Skip to main content

Numerical Simulation of Vortex Shedding from a Cylindrical Bluff-Body Flame Stabilizer

  • Conference paper
  • First Online:
Advances in Materials, Mechanical and Industrial Engineering (INCOM 2018)

Part of the book series: Lecture Notes on Multidisciplinary Industrial Engineering ((LNMUINEN))

Included in the following conference series:

Abstract

A two-dimensional, laminar transient flow past a cylindrical bluff body, with methane injection perpendicular to the direction of the free stream flow, i.e. the cross-flow arrangement, is numerically studied. An unstructured grid finite volume method is used and simulations were carried out. The methane mass fraction and the injection velocity of methane injected from the slotted cylinder are altered simultaneously, and their effects on the combustion, flame characteristics, and fluid mechanics are investigated. The flame is anchored right in front of the cylinder and is stabilized by the wake of the bluff body. The current investigation illustrates the qualitative aspects of the vortex shedding phenomena. A particular case of injection velocity and mass fraction is studied in detail and its vortex shedding phenomena are analysed minutely. The non-reacting flow exhibits 2P mode of vortex shedding while the reacting flow exhibits the more common 2S mode. Fast Fourier transform analysis of the temporally fluctuating lift coefficient is performed for the different cases carried out in the present study.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Renard, P.H., Thévenin, D., Rolon, J.C.: Dynamics of flame/vortex interactions. Prog. Energy Combust. Sci. 26(3), 225–282 (2000)

    Article  Google Scholar 

  2. Candel, S.: Combustion dynamics and control: progress and challenges. Proc. Combust. Inst. 29, 1–28 (2002)

    Article  Google Scholar 

  3. Delhaye, B., Veynante, D., Candel, S.M., Minh, H.H.: Simulation and modeling of reactive shear layers. Theor. Comput. Fluid Dynam. 6, 67–87 (1994)

    Article  Google Scholar 

  4. Jeong, J., Hussain, F.: On the identification of a vortex. J. Fluid Mech. 285, 69–94 (1995)

    Article  MathSciNet  Google Scholar 

  5. Poszdiech, O., Grundmann, R.: A systematic approach to the numerical calculation of fundamental quantities of the two-dimensional flow over a circular cylinder. J. Fluids Struct. 23, 479–499 (2007)

    Article  Google Scholar 

  6. Wang, H.F., Cao, H.L., Zhou, Y.: POD analysis of a finite-length cylinder near wake. Exp. Fluids 55, 1790 (2014)

    Article  Google Scholar 

  7. Singha, S., Singhamahapatra, K.P.: Flow past a circular cylinder between parallel walls at low Reynolds numbers. Ocean Eng. 37, 757–769 (2010)

    Article  Google Scholar 

  8. Williamson, C.H.K.: Vortex dynamics in the cylinder wake. Annu. Rev. Fluid Mech. 28, 477–539 (1996)

    Article  MathSciNet  Google Scholar 

  9. Zhu, M.M., Zhao, P.H., Ge, H.W., Chen, Y.L.: Simulation of vortex shedding behind a bluff body flame stabilizer using a hybrid U-RANS/PDF method. Acta. Mech. Sin. 28, 348–358 (2012)

    Article  Google Scholar 

  10. Raghavan, V., Shijin, P.K., Babu, V.: Numerical investigation of flame–vortex interactions in laminar cross-flow non-premixed flames in the presence of bluff bodies. Combust. Theor. Model. 20, 683–706 (2016)

    Article  MathSciNet  Google Scholar 

  11. Torero, J.L., Bonneau, L., Most, J.M., Joulain, P.: The effect of gravity on a laminar diffusion flame established over a horizontal flat plate. Proc. Combust. Inst. 25, 1701–1709 (1994)

    Article  Google Scholar 

  12. Ha, J.S., Shim, S.H., Shin, H.D.: Boundary layer diffusion flame over a flat plate in the presence and absence of flow separation. Combust. Sci. Technol. 75, 241–260 (1991)

    Article  Google Scholar 

  13. Hirano, T., Kanno, Y.: Aerodynamic and thermal structures of the laminar boundary layer over a flat plate with a diffusion flame. Proc. Combust. Inst. 14, 391–398 (1973)

    Article  Google Scholar 

  14. Hirano, T., Kinoshita, M.: Gas velocity and temperature profiles of a diffusion flame stabilized in the stream over liquid fuel. Proc. Combust. Inst. 15, 379–387 (1975)

    Article  Google Scholar 

  15. Gopalakrishnan, E.D., Raghavan, V.: Numerical investigation of laminar diffusion flames established on a horizontal flat plate in a parallel air stream. Int. J. Spray Combust. Dynam. 3(2), 161–190 (2011)

    Article  Google Scholar 

  16. Peters, N.: Flame calculations with reduced mechanisms—an outline. In: Peters, N., Rogg, B. (eds.) Reduced Kinetic Mechanisms for Applications in Combustion Systems. Lecture Notes in Physics Monographs, vol. 15, pp. 3–14. Springer, Berlin (1993)

    Chapter  Google Scholar 

  17. Ueda, T., Ooshima, A., Saito, N., Mizomoto, M.: Aerodynamic structure of a laminar boundary layer diffusion flame over a horizontal flat plate—experimental analysis. JSME Int. J. Ser. 234-II(4), 527–532 (1991)

    Article  Google Scholar 

  18. Ramachandra, A., Raghunandan, B.N.: Buoyancy effects on the characteristics of a laminar boundary layer diffusion flame in a confined flow. Combust. Flame 58, 191–196 (1984)

    Article  Google Scholar 

  19. Rohmat, T.A., Katoh, H., Obara, T., Yoshihashi, T., Ohyagi, S.: Diffusion flame stabilized on a porous plate in a parallel airstream. AIAA J. 36(11), 1945–1952 (1998)

    Article  Google Scholar 

  20. Chen, C.-H., T’ien, J.S.: Diffusion flame stabilization at the leading edge of a fuel plate. Combust. Sci. Technol. 50, 283–306 (1986)

    Article  Google Scholar 

  21. Wang, X., Suzuki, T., Ochiai, Y., Ohyagi, S.: Numerical studies of reacting flows over flat walls with fuel injection: Part 1—velocity anomaly and hydrodynamic instability. JSME Int J. Ser. B 41(1), 19–27 (1998)

    Article  Google Scholar 

  22. Shijin, P.K., Sundaram, S.S., Raghavan, V.: Numerical investigation of laminar cross-flow non-premixed flames in the presence of a bluff-body. Combust. Theor. Model. 18(6), 692–710 (2014)

    Article  MathSciNet  Google Scholar 

  23. Lavid, M., Berlad, A.L.: Gravitational effects on chemically reacting laminar boundary layer flows over a horizontal flat plate. Proc. Combust. Inst. 16, 1557–1568 (1976)

    Article  Google Scholar 

  24. Raghunandan, B.N., Yogesh, G.P.: Recirculating flow over a burning surface—flame structure and heat transfer augmentation. Proc. Combust. Inst. 22, 1501–1507 (1988)

    Article  Google Scholar 

  25. Marble, F.E.: Growth of a diffusion flame in the field of a vortex. Recent advances in the aerospace sciences. In: Casci, C., Bruno, C. (eds.) Honor of Luigi Crocco on His 75th Birthday, Springer, Boston, MA, pp. 395–413 (1985)

    Chapter  Google Scholar 

  26. Karagozian, A.R., Marble, F.E.: Study of a diffusion flame in a stretched vortex. Combust. Sci. Technol. 45, 65–84 (1986)

    Article  Google Scholar 

  27. Alain, M., Candel S.M.: A numerical analysis of a diffusion flame–vortex interaction. Combust. Sci. Technol. 60, 79–96 (1988)

    Article  Google Scholar 

  28. Ashurst, W.T., Mcmurtry, P.A.: Flame generation of vorticity: vortex dipoles from monopoles. Combust. Sci. Technol. 66, 17–37 (1989)

    Article  Google Scholar 

  29. Lewis, G.S., Cantwell, B.J., Vandsburger, U., Bowman, C.T.: An investigation of the structure of a laminar non-premixed flame in an unsteady vortical flow. Symp. (Int.) Combust. 22, 515–522 (1989)

    Article  Google Scholar 

  30. Macaraeg, M.G., Jackson, T.L., Hussaini, M.Y.: Ignition and structure of a laminar diffusion flame in the field of a vortex. Combust. Sci. Technol. 87, 363–387 (1993)

    Article  Google Scholar 

  31. Rolon, J.C., Aguerre, F., Candel, S.: Experiments on the interaction between a vortex and a strained diffusion flame. Combust. Flame 100, 422–442 (1995)

    Article  Google Scholar 

  32. Fan, A., Wan, J., Maruta, K., Yao, H., Liu, W.: Interactions between heat transfer, flow field and flame stabilization in a micro-combustor with a bluff body. Int. J. Heat Mass Trans. 66, 72–79 (2013)

    Article  Google Scholar 

  33. Altay, H.M., Speth, R.L., Hudgins, D.E., Ghoniem, A.F.: Flame–vortex interaction driven combustion dynamics in a backward-facing step combustor. Combust. Flame 156(5), 1111–1125 (2009)

    Article  Google Scholar 

  34. Barlow, R.S., Karpetis, A., Frank, J.H., Chen, J.Y.: Scalar profiles and NO formation in laminar opposed-flow partially premixed methane/air flames. Combust. Flame 127, 2102–2118 (2001)

    Article  Google Scholar 

  35. Mondal, S., Mukhopadhyay, A., Sen, S.: Dynamic characterization of a laboratory scale pulse combustor. Combust. Sci. Tech. 186(2), 139–152 (2014)

    Google Scholar 

  36. Sen, U., Mukhopadhyay, A., Sen, S.: Effects of fluid injection on dynamics of flow past a circular cylinder. Eur. J. Mech. B/Fluids 61, 187–199 (2017)

    Article  MathSciNet  Google Scholar 

  37. Fujii, S., Eguchi, K.: A Comparison of non-reacting and reacting flows around a bluff-body flame stabilizer. J. Fluids Eng. 103(2), 328–334 (1981)

    Article  Google Scholar 

  38. Bagchi, S., Sarkar, S., Sen, U., Mukhopadhyay, A., Sen, S.: Numerical investigation of vortex shedding from a bluff body stabilised flame with cross injection. Proc. Sustain. Energy Environ. Challenges 23, 250–254 (2018)

    Google Scholar 

  39. Bagchi, S., Sarkar, S., Mukhopadhyay, A., Sen, S.: Numerical simulation of vortex shedding from a cylindrical bluff body flame stabilizer. In: Proceedings of International Conference of Mechanical Engineering, pp. 678–682 (2018)

    Google Scholar 

  40. Bharadwaj, N., Safta, C., Madnia, C.K.: Flame-wall interaction for a non-premixed flame propelled by a vortex ring. Combust. Theor. Model. 11(1), 1–19 (2007)

    Article  Google Scholar 

  41. Safta, C., Madnia, C.K.: Characteristics of methane diffusion flame in a reacting vortex ring. Combust. Theor. Model. 8(3), 449–474 (2004)

    Article  Google Scholar 

  42. Renard, P.H., Rolon, J.C., Thévenin, D., Candel, S.: Investigations of heat release, extinction, and time evaluation of the flame surface, for a non-premixed flame interacting with a vortex. Combust. Flame 117, 189–205 (1999)

    Article  Google Scholar 

  43. Hermanns, M., Vera, M., Liñán, A.: On the dynamics of flame edges in diffusion-flame/vortex interactions. Combust. Flame 149, 32–48 (2007)

    Article  Google Scholar 

  44. Mishra, S., Santhosh, R., Basu, S.: Scalar transport in diffusion flame wrapped up by an air and fuel side vortex. Int. Comm. Heat Mass Trans. 47, 32–40 (2013)

    Article  Google Scholar 

  45. Cetegen, B.M., Mohamad, N.: Experiments on liquid mixing and reaction in a vortex. J. Fluid Mech. 249, 391–414 (1993)

    Article  Google Scholar 

  46. Thiesset, F., Maurice, G., Halter, F., Mazellier, N., Chauveau, C., Gökalp, I.: Flame-vortex interaction: effect of residence time and formulation of a new efficiency function. Proc. Combust. Inst. 36(2), 1843–1851 (2017)

    Article  Google Scholar 

  47. Stöhr, M., Boxx, I., Carter, C.D., Meier, W.: Experimental study of vortex-flame interaction in a gas turbine model combustor. Combust. Flame 159(8), 2636–2649 (2012)

    Article  Google Scholar 

  48. Smooke, M.D., Puri, I.K., Seshadri, K.: A comparison between numerical calculations and experimental measurements of the structure of a counter flow diffusion flame burning diluted methane in diluted air. In: 21st Symposium (International) on Combustion. The Combustion Institute, pp. 1783–1792 (1986)

    Google Scholar 

  49. Braza, M., Chassaing, P., Ha, M.H.: Numerical study and physical analysis of the pressure and velocity fields in the near wake of a circular cylinder. J. Fluid Mech. 165, 79–130 (1986)

    Article  MathSciNet  Google Scholar 

  50. Liu, C., Zheng, X., Sung, C.H.: Preconditioned multigrid methods for unsteady incompressible flows. J. Comput. Phys. 139, 35–57 (1998)

    Article  Google Scholar 

  51. Park, J., Kwon, K., Choi, H.: Numerical solutions of flow past a circular cylinder at Reynolds number up to 160. KSME Int. J. 12(6), 1200–1205 (1998)

    Article  Google Scholar 

  52. Meneghini, J.R., Saltara, F., Siqueira, C.L.R., Ferrari Jr., J.A.: Numerical simulation off low interference between two circular cylinders in tandem and side-by-side arrangements. J. Fluids Struct. 15, 327–350 (2001)

    Article  Google Scholar 

  53. Shi, J.-M., Gerlach, D., Breuer, M., Biswas, G., Durst, F.: Heating effect on steady and unsteady horizontal laminar flow of air past a circular cylinder. Phys. Fluids 16(12), 4331–4345 (2004)

    Article  Google Scholar 

  54. Ding, H., Shu, C., Yeo, K.S., Xu, D.: Numerical simulation of flows around two circular cylinders by mesh-free least square-based finite difference methods. Int. J. Numer. Methods Fluids 53, 305–332 (2007)

    Article  Google Scholar 

  55. Mittal, S.: Instability of the separated shear layer in flow past a cylinder: forced excitation. Int. J. Numer. Methods Fluids 56, 687–702 (2008)

    Article  Google Scholar 

  56. Rajani, B.N., Kandasamy, A., Majumdar, S.: Numerical simulation of laminar flow past a circular cylinder. Appl. Math. Model. 33, 1228–1247 (2009)

    Article  MathSciNet  Google Scholar 

  57. Li, Y., Zhang, R., Shock, R., Chen, H.: Prediction of vortex shedding from a circular cylinder using a volumetric Lattice-Boltzmann boundary approach. Eur. Phys. J. 171, 91–97 (2009)

    Google Scholar 

  58. Harichandan, A.B., Roy, A.: Numerical investigation of low Reynolds number flow past two and three circular cylinders using unstructured grid CFR scheme. Int. J. Heat Fluid Flow 31, 154–171 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sombuddha Bagchi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bagchi, S., Sarkar, S., Sen, U., Mukhopadhyay, A., Sen, S. (2019). Numerical Simulation of Vortex Shedding from a Cylindrical Bluff-Body Flame Stabilizer. In: Sahoo, P., Davim, J. (eds) Advances in Materials, Mechanical and Industrial Engineering. INCOM 2018. Lecture Notes on Multidisciplinary Industrial Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-96968-8_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-96968-8_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-96967-1

  • Online ISBN: 978-3-319-96968-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics