Skip to main content

Combined Parameter and Model Reduction of Cardiovascular Problems by Means of Active Subspaces and POD-Galerkin Methods

  • Chapter
  • First Online:
Mathematical and Numerical Modeling of the Cardiovascular System and Applications

Part of the book series: SEMA SIMAI Springer Series ((SEMA SIMAI,volume 16))

Abstract

In this chapter we introduce a combined parameter and model reduction methodology and present its application to the efficient numerical estimation of a pressure drop in a set of deformed carotids. The aim is to simulate a wide range of possible occlusions after the bifurcation of the carotid. A parametric description of the admissible deformations, based on radial basis functions interpolation, is introduced. Since the parameter space may be very large, the first step in the combined reduction technique is to look for active subspaces in order to reduce the parameter space dimension. Then, we rely on model order reduction methods over the lower dimensional parameter subspace, based on a POD-Galerkin approach, to further reduce the required computational effort and enhance computational efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In order to simplify the exposition we will report the FE formulation on the deformed domain Ω(μ). However, it should be noted that only the mesh Ω δ of the reference domain Ω is generated, and deformed meshes Ω δ(μ) are obtained through the mapping \(\mathcal {M}(\boldsymbol {\cdot }; {\boldsymbol {\mu }})\).

  2. 2.

    The non-homogeneous right-hand side accounts for boundary conditions via a lifting.

  3. 3.

    In this section we will omit the dependence on μ. It should be understood that f = f(μ), ρ = ρ(μ), etc.

References

  1. Agoshkov, V., Quarteroni, A., Rozza, G.: A mathematical approach in the design of arterial bypass using unsteady Stokes equations. J. Sci. Comput. 28, 139–165 (2006)

    Article  MathSciNet  Google Scholar 

  2. Agoshkov, V., Quarteroni, A., Rozza, G.: Shape design in aorto-coronaric bypass anastomoses using perturbation theory. SIAM J. Numer. Anal. 44(1), 367–384 (2007)

    Article  MathSciNet  Google Scholar 

  3. Ali, S., Ballarin, F., Rozza, G.: Stabilized reduced basis methods for parametrized Stokes and Navier-Stokes equations. (2018, in preparation)

    Google Scholar 

  4. Ambrosi, D., Quarteroni, A., Rozza, G.: Modeling of Physiological Flows. MS&A – Modeling, Simulation and Applications, vol. 5. Springer, Berlin (2012)

    Google Scholar 

  5. Ballarin, F., Manzoni, A., Rozza, G., Salsa, S.: Shape optimization by Free-Form Deformation: existence results and numerical solution for Stokes flows. J. Sci. Comput. 60(3), 537–563 (2014)

    Article  MathSciNet  Google Scholar 

  6. Ballarin, F., Manzoni, A., Quarteroni, A., Rozza, G.: Supremizer stabilization of POD–Galerkin approximation of parametrized steady incompressible Navier–Stokes equations. Int. J. Numer. Methods Eng. 102(5), 1136–1161 (2015)

    Article  MathSciNet  Google Scholar 

  7. Ballarin, F., Faggiano, E., Ippolito, S., Manzoni, A., Quarteroni, A., Rozza, G., Scrofani, R.: Fast simulations of patient-specific haemodynamics of coronary artery bypass grafts based on a POD–Galerkin method and a vascular shape parametrization. J. Comput. Phys. 315, 609–628 (2016)

    Article  MathSciNet  Google Scholar 

  8. Ballarin, F., Sartori, A., Rozza, G.: RBniCS – reduced order modelling in fenics (2016). http://mathlab.sissa.it/rbnics

  9. Ballarin, F., D’Amario, A., Perotto, S., Rozza, G.: A POD-selective inverse distance weighting method for fast parametrized shape morphing (2017, submitted). arXiv preprint arXiv:1710.09243

    Google Scholar 

  10. Ballarin, F., Faggiano, E., Manzoni, A., Quarteroni, A., Rozza, G., Ippolito, S., Antona, C., Scrofani, R.: Numerical modeling of hemodynamics scenarios of patient-specific coronary artery bypass grafts. Biomech. Model. Mechanobiol. 16(4), 1373–1399 (2017)

    Article  Google Scholar 

  11. Barrault, M., Maday, Y., Nguyen, N.C., Patera, A.T.: An ‘empirical interpolation’ method: application to efficient reduced-basis discretization of partial differential equations. Comptes Rendus Mathematique 339(9), 667–672 (2004)

    Article  MathSciNet  Google Scholar 

  12. Benner, P., Ohlberger, M., Patera, A., Rozza, G., Urban, K. (eds.): Model Reduction of Parametrized Systems. MS&A – Modeling, Simulation and Applications, vol. 17. Springer, Berlin (2017)

    Google Scholar 

  13. Berkooz, G., Holmes, P., Lumley, J.: The proper orthogonal decomposition in the analysis of turbulent flows. Annu. Rev. Fluid Mech. 25(1), 539–575 (1993)

    Article  MathSciNet  Google Scholar 

  14. Box, G.E., Draper, N.R.: Empirical Model-Building and Response Surfaces, vol. 424. Wiley, New York (1987)

    MATH  Google Scholar 

  15. Brown, S.A.: Building supermodels: emerging patient avatars for use in precision and systems medicine. Front. Physiol. 6, 318 (2015)

    Article  Google Scholar 

  16. Buhmann, M.D.: Radial Basis Functions: Theory and Implementations, vol. 12. Cambridge University Press, Cambridge (2003)

    Book  Google Scholar 

  17. Caiazzo, A., Iliescu, T., John, V., Schyschlowa, S.: A numerical investigation of velocity-pressure reduced order models for incompressible flows. J. Comput. Phys. 259, 598–616 (2014)

    Article  MathSciNet  Google Scholar 

  18. Carlberg, K., Farhat, C., Cortial, J., Amsallem, D.: The GNAT method for nonlinear model reduction: effective implementation and application to computational fluid dynamics and turbulent flows. J. Comput. Phys. 242, 623–647 (2013)

    Article  MathSciNet  Google Scholar 

  19. Chen, P., Quarteroni, A.: Weighted reduced basis method for stochastic optimal control problems with elliptic PDE constraint. SIAM/ASA J. Uncertain. Quantif. 2(1), 364–396 (2014)

    Article  MathSciNet  Google Scholar 

  20. Chen, P., Quarteroni, A., Rozza, G.: Comparison between reduced basis and stochastic collocation methods for elliptic problems. J. Sci. Comput. 59(1), 187–216 (2014)

    Article  MathSciNet  Google Scholar 

  21. Chinesta, F., Keunings, R., Leygue, A.: The Proper Generalized Decomposition for Advanced Numerical Simulations: A Primer. Springer Science & Business Media, Berlin (2013)

    MATH  Google Scholar 

  22. Constantine, P.G.: Active Subspaces: Emerging Ideas for Dimension Reduction in Parameter Studies, vol. 2. SIAM, Philadelphia (2015)

    Book  Google Scholar 

  23. Constantine, P., Gleich, D.: Computing active subspaces with Monte Carlo. arXiv preprint arXiv:1408.0545 (2015)

    Google Scholar 

  24. Constantine, P.G., Emory, M., Larsson, J., Iaccarino, G.: Exploiting active subspaces to quantify uncertainty in the numerical simulation of the HyShot II scramjet. J. Comput. Phys. 302, 1–20 (2015)

    Article  MathSciNet  Google Scholar 

  25. Constantine, P.G., Eftekhari, A., Ward, R.: A near-stationary subspace for ridge approximation (2016). arXiv preprint arXiv:1606.01929

    Google Scholar 

  26. Constantine, P., Howard, R., Glaws, A., Grey, Z., Diaz, P., Fletcher, L.: Python active-subspaces utility library. J. Open Source Softw. 1(5) (2016)

    Article  Google Scholar 

  27. Cook, R.D.: Regression Graphics: Ideas for Studying Regressions Through Graphics, vol. 482. Wiley, New York (2009)

    MATH  Google Scholar 

  28. Cueto, E., Chinesta, F.: Real time simulation for computational surgery: a review. Adv. Model. Simul. Eng. Sci. 1(1), 11:1–11:18 (2014)

    Article  Google Scholar 

  29. Devore, J.L.: Probability and Statistics for Engineering and the Sciences. Cengage Learning, Boston (2015)

    Google Scholar 

  30. Doorly, D., Sherwin, S.: Geometry and flow. In: Formaggia, L., Quarteroni, A., Veneziani, A. (eds.) Cardiovascular Mathematics. MS&A – Modeling, Simulation and Applications, vol. 1. Springer Italia, Milano (2009)

    Google Scholar 

  31. Dryden, I., Mardia, K.: Statistical Analysis of Shape. Wiley, New York (1998)

    MATH  Google Scholar 

  32. Duchon, J.: Splines minimizing rotation-invariant semi-norms in Sobolev spaces. In: Constructive Theory of Functions of Several Variables, pp. 85–100. Springer, Berlin (1977)

    Chapter  Google Scholar 

  33. Forti, D., Rozza, G.: Efficient geometrical parametrisation techniques of interfaces for reduced-order modelling: application to fluid–structure interaction coupling problems. Int. J. Comput. Fluid Dyn. 28(3–4), 158–169 (2014)

    Article  MathSciNet  Google Scholar 

  34. Frey, P., George, P.: Mesh generation. Application to finite elements. Hermes Science Publishing, Paris, Oxford (2000)

    MATH  Google Scholar 

  35. González, D., Cueto, E., Chinesta, F.: Computational patient avatars for surgery planning. Ann. Biomed. Eng. 44(1), 35–45 (2016)

    Article  Google Scholar 

  36. Guibert, R., Mcleod, K., Caiazzo, A., Mansi, T., Fernández, M.A., Sermesant, M., Pennec, X., Vignon-Clementel, I.E., Boudjemline, Y., Gerbeau, J.F.: Group-wise construction of reduced models for understanding and characterization of pulmonary blood flows from medical images. Med. Image Anal. 18(1), 63–82 (2014)

    Article  Google Scholar 

  37. Gunzburger, M.D.: Perspectives in Flow Control and Optimization, vol. 5. SIAM, Philadelphia (2003)

    MATH  Google Scholar 

  38. Hesthaven, J.S., Rozza, G., Stamm, B.: Certified Reduced Basis Methods for Parametrized Partial Differential Equations. Springer Briefs in Mathematics. Springer, Berlin (2015)

    Google Scholar 

  39. Hokanson, J.M., Constantine, P.G.: Data-driven polynomial ridge approximation using variable projection (2017). arXiv preprint arXiv:1702.05859

    Google Scholar 

  40. Hu, X., Parks, G.T., Chen, X., Seshadri, P.: Discovering a one-dimensional active subspace to quantify multidisciplinary uncertainty in satellite system design. Adv. Space Res. 57(5), 1268–1279 (2016)

    Article  Google Scholar 

  41. INRIA 3D Meshes Research Database. Available at: https://www.rocq.inria.fr/gamma/gamma/download/download.php

  42. Jefferson, J.L., Gilbert, J.M., Constantine, P.G., Maxwell, R.M.: Reprint of: Active subspaces for sensitivity analysis and dimension reduction of an integrated hydrologic model. Comput. Geosci. 90, 78–89 (2016)

    Article  Google Scholar 

  43. Kaipio, J., Somersalo, E.: Statistical and Computational Inverse Problems, vol. 160. Springer Science & Business Media, Berlin (2006)

    MATH  Google Scholar 

  44. Keiper, S.: Analysis of generalized ridge functions in high dimensions. In: 2015 International Conference on Sampling Theory and Applications (SampTA), pp. 259–263. IEEE, New York (2015)

    Google Scholar 

  45. Lassila, T., Rozza, G.: Parametric free-form shape design with PDE models and reduced basis method. Comput. Methods Appl. Mech. Eng. 199(23–24), 1583–1592 (2010)

    Article  MathSciNet  Google Scholar 

  46. Logg, A., Mardal, K.A., Wells, G.N.: Automated Solution of Differential Equations by the Finite Element Method. Springer, Berlin (2012)

    Book  Google Scholar 

  47. Lukaczyk, T.W., Constantine, P., Palacios, F., Alonso, J.J.: Active subspaces for shape optimization. In: 10th AIAA Multidisciplinary Design Optimization Conference, p. 1171 (2014)

    Google Scholar 

  48. Manzoni, A., Quarteroni, A., Rozza, G.: Model reduction techniques for fast blood flow simulation in parametrized geometries. Int. J. Numer. Methods Biomed. Eng. 28(6–7), 604–625 (2012)

    Article  MathSciNet  Google Scholar 

  49. Marsden, A.L.: Optimization in cardiovascular modeling. Annu. Rev. Fluid Mech. 46(1), 519–546 (2014)

    Article  MathSciNet  Google Scholar 

  50. McLeod, K., Caiazzo, A., Fernández, M., Mansi, T., Vignon-Clementel, I., Sermesant, M., Pennec, X., Boudjemline, Y., Gerbeau, J.F.: Atlas-based reduced models of blood flows for fast patient-specific simulations. In: Camara, O., Pop, M., Rhode, K., Sermesant, M., Smith, N., Young, A. (eds.) Statistical Atlases and Computational Models of the Heart. Lecture Notes in Computer Science, vol. 6364, pp. 95–104. Springer, Berlin/Heidelberg (2010)

    Chapter  Google Scholar 

  51. Metropolis, N., Ulam, S.: The monte carlo method. J. Am. Stat. Assoc. 44(247), 335–341 (1949)

    Article  Google Scholar 

  52. Morris, M.: Factorial sampling plans for preliminary computational experiments. Technometrics 33(2), 161–174 (1991)

    Article  Google Scholar 

  53. Morris, A., Allen, C., Rendall, T.: CFD-based optimization of aerofoils using radial basis functions for domain element parameterization and mesh deformation. Int. J. Numer. Methods Fluids 58(8), 827–860 (2008)

    Article  MathSciNet  Google Scholar 

  54. Pinkus, A.: Ridge Functions, vol. 205. Cambridge University Press, Cambridge (2015)

    Book  Google Scholar 

  55. PyGeM: Python Geometrical Morphing. Available at https://github.com/mathLab/PyGeM

  56. Quarteroni, A., Rozza, G.: Reduced Order Methods for Modeling and Computational Reduction. MS&A – Modeling, Simulation and Applications, vol. 9. Springer, Berlin (2014)

    Google Scholar 

  57. Ravindran, S.: A reduced-order approach for optimal control of fluids using proper orthogonal decomposition. Int. J. Numer. Meth. Fluids 34, 425–448 (2000)

    Article  MathSciNet  Google Scholar 

  58. Rozza, G., Veroy, K.: On the stability of the reduced basis method for Stokes equations in parametrized domains. Comput. Methods Appl. Mech. Eng. 196(7), 1244–1260 (2007)

    Article  MathSciNet  Google Scholar 

  59. Sederberg, T., Parry, S.: Free-Form Deformation of solid geometric models. In: Proceedings of SIGGRAPH - Special Interest Group on GRAPHics and Interactive Techniques, pp. 151–159. SIGGRAPH (1986)

    Google Scholar 

  60. Shepard, D.: A two-dimensional interpolation function for irregularly-spaced data. In: Proceedings-1968 ACM National Conference, pp. 517–524. ACM, New York (1968)

    Google Scholar 

  61. Stabile, G., Rozza, G.: Finite volume POD-Galerkin stabilised reduced order methods for the parametrised incompressible Navier–Stokes equations. Comput. Fluids (2018). https://doi.org/10.1016/j.compfluid.2018.01.035

    Article  MathSciNet  Google Scholar 

  62. Tezzele, M., Salmoiraghi, F., Mola, A., Rozza, G.: Dimension reduction in heterogeneous parametric spaces with application to naval engineering shape design problems. Adv. Model. Simul. Eng. Sci. (2018, in press). Preprint, arXiv:1709.03298

    Google Scholar 

  63. Torlo, D., Ballarin, F., Rozza, G.: Stabilized reduced basis methods for advection dominated partial differential equations with random inputs (2017, submitted)

    Google Scholar 

  64. Venturi, L., Ballarin, F., Rozza, G.: Weighted POD–Galerkin methods for parametrized partial differential equations in uncertainty quantification problems (2017, submitted)

    Google Scholar 

  65. Wang, V.Y., Hoogendoorn, C., Frangi, A.F., Cowan, B.R., Hunter, P.J., Young, A.A., Nash, M.P.: Automated personalised human left ventricular FE models to investigate heart failure mechanics. In: Proceedings of the Third International Conference on Statistical Atlases and Computational Models of the Heart: Imaging and Modelling Challenges, STACOM’12, pp. 307–316. Springer, Berlin, Heidelberg (2013)

    Chapter  Google Scholar 

  66. Witteveen, J., Bijl, H.: Explicit mesh deformation using Inverse Distance Weighting interpolation. In: 19th AIAA Computational Fluid Dynamics. AIAA, Washington (2009)

    Google Scholar 

  67. Zarins, C.K., Giddens, D.P., Bharadvaj, B., Sottiurai, V.S., Mabon, R.F., Glagov, S.: Carotid bifurcation atherosclerosis: quantitative correlation of plaque localization with flow velocity profiles and wall shear stress. Circ. Res. 53(4), 502–514 (1983)

    Article  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the INDAM-GNCS 2017 project “Advanced numerical methods combined with computational reduction techniques for parameterised PDEs and applications”, and by European Union Funding for Research and Innovation—Horizon 2020 Program—in the framework of European Research Council Executive Agency: H2020 ERC CoG 2015 AROMA-CFD project 681447 “Advanced Reduced Order Methods with Applications in Computational Fluid Dynamics” P.I. Gianluigi Rozza.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gianluigi Rozza .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tezzele, M., Ballarin, F., Rozza, G. (2018). Combined Parameter and Model Reduction of Cardiovascular Problems by Means of Active Subspaces and POD-Galerkin Methods. In: Boffi, D., Pavarino, L., Rozza, G., Scacchi, S., Vergara, C. (eds) Mathematical and Numerical Modeling of the Cardiovascular System and Applications. SEMA SIMAI Springer Series, vol 16. Springer, Cham. https://doi.org/10.1007/978-3-319-96649-6_8

Download citation

Publish with us

Policies and ethics