal B, Turley C, Rounsevell MDA, Dube OP, Tarazona J, Velichko AA (2007) Ecosystems, their properties, goods, and services. Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, M.L. Parry, O.F. Canziani, J.P. Palutikof, P.J. van der Linden and C.E. Hanson, Eds., Cambridge University Press, Cambridge, 211–272

    Google Scholar 

  208. Camargo MBP (2010) The impact of climatic variability and climate change on Arabic coffee crop in Brazil. Bragantia 69: 239–247

    Article  Google Scholar 

  209. Läderach P, Ramirez-Villegas J, Navarro-Racines C, Zelaya C, Martinez-Valle A, Jarvis A (2016) Climate change adaptation of coffee production in space and time. Clim Chang. https://doi.org/10.1007/s10584-016-1788-9

    Article  Google Scholar 

  210. Haggar J, Schepp P (2011) Coffee and climate change. Desk study: impacts of climate change in four pilot countries of the coffee and climate initiative Hamburg: coffee and climate

    Google Scholar 

  211. Davis AP, Gole TW, Baena S, Moat J (2012) The impact of climate change on indigenous Arabica coffee (Coffea arabica): predicting future trends and identifying priorities. PLoS ONE 7(11):e47981. https://doi.org/10.1371/journal.pone.0047981. PMID: 23144840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Schroth G, Läderach P, Blackburn Cuero DS et al. (2015) Reg Environ Change 15: 1473. https://doi.org/10.1007/s10113-014-0713-x

    Article  Google Scholar 

  213. Ovalle-Rivera O, Läderach P, Bunn C, Obersteiner M, Schroth G (2015) Projected shifts in Coffea arabica suitability among major global producing regions due to climate change. PLoS ONE 235, 10(4):e0124155. https://doi.org/10.1371/journal.pone.0124155

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  214. Agegnehu E, Thakur A, Mulualem T (2015) Potential impact of climate change on dynamics of coffee berry borer (Hypothenemus hampi Ferrari) in Ethiopia. Open Access Library J 2:1127. https://doi.org/10.4236/oalib.1101127

    Article  Google Scholar 

  215. Jaramillo J, Chabi-Olaye A, Kamonjo C, Jaramillo A (2009) Thermal tolerance of the coffee berry borer Hypothenemus hampei: predictions of climate change impact on a tropical insect pest. PLoS ONE 4(8):6487

    Article  CAS  Google Scholar 

  216. Mangina FL, Makundi RH, Maerere AP, Maro GP, Teri JM (2010) Temporal variations in the abundance of three important insect pests of coffee in Kilimanjaro region, Tanzania. In: 23rd International conference on coffee science, Bali 3–8 Oct 2010. ASIC, Paris

    Google Scholar 

  217. Jaramillo J, Muchugu E, Vega FE, Davis A, Borgemeister C (2011) Some like it hot: the influence and implications of climate change on coffee berry borer (Hypothenemus hampei) and coffee production in East Africa. PLoS ONE 6(9):e24528. https://doi.org/10.1371/journal.pone.0024528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Magrach A, Ghazoul J (2015) Climate and pest-driven geographic shifts in global coffee production: implications for forest cover, biodiversity and carbon storage. PLoS ONE 10(7):e0133071. https://doi.org/10.1371/journal.pone.0133071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. DaMatta M, Rena AB (2002) Ecofisiologia de cafezais sombreados e a pleno Sol. In: Zambolim L (ed) O Estado da Arte de Tecnologias na Produção de Café. Universidade Federal de Viçosa, Viçosa, pp 93–135

    Google Scholar 

  220. Cerda R, Allinnea C, Garyc C, Tixierb P, Harveye CA, Krolczykf L, Mathiotb C, Clémentg J, Aubertoti JN, Avelino J (2016) Effects of shade, altitude and management on multiple ecosystem services in coffee agroecosystems. Eur J Agron 82:308–319. https://doi.org/10.1016/j.eja.2016.09.019

    Article  Google Scholar 

  221. Soto-Pinto L, Pez VV, Ferrer GJ, Marcial NP, Montoya G, Sinclair FL (2007) The role of local knowledge in determining shade composition of multistrata coffee systems in Chiapas, Mexico. Biodivers Conserv, CRC Press, Boca Raton, FL 16:419–436. https://doi.org/10.1007/s10531-005-5436-3

    Article  Google Scholar 

  222. Vaast P, Bertrand B, Perriot JJ, Guyot B, Genard M (2006) Fruit thinning and shade improve bean characteristics and beverage quality of coffee (Coffea arabica L.) under optimal conditions. J Sci Food Agric 86:197–204. https://doi.org/10.1002/jsfa.2338

    Article  CAS  Google Scholar 

  223. Odeny D, Chemining’wa G, Shibairo S and Kathurima C (2015) Sensory Attributes of Coffee under Different Shade Regimes and Levels of Management Food Science and Quality Management 46 19–26 http://www.iiste.org/Journals/index.php/FSQM/article/view/27544

  224. Costa MJN, Zambolim L, Rodrigues FA (2006) Efeito de níveis de desbaste de frutos do cafeeiro na incidência da ferrugem, no teor de nutrientes, carboidratos e açúcares redutores. Fitopatol Bras 31:564–571

    Article  Google Scholar 

  225. Bote AD, Struik PC (2012) Effects of shade on growth, production and quality of coffee (Coffea arabica) in Ethiopia. J Hortic For 3(11):336–341

    Google Scholar 

  226. Geromel C, Ferreira LP, Davrieux F, Guyot B, Ribeyre F, Scholz MBS, Pereira LFP, Vaast P, Pot D, Leroy T, Filho AA, Vieira LGE, Mazzafera P, Marraccini P (2008) Effects of shade on the development and sugar metabolism of coffee (Coffea arabica L.) fruits. Plant Physiol Biochem 46:569–579. https://doi.org/10.1016/j.plaphy.2008.02.006

    Article  CAS  PubMed  Google Scholar 

  227. Silveira SR, Ruas PM, Ruas CF, Sera T, Carvalho VP, Coelho ASG (2003) Assessment of genetic variability within and among progenies and cultivars of coffee using RAPD markers. Genet Mol Biol 26:329–336

    Article  CAS  Google Scholar 

  228. DaMatta FM (2004) Ecophysiological constraints on the production of shaded and unshaded coffee: a review. Field Crop Res 86:99–114

    Article  Google Scholar 

  229. DaMatta FM (2004) Exploring drought tolerance in coffee: a physiological approach with some insights for plant breeding. Braz J Plant Physiol 16:1–6

    Article  Google Scholar 

  230. van Kanten R, Vaast P (2006) Transpiration of Arabica coffee and associated shade tree species in suboptimal, low-altitude conditions of Costa Rica. Agrofor Syst 67:187–202

    Article  Google Scholar 

  231. Jaramillo-Botero C, Silva Santos RH, Prieto Martinez CT, Cecon PR, Fardin MP (2010) Production and vegetative growth of coffee trees under fertilization and shade levels. Sci Agric (Piracicaba, Braz) 67(6):639–645

    Article  CAS  Google Scholar 

  232. Long NV, Ngoc NQ, Dung NN, Kristiansen P, Yunusa I, Fyfe C (2015) The effects of shade tree types on light variation and Robusta coffee production in Vietnam. Engineering 7:742–753. https://doi.org/10.4236/eng.2015.711065

    Article  Google Scholar 

  233. Beer J, Muschler R, Somarriba E, Kass D (1998) Shade management in coffee and cacao plantations – a review. Agrofor Syst 38:139–164

    Article  Google Scholar 

  234. Beer J (1987) Advantages, disadvantages and desirable characteristics of shade for coffee, cacao and tea. Agrofor Syst 5:3–13

    Article  Google Scholar 

  235. DaMatta FM, Ronchi CP, Maestri MM, Barros RS (2007) Ecophysiology of coffee growth and production. Braz J Plant Physiol 19(4):485–510

    Article  CAS  Google Scholar 

  236. López-Bravo DF, Virginio-Filho EDM, Avelino J (2012) Shade is conducive to coffee rust as compared to full sun exposure under standardized fruit load conditions. Crop Prot 38:21–29. https://doi.org/10.1016/j.cropro.2012.03.011

    Article  Google Scholar 

  237. Kellermann JL, Johnson MD, Stercho AM, Hackett SC (2008) Ecological and economic services provided by birds on Jamaican Blue Mountain Coffee Farms. Conserv Biol 22:1177e1185

    Article  Google Scholar 

  238. Armbrecht I, Gallego MC (2007) Testing ant predation on the coffee berry borer in shaded and sun coffee plantations in Colombia. Entomol Exp Appl 124:261–267

    Article  Google Scholar 

  239. Philpott SM, Armbrecht I (2006) Biodiversity in tropical agroforests and the ecological role of ants and ant diversity in predatory function. Ecol Entomol 31:369–377

    Article  Google Scholar 

  240. Mouen Bedimo JA, Njiayouom I, Bieysse D, Nkeng MN, Cilas C, Notteghem JL (2008) Effect of shade on Arabica coffee berry disease development: toward an agroforestry system to reduce disease impact. Phytopathology 98:1320e1325

    Google Scholar 

  241. Muller RA, Berry D, Avelino J, Bieysse D (2004) Coffee diseases. In: Wintgens JN (ed) Coffee: growing, processing, sustainable production: a guidebook for growers, processors, traders, and researchers. Wiley-VCH, Weinheim, p 491e545

    Google Scholar 

  242. Avelino J, Cristancho M, Georgiou S, Imbach P, Aguila L, Bornemann G, Läderach P, Anzueto F, Hruska AJ, Morales C (2015) The coffee rust crises in Colombia and Central America (2008–2013): impacts, plausible causes and proposed solutions. Food Sec. https://doi.org/10.1007/s12571-015-0446-9

    Article  Google Scholar 

  243. Avelino J, Cabut S, Barboza B, Barquero M, Alfaro R, Esquivel C, Durand JF, Cilas C (2007) Topography and crop management are key factors for the development of American leaf spot epidemics on coffee in Costa Rica. Phytopathology 97:1532–1542

    Article  PubMed  Google Scholar 

  244. Avelino J, Willocquet L, Savary S (2004) Effects of crop management patterns on coffee rust epidemics. Plant Pathol 53:541–547

    Article  Google Scholar 

  245. Alemu A (2016) Impact of antestia bug (Antestiopsis sp.) on coffee (Coffea arabica L.) production and quality. J Biol Agric Healthcare 6(21):18–22

    Google Scholar 

  246. Chemeda A, Emana G, Emiru S, Hindorf H (2014) Species composition, incidence and parasitoids of ceratid fruit flies in wild Coffea arabica L. of south western Ethiopia. East Afr J Sci 5(1):41–50

    Google Scholar 

  247. Pimenta JC, Villela TC, Moraes ALL (2002) Flora microbiana e qualidade do café (Coffea arabica L.) armazenado em coco por diferentes períodos. Rev Bras Armazenamento 5:28–35

    Google Scholar 

  248. Crowe TJ (2009) Coffee pest in Africa. In: Wintgens JN (ed) Coffee growing, processing and sustainable production. Wiley-VCH Verlag GmbH and Co. KGaA Press, The Netherlands, pp 421–458

    Google Scholar 

  249. Kekeunou S, Weise W, Messi J, Tamò M (2006) Farmers’ perception on the importance of variegated grasshopper (Zonocerus variegatus (L.)) in the agricultural production systems of the humid forest zone of Southern Cameroon. J Ethnobiol Ethnomed 2:17. https://doi.org/10.1186/1746-4269-2-17

    Article  PubMed  PubMed Central  Google Scholar 

  250. Abebe M (1987) Insect pests of coffee with special emphasis on antestia, Antestiopsis intricata, in Ethiopa. Adv Res Trop Entomol 8(4-5-6):977–998

    Google Scholar 

  251. Vandermeer J, Perfecto I, Philpott S (2010) Ecological complexity and pest control in organic coffee production: uncovering an autonomous ecosystem service. Bioscience 60(7). https://doi.org/10.1525/bio.2010.60.7.8

    Article  Google Scholar 

  252. Philpott SM, Uno S, Maldonado J (2006) The importance of ants and high-shade management to coffee pollination and fruit weight in Chiapas, Mexico. Biodivers Conserv 15:487–501. https://doi.org/10.1007/s10531-005-0602-1

    Article  Google Scholar 

  253. Matsuura Y, Hosokawa T, Serracin M, Tulgetske GM, Thomas A, Fukatsu MT (2014) Bacterial Symbionts of a Devastating Coffee Plant Pest, the Stinkbug Antestiopsis thunbergii (Hemiptera: Pentatomidae). J App Env Mic 80(12):3769–3775

    Article  CAS  Google Scholar 

  254. Barrera JF (2008) Coffee pests and their management. In: Encyclopedia of entomology, pp 961–998. https://doi.org/10.1007/978-1-4020-6359-6_751

    Chapter  Google Scholar 

  255. Fragoso DB, Guedes RNC, Picanço MC, Zambolim L (2002) Insecticide use and organophosphate resistance in the coffee leaf miner Leucoptera coffeella (Lepidoptera: Lyonetiidae). Bull Entomol Res 92(3). https://doi.org/10.1079/BER2002156

    Article  CAS  PubMed  Google Scholar 

  256. Raga A, De oliveira PDA, Souza Filho MF, Sato ME, Siloto RC, Zucchi RA (2002) Occurrence of fruit flies in coffee varieties in the State of Sao Paulo, Brazil Bol. San Veg Plagas 28:519–524

    Google Scholar 

  257. Venkatesha MG, Dinesh AS (2012) The white stemborer Xylotrechus quadripes (Coleoptera: Cerambycidae): bioecology, status and management. Int J Trop Insect Sci 31:177–188

    Article  Google Scholar 

  258. Greco EB, Wright MG (2012) First report of exploitation of coffee beans by black twig borer (Xylosandrus Compactus) and tropical nut borer (Hypothenemus obscurus) (Coleoptera; Curculionidae: Scolytinae) in Hawaii. Proc Hawaii Entomol Soc 44:71–78

    Google Scholar 

  259. Aristizábal LF, Bustillo AE, Arthurs SP (2016) Integrated pest management of coffee berry borer: strategies from Latin America that could be useful for coffee farmers in Hawaii. Insects 7:6. https://doi.org/10.3390/insects7010006

    Article  PubMed Central  Google Scholar 

  260. Vega FE, Infante F, Castillo CA, Jaramillo J (2009) The coffee berry borer, Hypothenemus hampei (Ferrari) (Coleoptera: Curculionidae): a short review, with recent findings and future research directions. Terr Arthropod Rev 2:129–147. https://doi.org/10.1163/187498209X12525675906031

    Article  Google Scholar 

  261. Pereira TB, Setotaw TA, Santos DN, Mendes ANG, Salgado SML, Carvalho GR, Rezende RM (2016) Identification of microsatellite markers in coffee associated with resistance to Meloidogyne exigua. Genet Mol Res 15(3). https://doi.org/10.4238/gmr.15038054

  262. Cabos RYM, Sipes BS, Nagai C, Serracin M, Schmitt DM (2010) Evaluation of coffee genotypes for root-knot nematode resistance. Nematropica 40:191–202

    Google Scholar 

  263. Tan JACH, Jones MGK, Nyarko JF (2013) Gene silencing in root lesion nematodes (Pratylenchus spp.) significantly reduces reproduction in a plant host. Exp Parasitol 133:166–178. https://doi.org/10.1016/j.exppara.11.01

    Article  CAS  PubMed  Google Scholar 

  264. Muniz MFS, Campos VP, Moita AW, Gonçalves W, Almeida MRA, Sousa FR, Carneiro RMDG (2009) Reaction of coffee genotypes to different populations of Meloidogyne spp.: detection of a naturally virulent M. exigua population. Trop Plant Pathol 34(6):370–378

    Article  Google Scholar 

  265. Mouen Bedimo JA, Bieysse D, Cilas C, Nottéghem JL (2007) Spatio-temporal dynamics of Arabica coffee berry disease caused by Colletotrichum kahawae on a plot scale. Plant Dis 91:1229–1236

    Article  CAS  PubMed  Google Scholar 

  266. Loureiro A, Nicole MR, Várzea V, Moncada P, Bertrand B, Silva MC (2012) Coffee resistance to Colletotrichum kahawae is associated with lignification, accumulation of phenols and cell death at infection sites. Physiol Mol Plant Pathol 77:23e32. https://doi.org/10.1016/j.pmpp.2011.11.002

    Article  CAS  Google Scholar 

  267. Castro BL, Carreño AJ, Galeano NF (2013) Identification and genetic diversity of Rosellinia spp. associated with root rot of coffee in Colombia Australasian. Plant Pathol 42:515. https://doi.org/10.1007/s13313-013-0205-3

    Article  CAS  Google Scholar 

  268. Rutherford MA (2006) Current knowledge of coffee wilt disease, a major constraint to coffee production in Africa. Phytopathology 96:663–666

    Article  PubMed  Google Scholar 

  269. Silva MDC, Várzea V, Guimarães LG, Azinheira HG, Fernandez D, Petitot AS, Bertrand BB, Lashermes P, Nicole M (2006) Coffee resistance to the main diseases: leaf rust and coffee berry disease. Braz J Plant Physiol 18(1):119–147

    Article  CAS  Google Scholar 

  270. Avelino J, Zelaya H, Merlo A, Pineda A, Ordonez M, Savary S (2006) The intensity of a coffee rust epidemic is dependent on production situations. Ecol Model 197(3–4):431–447

    Article  Google Scholar 

  271. Ramalho TO, Figueira AR, Sotero AJ, Wang R, Geraldino Duarte PS, Farman MM, Goodin M (2014) Characterization of Coffee ringspot virus-Lavras: a model for an emerging threat to coffee production and quality. Virology 464–465:385–396. https://doi.org/10.1016/j.virol.2014.07.031

    Article  CAS  PubMed  Google Scholar 

  272. Alemseged A, Zewdu Y (2014) Coffee export business in Ethiopia: business start-up and operational manual. Ethiopian Coffee Export Association, Addis Ababa

    Google Scholar 

  273. Taye E, Weledesenbet B, Bellachew B, Davrieux F (2008) Effects of genotypes and fruit maturity stage on caffeine and other biochemical constituents of Arabica coffee. In: Adugna G, Bellachew B, Shimber T, Taye E, Kufa T (eds) Coffee diversity and knowledge. Ethiopian Institute of Agricultural Research (EIAR), Addis Ababa, pp 169–172

    Google Scholar 

  274. Selmar D, Bytof G, Knopp SE (2002) New aspects of coffee processing: the relation between seed germination and coffee quality. In: Proceedings of the “19eme Colloque Scientifique International sur le Café”E. ASIC, Paris

    Google Scholar 

  275. Agwanda CO, Baradat P, Eskes AB, Cilas C, Charrier A (2003) Selection for bean and liquor qualities within related hybrids of Arabica coffee in multi local field trials. Euphytica 131:1–14

    Article  CAS  Google Scholar 

  276. Olamcam A (2008) Report on sustainability of Arabica coffee in the North West Region of Cameroon. An export coffee organization part of Olam International Agri Business, Singapore

    Google Scholar 

  277. Frisullo P, Delnobile MA, Barnaba M, Navarini L, Suggiliverani F (2009) Coffee arabica beans microstructural changes induced by roasting: an X-ray microtographic investigation. In: Proceedings of 23rd International scientific conference on coffee science (ASIC), Bali, pp 553–558, 20

    Google Scholar 

Download references

Acknowledgments

We are highly indebted to the anonymous reviewers for putting down their valuable efforts in improving this article.

Conflict of Interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hafiz Ansar Rasul Suleria .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Hameed, A., Hussain, S.A., Suleria, H.A.R. (2020). “Coffee Bean-Related” Agroecological Factors Affecting the Coffee. In: Mérillon, JM., Ramawat, K. (eds) Co-Evolution of Secondary Metabolites. Reference Series in Phytochemistry. Springer, Cham. https://doi.org/10.1007/978-3-319-96397-6_21

Download citation

Publish with us

Policies and ethics