Skip to main content

Neuroimaging: Diagnostic Boundaries and Biomarkers

  • Chapter
  • First Online:
Neuroimaging of Schizophrenia and Other Primary Psychotic Disorders

Abstract

Different medical disciplines have adopted biomarkers in order to establish a diagnosis and predict clinical and functional outcome of a disease. In psychiatry, the search for biomarkers could lead to substantial improvement in mental disorder diagnosis and care. Different neuroimaging techniques have contributed to improve our understanding of brain structure and functioning in patients with psychotic disorders. However, though a large number of studies have reported differences between patients with psychotic disorders and healthy controls in structural and functional neuroimaging measures, only few results are robust and consistent. In addition, so far, even robust and consistent findings have differences at group level, which so far did not translate into applications at the individual level. The heterogeneity of psychotic disorders, the use of medications, and the infrequent replication of findings in independent patient cohorts from different centers have limited the identification of reliable neuroimaging biomarkers for diagnosis and outcome prediction of psychotic disorders. Machine-learning algorithms might represent a good opportunity for the progress in this field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lawrie SM, McIntosh AM, Hall J, Owens DG, Johnstone EC. Brain structure and function changes during the development of schizophrenia: the evidence from studies of subjects at increased genetic risk. Schizophr Bull. 2008;34(2):330–40. https://doi.org/10.1093/schbul/sbm158.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Moorhead TW, Stanfield AC, McKechanie AG, Dauvermann MR, Johnstone EC, Lawrie SM, Cunningham Owens DG. Longitudinal gray matter change in young people who are at enhanced risk of schizophrenia due to intellectual impairment. Biol Psychiatry. 2013;73(10):985–92. https://doi.org/10.1016/j.biopsych.2012.12.011.

    Article  PubMed  Google Scholar 

  3. Biomarkers Definitions Working Group. Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin Pharmacol Ther. 2001;69(3):89–95. https://doi.org/10.1067/mcp.2001.113989.

    Article  Google Scholar 

  4. The Food and Drug Modernization Act. Title 21 Code of Federal Regulations Part 314 Subpart H Section 314.500. 1997.

    Google Scholar 

  5. First M, Botteron K, Carter C, Castellanos FX, Dickstein DP, Drevets W, Kim KL, Pescosolido MF, Raush S, Seymour KE, Sheline Y, Zubieta J-K. Consensus report of the APA work group on neuroimaging markers of psychiatric disorders. Virginia: American Psychiatric Association; 2012.

    Google Scholar 

  6. Consensus report of the Working Group. Molecular and biochemical markers of Alzheimer’s Disease. The Ronald and Nancy Reagan Research Institute of the Alzheimer’s Association and the National Institute on Aging Working Group. pp. 197–4580; 1998.

    Google Scholar 

  7. Clark CM, Schneider J, Bedell B, Beach T, Bilker W, Mintun M, Pontecorvo M, Hefti F, Carpenter A, Flitter M, Krautkramer M, Kung H, Coleman R, Doraiswamy P, Fleisher A, Sabbagh M, Sadowsky C, Reiman E, Zehntner S, Skovronsky DM. Use of florbetapir-PET for imaging beta-amyloid pathology. JAMA. 2011;305(3):275–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Abi-Dargham A, Horga G. The search for imaging biomarkers in psychiatric disorders. Nat Med. 2016;22(11):1248–55. https://doi.org/10.1038/nm.4190.

    Article  CAS  PubMed  Google Scholar 

  9. Birnbaum R, Weinberger DR. Functional neuroimaging and schizophrenia: a view towards effective connectivity modeling and polygenic risk. Dialogues Clin Neurosci. 2013;15(3):279–89.

    PubMed  PubMed Central  Google Scholar 

  10. Koutsouleris N, Meisenzahl EM, Davatzikos C, Bottlender R, Frodl T, Scheuerecker J, Schmitt G, Zetzsche T, Decker P, Reiser M, Moller HJ, Gaser C. Use of neuroanatomical pattern classification to identify subjects in at-risk mental states of psychosis and predict disease transition. Arch Gen Psychiatry. 2009;66(7):700–12. https://doi.org/10.1001/archgenpsychiatry.2009.62.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Cannon TD, Cadenhead K, Cornblatt B, Woods SW, Addington J, Walker E, Seidman LJ, Perkins D, Tsuang M, McGlashan T, Heinssen R. Prediction of psychosis in youth at high clinical risk: a multisite longitudinal study in North America. Arch Gen Psychiatry. 2008;65(1):28–37. https://doi.org/10.1001/archgenpsychiatry.2007.3.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Horga G, Kaur T, Peterson BS. Annual research review: current limitations and future directions in MRI studies of child- and adult-onset developmental psychopathologies. J Child Psychol Psychiatry. 2014;55(6):659–80. https://doi.org/10.1111/jcpp.12185.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Kempton MJ, Stahl D, Williams SC, DeLisi LE. Progressive lateral ventricular enlargement in schizophrenia: a meta-analysis of longitudinal MRI studies. Schizophr Res. 2010;120(1–3):54–62. https://doi.org/10.1016/j.schres.2010.03.036.

    Article  PubMed  Google Scholar 

  14. Jarskog LF, Glantz LA, Gilmore JH, Lieberman JA. Apoptotic mechanisms in the pathophysiology of schizophrenia. Prog Neuro-Psychopharmacol Biol Psychiatry. 2005;29(5):846–58. https://doi.org/10.1016/j.pnpbp.2005.03.010.

    Article  CAS  Google Scholar 

  15. Ho BC, Andreasen NC, Ziebell S, Pierson R, Magnotta V. Long-term antipsychotic treatment and brain volumes: a longitudinal study of first-episode schizophrenia. Arch Gen Psychiatry. 2011;68(2):128–37. https://doi.org/10.1001/archgenpsychiatry.2010.199.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Welch KA, McIntosh AM, Job DE, Whalley HC, Moorhead TW, Hall J, Owens DG, Lawrie SM, Johnstone EC. The impact of substance use on brain structure in people at high risk of developing schizophrenia. Schizophr Bull. 2011;37(5):1066–76. https://doi.org/10.1093/schbul/sbq013.

    Article  PubMed  Google Scholar 

  17. Kraepelin E. Dementia praecox and paraphrenia. Chicago: Chicago Medical Book Co; 1919. Transcribed by Barclay RM, Edited by Robertson GM, Edinburgh E and Livingstone S

    Google Scholar 

  18. Bleuler E. Dementia praecox, or the group of Schizophrenias. Translated by Zinkin J. New York: International Universities Press; 1950. p. 40.

    Google Scholar 

  19. Haijma SV, Van Haren N, Cahn W, Koolschijn PC, Hulshoff Pol HE, Kahn RS. Brain volumes in schizophrenia: a meta-analysis in over 18,000 subjects. Schizophr Bull. 2013;39(5):1129–38. https://doi.org/10.1093/schbul/sbs118.

    Article  PubMed  Google Scholar 

  20. Cuesta MJ, Lecumberri P, Cabada T, Moreno-Izco L, Ribeiro M, Lopez-Ilundain JM, Peralta V, Lorente-Omenaca R, Sanchez-Torres AM, Gomez M. Basal ganglia and ventricle volume in first-episode psychosis. A family and clinical study. Psychiatry Res. 2017;269:90–6. https://doi.org/10.1016/j.pscychresns.2017.09.010.

    Article  Google Scholar 

  21. Adriano F, Spoletini I, Caltagirone C, Spalletta G. Updated meta-analyses reveal thalamus volume reduction in patients with first-episode and chronic schizophrenia. Schizophr Res. 2010;123(1):1–14. https://doi.org/10.1016/j.schres.2010.07.007.

    Article  PubMed  Google Scholar 

  22. Adriano F, Caltagirone C, Spalletta G. Hippocampal volume reduction in first-episode and chronic schizophrenia: a review and meta-analysis. Neuroscientist. 2012;18(2):180–200. https://doi.org/10.1177/1073858410395147.

    Article  PubMed  Google Scholar 

  23. Vita A, De Peri L, Silenzi C, Dieci M. Brain morphology in first-episode schizophrenia: a meta-analysis of quantitative magnetic resonance imaging studies. Schizophr Res. 2006;82(1):75–88. https://doi.org/10.1016/j.schres.2005.11.004.

    Article  CAS  PubMed  Google Scholar 

  24. Arnone D, McIntosh AM, Tan GM, Ebmeier KP. Meta-analysis of magnetic resonance imaging studies of the corpus callosum in schizophrenia. Schizophr Res. 2008;101(1–3):124–32. https://doi.org/10.1016/j.schres.2008.01.005.

    Article  CAS  PubMed  Google Scholar 

  25. De Peri L, Crescini A, Deste G, Fusar-Poli P, Sacchetti E, Vita A. Brain structural abnormalities at the onset of schizophrenia and bipolar disorder: a meta-analysis of controlled magnetic resonance imaging studies. Curr Pharm Des. 2012;18(4):486–94.

    Article  PubMed  Google Scholar 

  26. Vita A, De Peri L, Deste G, Sacchetti E. Progressive loss of cortical gray matter in schizophrenia: a meta-analysis and meta-regression of longitudinal MRI studies. Transl Psychiatry. 2012;2:e190. https://doi.org/10.1038/tp.2012.116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Olabi B, Ellison-Wright I, McIntosh AM, Wood SJ, Bullmore E, Lawrie SM. Are there progressive brain changes in schizophrenia? A meta-analysis of structural magnetic resonance imaging studies. Biol Psychiatry. 2011;70(1):88–96. https://doi.org/10.1016/j.biopsych.2011.01.032.

    Article  PubMed  Google Scholar 

  28. Fusar-Poli P, Smieskova R, Kempton MJ, Ho BC, Andreasen NC, Borgwardt S. Progressive brain changes in schizophrenia related to antipsychotic treatment? A meta-analysis of longitudinal MRI studies. Neurosci Biobehav Rev. 2013;37(8):1680–91. https://doi.org/10.1016/j.neubiorev.2013.06.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Boos HB, Aleman A, Cahn W, Hulshoff Pol H, Kahn RS. Brain volumes in relatives of patients with schizophrenia: a meta-analysis. Arch Gen Psychiatry. 2007;64(3):297–304. https://doi.org/10.1001/archpsyc.64.3.297.

    Article  PubMed  Google Scholar 

  30. Arnone D, Cavanagh J, Gerber D, Lawrie SM, Ebmeier KP, McIntosh AM. Magnetic resonance imaging studies in bipolar disorder and schizophrenia: meta-analysis. Br J Psychiatry. 2009;195(3):194–201. https://doi.org/10.1192/bjp.bp.108.059717.

    Article  PubMed  Google Scholar 

  31. Ivleva EI, Bidesi AS, Thomas BP, Meda SA, Francis A, Moates AF, Witte B, Keshavan MS, Tamminga CA. Brain gray matter phenotypes across the psychosis dimension. Psychiatry Res. 2012;204(1):13–24. https://doi.org/10.1016/j.pscychresns.2012.05.001.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Ivleva EI, Bidesi AS, Keshavan MS, Pearlson GD, Meda SA, Dodig D, Moates AF, Lu H, Francis AN, Tandon N, Schretlen DJ, Sweeney JA, Clementz BA, Tamminga CA. Gray matter volume as an intermediate phenotype for psychosis: Bipolar-Schizophrenia Network on Intermediate Phenotypes (B-SNIP). Am J Psychiatry. 2013;170(11):1285–96. https://doi.org/10.1176/appi.ajp.2013.13010126.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Amann BL, Canales-Rodriguez EJ, Madre M, Radua J, Monte G, Alonso-Lana S, Landin-Romero R, Moreno-Alcazar A, Bonnin CM, Sarro S, Ortiz-Gil J, Gomar JJ, Moro N, Fernandez-Corcuera P, Goikolea JM, Blanch J, Salvador R, Vieta E, McKenna PJ, Pomarol-Clotet E. Brain structural changes in schizoaffective disorder compared to schizophrenia and bipolar disorder. Acta Psychiatr Scand. 2016;133(1):23–33. https://doi.org/10.1111/acps.12440.

    Article  CAS  PubMed  Google Scholar 

  34. Ellison-Wright I, Bullmore E. Anatomy of bipolar disorder and schizophrenia: a meta-analysis. Schizophr Res. 2010;117(1):1–12. https://doi.org/10.1016/j.schres.2009.12.022.

    Article  PubMed  Google Scholar 

  35. Mathew I, Gardin TM, Tandon N, Eack S, Francis AN, Seidman LJ, Clementz B, Pearlson GD, Sweeney JA, Tamminga CA, Keshavan MS. Medial temporal lobe structures and hippocampal subfields in psychotic disorders: findings from the Bipolar-Schizophrenia Network on Intermediate Phenotypes (B-SNIP) study. JAMA Psychiat. 2014;71(7):769–77. https://doi.org/10.1001/jamapsychiatry.2014.453.

    Article  Google Scholar 

  36. Brown GG, Lee JS, Strigo IA, Caligiuri MP, Meloy MJ, Lohr J. Voxel-based morphometry of patients with schizophrenia or bipolar I disorder: a matched control study. Psychiatry Res. 2011;194(2):149–56. https://doi.org/10.1016/j.pscychresns.2011.05.005.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Hartberg CB, Sundet K, Rimol LM, Haukvik UK, Lange EH, Nesvag R, Melle I, Andreassen OA, Agartz I. Subcortical brain volumes relate to neurocognition in schizophrenia and bipolar disorder and healthy controls. Prog Neuro-Psychopharmacol Biol Psychiatry. 2011;35(4):1122–30. https://doi.org/10.1016/j.pnpbp.2011.03.014.

    Article  CAS  Google Scholar 

  38. Watson DR, Anderson JM, Bai F, Barrett SL, McGinnity TM, Mulholland CC, Rushe TM, Cooper SJ. A voxel based morphometry study investigating brain structural changes in first episode psychosis. Behav Brain Res. 2012;227(1):91–9. https://doi.org/10.1016/j.bbr.2011.10.034.

    Article  PubMed  Google Scholar 

  39. Haukvik UK, Westlye LT, Morch-Johnsen L, Jorgensen KN, Lange EH, Dale AM, Melle I, Andreassen OA, Agartz I. In vivo hippocampal subfield volumes in schizophrenia and bipolar disorder. Biol Psychiatry. 2015;77(6):581–8. https://doi.org/10.1016/j.biopsych.2014.06.020.

    Article  PubMed  Google Scholar 

  40. Knochel C, Stablein M, Storchak H, Reinke B, Jurcoane A, Prvulovic D, Linden DE, van de Ven V, Ghinea D, Wenzler S, Alves G, Matura S, Kroger A, Oertel-Knochel V. Multimodal assessments of the hippocampal formation in schizophrenia and bipolar disorder: evidences from neurobehavioral measures and functional and structural MRI. Neuroimage Clin. 2014;6:134–44. https://doi.org/10.1016/j.nicl.2014.08.015.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Nenadic I, Maitra R, Langbein K, Dietzek M, Lorenz C, Smesny S, Reichenbach JR, Sauer H, Gaser C. Brain structure in schizophrenia vs. psychotic bipolar I disorder: a VBM study. Schizophr Res. 2015;165(2–3):212–9. https://doi.org/10.1016/j.schres.2015.04.007.

    Article  PubMed  Google Scholar 

  42. Frazier JA, Hodge SM, Breeze JL, Giuliano AJ, Terry JE, Moore CM, Kennedy DN, Lopez-Larson MP, Caviness VS, Seidman LJ, Zablotsky B, Makris N. Diagnostic and sex effects on limbic volumes in early-onset bipolar disorder and schizophrenia. Schizophr Bull. 2008;34(1):37–46. https://doi.org/10.1093/schbul/sbm120.

    Article  PubMed  Google Scholar 

  43. Killgore WD, Rosso IM, Gruber SA, Yurgelun-Todd DA. Amygdala volume and verbal memory performance in schizophrenia and bipolar disorder. Cogn Behav Neurol. 2009;22(1):28–37. https://doi.org/10.1097/WNN.0b013e318192cc67.

    Article  PubMed  Google Scholar 

  44. Mahon PB, Eldridge H, Crocker B, Notes L, Gindes H, Postell E, King S, Potash JB, Ratnanather JT, Barta PE. An MRI study of amygdala in schizophrenia and psychotic bipolar disorder. Schizophr Res. 2012;138(2–3):188–91. https://doi.org/10.1016/j.schres.2012.04.005.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Kittel-Schneider S, Wobrock T, Scherk H, Schneider-Axmann T, Trost S, Zilles D, Wolf C, Schmitt A, Malchow B, Hasan A, Backens M, Reith W, Falkai P, Gruber O, Reif A. Influence of DGKH variants on amygdala volume in patients with bipolar affective disorder and schizophrenia. Eur Arch Psychiatry Clin Neurosci. 2015;265(2):127–36. https://doi.org/10.1007/s00406-014-0513-9.

    Article  CAS  PubMed  Google Scholar 

  46. Pina-Camacho L, Del Rey-Mejias A, Janssen J, Bioque M, Gonzalez-Pinto A, Arango C, Lobo A, Sarro S, Desco M, Sanjuan J, Lacalle-Aurioles M, Cuesta MJ, Saiz-Ruiz J, Bernardo M, Parellada M, Group PE. Age at first episode modulates diagnosis-related structural brain abnormalities in psychosis. Schizophr Bull. 2016;42(2):344–57. https://doi.org/10.1093/schbul/sbv128.

    Article  PubMed  Google Scholar 

  47. Cui L, Li M, Deng W, Guo W, Ma X, Huang C, Jiang L, Wang Y, Collier DA, Gong Q, Li T. Overlapping clusters of gray matter deficits in paranoid schizophrenia and psychotic bipolar mania with family history. Neurosci Lett. 2011;489(2):94–8. https://doi.org/10.1016/j.neulet.2010.11.073.

    Article  CAS  PubMed  Google Scholar 

  48. Molina V, Galindo G, Cortes B, de Herrera AG, Ledo A, Sanz J, Montes C, Hernandez-Tamames JA. Different gray matter patterns in chronic schizophrenia and chronic bipolar disorder patients identified using voxel-based morphometry. Eur Arch Psychiatry Clin Neurosci. 2011;261(5):313–22. https://doi.org/10.1007/s00406-010-0183-1.

    Article  PubMed  Google Scholar 

  49. Song J, Han DH, Kim SM, Hong JS, Min KJ, Cheong JH, Kim BN. Differences in gray matter volume corresponding to delusion and hallucination in patients with schizophrenia compared with patients who have bipolar disorder. Neuropsychiatr Dis Treat. 2015;11:1211–9. https://doi.org/10.2147/NDT.S80438.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Womer FY, Wang L, Alpert KI, Smith MJ, Csernansky JG, Barch DM, Mamah D. Basal ganglia and thalamic morphology in schizophrenia and bipolar disorder. Psychiatry Res. 2014;223(2):75–83. https://doi.org/10.1016/j.pscychresns.2014.05.017.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Galderisi S, Merlotti E, Mucci A. Neurobiological background of negative symptoms. Eur Arch Psychiatry Clin Neurosci. 2015;265(7):543–58. https://doi.org/10.1007/s00406-015-0590-4.

    Article  PubMed  Google Scholar 

  52. Friston KJ, Frith CD. Schizophrenia: a disconnection syndrome? Clin Neurosci. 1995;3(2):89–97.

    CAS  PubMed  Google Scholar 

  53. Stephan KE, Baldeweg T, Friston KJ. Synaptic plasticity and dysconnection in schizophrenia. Biol Psychiatry. 2006;59(10):929–39. https://doi.org/10.1016/j.biopsych.2005.10.005.

    Article  CAS  PubMed  Google Scholar 

  54. Bullmore ET, Frangou S, Murray RM. The dysplastic net hypothesis: an integration of developmental and dysconnectivity theories of schizophrenia. Schizophr Res. 1997;28(2–3):143–56.

    Article  CAS  PubMed  Google Scholar 

  55. Davis KL, Stewart DG, Friedman JI, Buchsbaum M, Harvey PD, Hof PR, Buxbaum J, Haroutunian V. White matter changes in schizophrenia: evidence for myelin-related dysfunction. Arch Gen Psychiatry. 2003;60(5):443–56. https://doi.org/10.1001/archpsyc.60.5.443.

    Article  PubMed  Google Scholar 

  56. Segal D, Koschnick JR, Slegers LH, Hof PR. Oligodendrocyte pathophysiology: a new view of schizophrenia. Int J Neuropsychopharmacol. 2007;10(4):503–11. https://doi.org/10.1017/S146114570600722X.

    Article  CAS  PubMed  Google Scholar 

  57. Zhou Y, Liu J, Driesen N, Womer F, Chen K, Wang Y, Jiang X, Zhou Q, Bai C, Wang D, Tang Y, Wang F. White matter integrity in genetic high-risk individuals and first-episode schizophrenia patients: similarities and disassociations. Biomed Res Int. 2017;2017:3107845. https://doi.org/10.1155/2017/3107845.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Ohtani T, Bouix S, Lyall AE, Hosokawa T, Saito Y, Melonakos E, Westin CF, Seidman LJ, Goldstein J, Mesholam-Gately R, Petryshen T, Wojcik J, Kubicki M. Abnormal white matter connections between medial frontal regions predict symptoms in patients with first episode schizophrenia. Cortex. 2015;71:264–76. https://doi.org/10.1016/j.cortex.2015.05.028.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Hovington CL, Bodnar M, Chakravarty MM, Joober R, Malla AK, Lepage M. Investigation of white matter abnormalities in first episode psychosis patients with persistent negative symptoms. Psychiatry Res. 2015;233(3):402–8. https://doi.org/10.1016/j.pscychresns.2015.06.017.

    Article  PubMed  Google Scholar 

  60. Szeszko PR, Robinson DG, Ashtari M, Vogel J, Betensky J, Sevy S, Ardekani BA, Lencz T, Malhotra AK, McCormack J, Miller R, Lim KO, Gunduz-Bruce H, Kane JM, Bilder RM. Clinical and neuropsychological correlates of white matter abnormalities in recent onset schizophrenia. Neuropsychopharmacology. 2008;33(5):976–84. https://doi.org/10.1038/sj.npp.1301480.

    Article  PubMed  Google Scholar 

  61. Price G, Cercignani M, Parker GJ, Altmann DR, Barnes TR, Barker GJ, Joyce EM, Ron MA. White matter tracts in first-episode psychosis: a DTI tractography study of the uncinate fasciculus. NeuroImage. 2008;39(3):949–55. https://doi.org/10.1016/j.neuroimage.2007.09.012.

    Article  PubMed  Google Scholar 

  62. Ellison-Wright I, Bullmore E. Meta-analysis of diffusion tensor imaging studies in schizophrenia. Schizophr Res. 2009;108(1–3):3–10. https://doi.org/10.1016/j.schres.2008.11.021.

    Article  PubMed  Google Scholar 

  63. Zhou Y, Shu N, Liu Y, Song M, Hao Y, Liu H, Yu C, Liu Z, Jiang T. Altered resting-state functional connectivity and anatomical connectivity of hippocampus in schizophrenia. Schizophr Res. 2008;100(1–3):120–32. https://doi.org/10.1016/j.schres.2007.11.039.

    Article  PubMed  Google Scholar 

  64. Price G, Cercignani M, Parker GJ, Altmann DR, Barnes TR, Barker GJ, Joyce EM, Ron MA. Abnormal brain connectivity in first-episode psychosis: a diffusion MRI tractography study of the corpus callosum. NeuroImage. 2007;35(2):458–66. https://doi.org/10.1016/j.neuroimage.2006.12.019.

    Article  PubMed  Google Scholar 

  65. Kuswanto CN, Teh I, Lee TS, Sim K. Diffusion tensor imaging findings of white matter changes in first episode schizophrenia: a systematic review. Clin Psychopharmacol Neurosci. 2012;10(1):13–24. https://doi.org/10.9758/cpn.2012.10.1.13.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Rowland LM, Spieker EA, Francis A, Barker PB, Carpenter WT, Buchanan RW. White matter alterations in deficit schizophrenia. Neuropsychopharmacology. 2009;34(6):1514–22. https://doi.org/10.1038/npp.2008.207.

    Article  CAS  PubMed  Google Scholar 

  67. Voineskos AN, Foussias G, Lerch J, Felsky D, Remington G, Rajji TK, Lobaugh N, Pollock BG, Mulsant BH. Neuroimaging evidence for the deficit subtype of schizophrenia. JAMA Psychiat. 2013;70(5):472–80. https://doi.org/10.1001/jamapsychiatry.2013.786.

    Article  Google Scholar 

  68. Kitis O, Ozalay O, Zengin EB, Haznedaroglu D, Eker MC, Yalvac D, Oguz K, Coburn K, Gonul AS. Reduced left uncinate fasciculus fractional anisotropy in deficit schizophrenia but not in non-deficit schizophrenia. Psychiatry Clin Neurosci. 2012;66(1):34–43. https://doi.org/10.1111/j.1440-1819.2011.02293.x.

    Article  PubMed  Google Scholar 

  69. Lee SH, Kubicki M, Asami T, Seidman LJ, Goldstein JM, Mesholam-Gately RI, McCarley RW, Shenton ME. Extensive white matter abnormalities in patients with first-episode schizophrenia: a diffusion tensor Iimaging (DTI) study. Schizophr Res. 2013;143(2–3):231–8. https://doi.org/10.1016/j.schres.2012.11.029.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Kunimatsu N, Aoki S, Kunimatsu A, Abe O, Yamada H, Masutani Y, Kasai K, Yamasue H, Ohtomo K. Tract-specific analysis of white matter integrity disruption in schizophrenia. Psychiatry Res. 2012;201(2):136–43. https://doi.org/10.1016/j.pscychresns.2011.07.010.

    Article  PubMed  Google Scholar 

  71. Kubicki M, McCarley R, Westin CF, Park HJ, Maier S, Kikinis R, Jolesz FA, Shenton ME. A review of diffusion tensor imaging studies in schizophrenia. J Psychiatr Res. 2007;41(1–2):15–30. https://doi.org/10.1016/j.jpsychires.2005.05.005.

    Article  PubMed  Google Scholar 

  72. Patel S, Mahon K, Wellington R, Zhang J, Chaplin W, Szeszko PR. A meta-analysis of diffusion tensor imaging studies of the corpus callosum in schizophrenia. Schizophr Res. 2011;129(2–3):149–55. https://doi.org/10.1016/j.schres.2011.03.014.

    Article  PubMed  Google Scholar 

  73. Boos HB, Mandl RC, van Haren NE, Cahn W, van Baal GC, Kahn RS, Hulshoff Pol HE. Tract-based diffusion tensor imaging in patients with schizophrenia and their non-psychotic siblings. Eur Neuropsychopharmacol. 2013;23(4):295–304. https://doi.org/10.1016/j.euroneuro.2012.05.015.

    Article  CAS  PubMed  Google Scholar 

  74. McIntosh AM, Munoz Maniega S, Lymer GK, McKirdy J, Hall J, Sussmann JE, Bastin ME, Clayden JD, Johnstone EC, Lawrie SM. White matter tractography in bipolar disorder and schizophrenia. Biol Psychiatry. 2008;64(12):1088–92. https://doi.org/10.1016/j.biopsych.2008.07.026.

    Article  PubMed  Google Scholar 

  75. Kumar J, Iwabuchi S, Oowise S, Balain V, Palaniyappan L, Liddle PF. Shared white-matter dysconnectivity in schizophrenia and bipolar disorder with psychosis. Psychol Med. 2015;45(4):759–70. https://doi.org/10.1017/S0033291714001810.

    Article  CAS  PubMed  Google Scholar 

  76. Sui J, Pearlson G, Caprihan A, Adali T, Kiehl KA, Liu J, Yamamoto J, Calhoun VD. Discriminating schizophrenia and bipolar disorder by fusing fMRI and DTI in a multimodal CCA+ joint ICA model. NeuroImage. 2011;57(3):839–55. https://doi.org/10.1016/j.neuroimage.2011.05.055.

    Article  PubMed  Google Scholar 

  77. Sussmann JE, Lymer GK, McKirdy J, Moorhead TW, Munoz Maniega S, Job D, Hall J, Bastin ME, Johnstone EC, Lawrie SM, McIntosh AM. White matter abnormalities in bipolar disorder and schizophrenia detected using diffusion tensor magnetic resonance imaging. Bipolar Disord. 2009;11(1):11–8. https://doi.org/10.1111/j.1399-5618.2008.00646.x.

    Article  PubMed  Google Scholar 

  78. Li J, Kale Edmiston E, Chen K, Tang Y, Ouyang X, Jiang Y, Fan G, Ren L, Liu J, Zhou Y, Jiang W, Liu Z, Xu K, Wang F. A comparative diffusion tensor imaging study of corpus callosum subregion integrity in bipolar disorder and schizophrenia. Psychiatry Res. 2014;221(1):58–62. https://doi.org/10.1016/j.pscychresns.2013.10.007.

    Article  PubMed  Google Scholar 

  79. Skudlarski P, Schretlen DJ, Thaker GK, Stevens MC, Keshavan MS, Sweeney JA, Tamminga CA, Clementz BA, O’Neil K, Pearlson GD. Diffusion tensor imaging white matter endophenotypes in patients with schizophrenia or psychotic bipolar disorder and their relatives. Am J Psychiatry. 2013;170(8):886–98. https://doi.org/10.1176/appi.ajp.2013.12111448.

    Article  PubMed  Google Scholar 

  80. Pearlson GD, Petty RG, Ross CA, Tien AY. Schizophrenia: a disease of heteromodal association cortex? Neuropsychopharmacology. 1996;14(1):1–17. https://doi.org/10.1016/S0893-133X(96)80054-6.

    Article  CAS  PubMed  Google Scholar 

  81. Kibel DA, Laffont I, Liddle PF. The composition of the negative syndrome of chronic schizophrenia. Br J Psychiatry. 1993;162:744–50.

    Article  CAS  PubMed  Google Scholar 

  82. Eisenberg DP, Berman KF. Executive function, neural circuitry, and genetic mechanisms in schizophrenia. Neuropsychopharmacology. 2010;35(1):258–77. https://doi.org/10.1038/npp.2009.111.

    Article  PubMed  Google Scholar 

  83. Birur B, Kraguljac NV, Shelton RC, Lahti AC. Brain structure, function, and neurochemistry in schizophrenia and bipolar disorder-a systematic review of the magnetic resonance neuroimaging literature. NPJ Schizophr. 2017;3:15. https://doi.org/10.1038/s41537-017-0013-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Minzenberg MJ, Laird AR, Thelen S, Carter CS, Glahn DC. Meta-analysis of 41 functional neuroimaging studies of executive function in schizophrenia. Arch Gen Psychiatry. 2009;66(8):811–22. https://doi.org/10.1001/archgenpsychiatry.2009.91.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Fusar-Poli P, Meyer-Lindenberg A. Striatal presynaptic dopamine in schizophrenia, part II: meta-analysis of [(18)F/(11)C]-DOPA PET studies. Schizophr Bull. 2013;39(1):33–42. https://doi.org/10.1093/schbul/sbr180.

    Article  PubMed  Google Scholar 

  86. Smieskova R, Marmy J, Schmidt A, Bendfeldt K, Riecher-Rssler A, Walter M, Lang UE, Borgwardt S. Do subjects at clinical high risk for psychosis differ from those with a genetic high risk? A systematic review of structural and functional brain abnormalities. Curr Med Chem. 2013;20(3):467–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Taylor SF, Kang J, Brege IS, Tso IF, Hosanagar A, Johnson TD. Meta-analysis of functional neuroimaging studies of emotion perception and experience in schizophrenia. Biol Psychiatry. 2012;71(2):136–45. https://doi.org/10.1016/j.biopsych.2011.09.007.

    Article  PubMed  Google Scholar 

  88. Fusar-Poli P. Voxel-wise meta-analysis of fMRI studies in patients at clinical high risk for psychosis. J Psychiatry Neurosci. 2012;37(2):106–12. https://doi.org/10.1503/jpn.110021.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Radua J, Borgwardt S, Crescini A, Mataix-Cols D, Meyer-Lindenberg A, McGuire PK, Fusar-Poli P. Multimodal meta-analysis of structural and functional brain changes in first episode psychosis and the effects of antipsychotic medication. Neurosci Biobehav Rev. 2012;36(10):2325–33. https://doi.org/10.1016/j.neubiorev.2012.07.012.

    Article  CAS  PubMed  Google Scholar 

  90. Jardri R, Pouchet A, Pins D, Thomas P. Cortical activations during auditory verbal hallucinations in schizophrenia: a coordinate-based meta-analysis. Am J Psychiatry. 2011;168(1):73–81. https://doi.org/10.1176/appi.ajp.2010.09101522.

    Article  PubMed  Google Scholar 

  91. Cooper D, Barker V, Radua J, Fusar-Poli P, Lawrie SM. Multimodal voxel-based meta-analysis of structural and functional magnetic resonance imaging studies in those at elevated genetic risk of developing schizophrenia. Psychiatry Res. 2014;221(1):69–77. https://doi.org/10.1016/j.pscychresns.2013.07.008.

    Article  PubMed  Google Scholar 

  92. Smith EE, Jonides J. Storage and executive processes in the frontal lobes. Science. 1999;283(5408):1657–61.

    Article  CAS  PubMed  Google Scholar 

  93. Miller EK, Cohen JD. An integrative theory of prefrontal cortex function. Annu Rev Neurosci. 2001;24:167–202. https://doi.org/10.1146/annurev.neuro.24.1.167.

    Article  CAS  PubMed  Google Scholar 

  94. Kerns JG, Cohen JD, MacDonald AW 3rd, Cho RY, Stenger VA, Carter CS. Anterior cingulate conflict monitoring and adjustments in control. Science. 2004;303(5660):1023–6. https://doi.org/10.1126/science.1089910.

    Article  CAS  PubMed  Google Scholar 

  95. Taylor SF, Chen AC, Tso IF, Liberzon I, Welsh RC. Social appraisal in chronic psychosis: role of medial frontal and occipital networks. J Psychiatr Res. 2011;45(4):526–38. https://doi.org/10.1016/j.jpsychires.2010.08.004.

    Article  PubMed  Google Scholar 

  96. Taylor SF, Phan KL, Britton JC, Liberzon I. Neural response to emotional salience in schizophrenia. Neuropsychopharmacology. 2005;30(5):984–95. https://doi.org/10.1038/sj.npp.1300679.

    Article  PubMed  Google Scholar 

  97. Amodio DM, Frith CD. Meeting of minds: the medial frontal cortex and social cognition. Nat Rev Neurosci. 2006;7(4):268–77. https://doi.org/10.1038/nrn1884.

    Article  CAS  PubMed  Google Scholar 

  98. Kennerley SW, Walton ME, Behrens TE, Buckley MJ, Rushworth MF. Optimal decision making and the anterior cingulate cortex. Nat Neurosci. 2006;9(7):940–7. https://doi.org/10.1038/nn1724.

    Article  CAS  PubMed  Google Scholar 

  99. Barta PE, Pearlson GD, Powers RE, Richards SS, Tune LE. Auditory hallucinations and smaller superior temporal gyral volume in schizophrenia. Am J Psychiatry. 1990;147(11):1457–62. https://doi.org/10.1176/ajp.147.11.1457.

    Article  CAS  PubMed  Google Scholar 

  100. Onitsuka T, Shenton ME, Salisbury DF, Dickey CC, Kasai K, Toner SK, Frumin M, Kikinis R, Jolesz FA, McCarley RW. Middle and inferior temporal gyrus gray matter volume abnormalities in chronic schizophrenia: an MRI study. Am J Psychiatry. 2004;161(9):1603–11. https://doi.org/10.1176/appi.ajp.161.9.1603.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Catani M, Jones DK, ffytche DH. Perisylvian language networks of the human brain. Ann Neurol. 2005;57(1):8–16. https://doi.org/10.1002/ana.20319.

    Article  PubMed  Google Scholar 

  102. Gruber O, Gruber E, Falkai P. Articulatory rehearsal in verbal working memory: a possible neurocognitive endophenotype that differentiates between schizophrenia and schizoaffective disorder. Neurosci Lett. 2006;405(1–2):24–8. https://doi.org/10.1016/j.neulet.2006.06.062.

    Article  CAS  PubMed  Google Scholar 

  103. Brandt CL, Eichele T, Melle I, Sundet K, Server A, Agartz I, Hugdahl K, Jensen J, Andreassen OA. Working memory networks and activation patterns in schizophrenia and bipolar disorder: comparison with healthy controls. Br J Psychiatry. 2014;204:290–8. https://doi.org/10.1192/bjp.bp.113.129254.

    Article  PubMed  Google Scholar 

  104. Milanovic SM, Thermenos HW, Goldstein JM, Brown A, Gabrieli SW, Makris N, Tsuang MT, Buka SL, Seidman LJ. Medial prefrontal cortical activation during working memory differentiates schizophrenia and bipolar psychotic patients: a pilot FMRI study. Schizophr Res. 2011;129(2–3):208–10. https://doi.org/10.1016/j.schres.2011.02.025.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Raichle ME, Snyder AZ. A default mode of brain function: a brief history of an evolving idea. NeuroImage. 2007;37(4):1083–90. https://doi.org/10.1016/j.neuroimage.2007.02.041.

    Article  PubMed  Google Scholar 

  106. Meda SA, Ruano G, Windemuth A, O'Neil K, Berwise C, Dunn SM, Boccaccio LE, Narayanan B, Kocherla M, Sprooten E, Keshavan MS, Tamminga CA, Sweeney JA, Clementz BA, Calhoun VD, Pearlson GD. Multivariate analysis reveals genetic associations of the resting default mode network in psychotic bipolar disorder and schizophrenia. Proc Natl Acad Sci U S A. 2014;111(19):E2066–75. https://doi.org/10.1073/pnas.1313093111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Ongur D, Lundy M, Greenhouse I, Shinn AK, Menon V, Cohen BM, Renshaw PF. Default mode network abnormalities in bipolar disorder and schizophrenia. Psychiatry Res. 2010;183(1):59–68. https://doi.org/10.1016/j.pscychresns.2010.04.008.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Madre M, Pomarol-Clotet E, McKenna P, Radua J, Ortiz-Gil J, Panicali F, Goikolea JM, Vieta E, Sarro S, Salvador R, Amann BL. Brain functional abnormality in schizo-affective disorder: an fMRI study. Psychol Med. 2013;43(1):143–53. https://doi.org/10.1017/S0033291712000943.

    Article  CAS  PubMed  Google Scholar 

  109. Madre M, Radua J, Landin-Romero R, Alonso-Lana S, Salvador R, Panicali F, Pomarol-Clotet E, Amann BL. Trait or state? A longitudinal neuropsychological evaluation and fMRI study in schizoaffective disorder. Schizophr Res. 2014;159(2–3):458–64. https://doi.org/10.1016/j.schres.2014.08.017.

    Article  PubMed  Google Scholar 

  110. Madre M, Canales-Rodriguez EJ, Ortiz-Gil J, Murru A, Torrent C, Bramon E, Perez V, Orth M, Brambilla P, Vieta E, Amann BL. Neuropsychological and neuroimaging underpinnings of schizoaffective disorder: a systematic review. Acta Psychiatr Scand. 2016;134(1):16–30. https://doi.org/10.1111/acps.12564.

    Article  CAS  PubMed  Google Scholar 

  111. Pomarol-Clotet E, Salvador R, Sarro S, Gomar J, Vila F, Martinez A, Guerrero A, Ortiz-Gil J, Sans-Sansa B, Capdevila A, Cebamanos JM, McKenna PJ. Failure to deactivate in the prefrontal cortex in schizophrenia: dysfunction of the default mode network? Psychol Med. 2008;38(8):1185–93. https://doi.org/10.1017/S0033291708003565.

    Article  CAS  PubMed  Google Scholar 

  112. Salgado-Pineda P, Fakra E, Delaveau P, McKenna PJ, Pomarol-Clotet E, Blin O. Correlated structural and functional brain abnormalities in the default mode network in schizophrenia patients. Schizophr Res. 2011;125(2–3):101–9. https://doi.org/10.1016/j.schres.2010.10.027.

    Article  CAS  PubMed  Google Scholar 

  113. Pomarol-Clotet E, Alonso-Lana S, Moro N, Sarro S, Bonnin MC, Goikolea JM, Fernandez-Corcuera P, Amann BL, Romaguera A, Vieta E, Blanch J, McKenna PJ, Salvador R. Brain functional changes across the different phases of bipolar disorder. Br J Psychiatry. 2015;206(2):136–44. https://doi.org/10.1192/bjp.bp.114.152033.

    Article  PubMed  Google Scholar 

  114. Fornito A, Bullmore ET. Reconciling abnormalities of brain network structure and function in schizophrenia. Curr Opin Neurobiol. 2015;30:44–50. https://doi.org/10.1016/j.conb.2014.08.006.

    Article  CAS  PubMed  Google Scholar 

  115. Baker JT, Holmes AJ, Masters GA, Yeo BT, Krienen F, Buckner RL, Ongur D. Disruption of cortical association networks in schizophrenia and psychotic bipolar disorder. JAMA Psychiat. 2014;71(2):109–18. https://doi.org/10.1001/jamapsychiatry.2013.3469.

    Article  Google Scholar 

  116. Kraguljac NV, Reid M, White D, Jones R, den Hollander J, Lowman D, Lahti AC. Neurometabolites in schizophrenia and bipolar disorder–a systematic review and meta-analysis. Psychiatry Res. 2012;203(2–3):111–25. https://doi.org/10.1016/j.pscychresns.2012.02.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Brugger S, Davis JM, Leucht S, Stone JM. Proton magnetic resonance spectroscopy and illness stage in schizophrenia–a systematic review and meta-analysis. Biol Psychiatry. 2011;69(5):495–503. https://doi.org/10.1016/j.biopsych.2010.10.004.

    Article  PubMed  Google Scholar 

  118. Marsman A, van den Heuvel MP, Klomp DW, Kahn RS, Luijten PR, Hulshoff Pol HE. Glutamate in schizophrenia: a focused review and meta-analysis of (1)H-MRS studies. Schizophr Bull. 2013;39(1):120–9. https://doi.org/10.1093/schbul/sbr069.

    Article  PubMed  Google Scholar 

  119. Kalayci D, Ozdel O, Sozeri-Varma G, Kiroglu Y, Tumkaya S. A proton magnetic resonance spectroscopy study in schizoaffective disorder: comparison of bipolar disorder and schizophrenia. Prog Neuro-Psychopharmacol Biol Psychiatry. 2012;37(1):176–81. https://doi.org/10.1016/j.pnpbp.2012.01.010.

    Article  Google Scholar 

  120. Carpenter WT Jr, Heinrichs DW, Wagman AM. Deficit and nondeficit forms of schizophrenia: the concept. Am J Psychiatry. 1988;145(5):578–83. https://doi.org/10.1176/ajp.145.5.578.

    Article  PubMed  Google Scholar 

  121. Kirkpatrick B, Buchanan RW, McKenney PD, Alphs LD, Carpenter WT Jr. The schedule for the deficit syndrome: an instrument for research in schizophrenia. Psychiatry Res. 1989;30(2):119–23.

    Article  CAS  PubMed  Google Scholar 

  122. Kirkpatrick B, Buchanan RW, Ross DE, Carpenter WT Jr. A separate disease within the syndrome of schizophrenia. Arch Gen Psychiatry. 2001;58(2):165–71.

    Article  CAS  PubMed  Google Scholar 

  123. Buchanan RW, Breier A, Kirkpatrick B, Ball P, Carpenter WT Jr. Positive and negative symptom response to clozapine in schizophrenic patients with and without the deficit syndrome. Am J Psychiatry. 1998;155(6):751–60. https://doi.org/10.1176/ajp.155.6.751.

    Article  CAS  PubMed  Google Scholar 

  124. Galderisi S, Maj M, Mucci A, Cassano GB, Invernizzi G, Rossi A, Vita A, Dell'Osso L, Daneluzzo E, Pini S. Historical, psychopathological, neurological, and neuropsychological aspects of deficit schizophrenia: a multicenter study. Am J Psychiatry. 2002;159(6):983–90. https://doi.org/10.1176/appi.ajp.159.6.983.

    Article  PubMed  Google Scholar 

  125. Galderisi S, Bucci P, Mucci A, Kirkpatrick B, Pini S, Rossi A, Vita A, Maj M. Categorical and dimensional approaches to negative symptoms of schizophrenia: focus on long-term stability and functional outcome. Schizophr Res. 2013;147(1):157–62. https://doi.org/10.1016/j.schres.2013.03.020.

    Article  PubMed  Google Scholar 

  126. Cohen AS, Saperstein AM, Gold JM, Kirkpatrick B, Carpenter WT Jr, Buchanan RW. Neuropsychology of the deficit syndrome: new data and meta-analysis of findings to date. Schizophr Bull. 2007;33(5):1201–12. https://doi.org/10.1093/schbul/sbl066.

    Article  PubMed  Google Scholar 

  127. Galderisi S, Quarantelli M, Volpe U, Mucci A, Cassano GB, Invernizzi G, Rossi A, Vita A, Pini S, Cassano P, Daneluzzo E, De Peri L, Stratta P, Brunetti A, Maj M. Patterns of structural MRI abnormalities in deficit and nondeficit schizophrenia. Schizophr Bull. 2008;34(2):393–401. https://doi.org/10.1093/schbul/sbm097.

    Article  PubMed  Google Scholar 

  128. Quarantelli M, Larobina M, Volpe U, Amati G, Tedeschi E, Ciarmiello A, Brunetti A, Galderisi S, Alfano B. Stereotaxy-based regional brain volumetry applied to segmented MRI: validation and results in deficit and nondeficit schizophrenia. NeuroImage. 2002;17(1):373–84.

    Article  PubMed  Google Scholar 

  129. Gur RE, Mozley PD, Shtasel DL, Cannon TD, Gallacher F, Turetsky B, Grossman R, Gur RC. Clinical subtypes of schizophrenia: differences in brain and CSF volume. Am J Psychiatry. 1994;151(3):343–50. https://doi.org/10.1176/ajp.151.3.343.

    Article  CAS  PubMed  Google Scholar 

  130. Arango C, McMahon RP, Lefkowitz DM, Pearlson G, Kirkpatrick B, Buchanan RW. Patterns of cranial, brain and sulcal CSF volumes in male and female deficit and nondeficit patients with schizophrenia. Psychiatry Res. 2008;162(2):91–100. https://doi.org/10.1016/j.pscychresns.2007.06.002.

    Article  PubMed  Google Scholar 

  131. Turetsky B, Cowell PE, Gur RC, Grossman RI, Shtasel DL, Gur RE. Frontal and temporal lobe brain volumes in schizophrenia. Relationship to symptoms and clinical subtype. Arch Gen Psychiatry. 1995;52(12):1061–70.

    Article  CAS  PubMed  Google Scholar 

  132. Cascella NG, Fieldstone SC, Rao VA, Pearlson GD, Sawa A, Schretlen DJ. Gray-matter abnormalities in deficit schizophrenia. Schizophr Res. 2010;120(1–3):63–70. https://doi.org/10.1016/j.schres.2010.03.039.

    Article  PubMed  Google Scholar 

  133. Fischer BA, Keller WR, Arango C, Pearlson GD, McMahon RP, Meyer WA, Francis A, Kirkpatrick B, Carpenter WT, Buchanan RW. Cortical structural abnormalities in deficit versus nondeficit schizophrenia. Schizophr Res. 2012;136(1–3):51–4. https://doi.org/10.1016/j.schres.2012.01.030.

    Article  PubMed  PubMed Central  Google Scholar 

  134. Wheeler AL, Wessa M, Szeszko PR, Foussias G, Chakravarty MM, Lerch JP, DeRosse P, Remington G, Mulsant BH, Linke J, Malhotra AK, Voineskos AN. Further neuroimaging evidence for the deficit subtype of schizophrenia: a cortical connectomics analysis. JAMA Psychiat. 2015;72(5):446–55. https://doi.org/10.1001/jamapsychiatry.2014.3020.

    Article  Google Scholar 

  135. Mucci A, Merlotti E, Ucok A, Aleman A, Galderisi S. Primary and persistent negative symptoms: concepts, assessments and neurobiological bases. Schizophr Res. 2017;186:19–28. https://doi.org/10.1016/j.schres.2016.05.014.

    Article  PubMed  Google Scholar 

  136. Kirkpatrick B, Mucci A, Galderisi S. Primary, enduring negative symptoms: an update on research. Schizophr Bull. 2017;43(4):730–6. https://doi.org/10.1093/schbul/sbx064.

    Article  PubMed  PubMed Central  Google Scholar 

  137. Mucci A, Dima D, Soricelli A, Volpe U, Bucci P, Frangou S, Prinster A, Salvatore M, Galderisi S, Maj M. Is avolition in schizophrenia associated with a deficit of dorsal caudate activity? A functional magnetic resonance imaging study during reward anticipation and feedback. Psychol Med. 2015;45(8):1765–78. https://doi.org/10.1017/S0033291714002943.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Wassink TH, Andreasen NC, Nopoulos P, Flaum M. Cerebellar morphology as a predictor of symptom and psychosocial outcome in schizophrenia. Biol Psychiatry. 1999;45(1):41–8.

    Article  CAS  PubMed  Google Scholar 

  139. Arango C, Rapado-Castro M, Reig S, Castro-Fornieles J, Gonzalez-Pinto A, Otero S, Baeza I, Moreno C, Graell M, Janssen J, Parellada M, Moreno D, Bargallo N, Desco M. Progressive brain changes in children and adolescents with first-episode psychosis. Arch Gen Psychiatry. 2012;69(1):16–26. https://doi.org/10.1001/archgenpsychiatry.2011.150.

    Article  PubMed  Google Scholar 

  140. Honer WG, Smith GN, Lapointe JS, MacEwan GW, Kopala L, Altman S. Regional cortical anatomy and clozapine response in refractory schizophrenia. Neuropsychopharmacology. 1995;13(1):85–7. https://doi.org/10.1016/0893-133X(95)00017-8.

    Article  CAS  PubMed  Google Scholar 

  141. Konicki PE, Kwon KY, Steele V, White J, Fuller M, Jurjus GJ, Jaskiw GE. Prefrontal cortical sulcal widening associated with poor treatment response to clozapine. Schizophr Res. 2001;48(2–3):173–6.

    Article  CAS  PubMed  Google Scholar 

  142. Friedman L, Knutson L, Shurell M, Meltzer HY. Prefrontal sulcal prominence is inversely related to response to clozapine in schizophrenia. Biol Psychiatry. 1991;29(9):865–77.

    Article  CAS  PubMed  Google Scholar 

  143. Arango C, Breier A, McMahon R, Carpenter WT Jr, Buchanan RW. The relationship of clozapine and haloperidol treatment response to prefrontal, hippocampal, and caudate brain volumes. Am J Psychiatry. 2003;160(8):1421–7. https://doi.org/10.1176/appi.ajp.160.8.1421.

    Article  PubMed  Google Scholar 

  144. Molina Rodriguez V, Reig S, Sarramea F, Sanz J, Francisco Artaloytia J, Luque R, Aragues M, Pascau J, Benito C, Palomo T, Desco M. Anatomical and functional brain variables associated with clozapine response in treatment-resistant schizophrenia. Psychiatry Res. 2003;124(3):153–61.

    Article  Google Scholar 

  145. Molina Rodriguez V, Martin C, Ballesteros A, de Herrera AG, Hernandez-Tamames JA. Optimized voxel brain morphometry: association between brain volumes and the response to atypical antipsychotics. Eur Arch Psychiatry Clin Neurosci. 2011;261(6):407–16. https://doi.org/10.1007/s00406-010-0182-2.

    Article  Google Scholar 

  146. Garver DL, Holcomb JA, Christensen JD. Compromised myelin integrity during psychosis with repair during remission in drug-responding schizophrenia. Int J Neuropsychopharmacol. 2008;11(1):49–61. https://doi.org/10.1017/S1461145707007730.

    Article  CAS  PubMed  Google Scholar 

  147. Jaaskelainen E, Juola P, Kurtti J, Haapea M, Kyllonen M, Miettunen J, Tanskanen P, Murray GK, Huhtaniska S, Barnes A, Veijola J, Isohanni M. Associations between brain morphology and outcome in schizophrenia in a general population sample. Eur Psychiatry. 2014;29:456–62.

    Article  CAS  PubMed  Google Scholar 

  148. Molina Rodriguez V, Montz Andreé R, Perez Castejon MJ, Capdevila Garcia E, Carreras Delgado JL, Rubia Vila FJ. SPECT study of regional cerebral perfusion in neuroleptic-resistant schizophrenic patients who responded or did not respond to clozapine. Am J Psychiatry. 1996;153:1343–6.

    Article  CAS  PubMed  Google Scholar 

  149. Molina Rodriguez V, Andree R, Castejon M, Zamora M, Alvaro P, Delgado J, Vila FJ. Fronto-striato-thalamic perfusion and clozapine response in treatment-refractory schizophrenic patients. A 99mTc-HMPAO study. Psychiatry Res. 1997;76:51–61.

    Article  Google Scholar 

  150. Mitelman SA, Newmark RE, Torosjan Y, Chu KW, Brickman AM, Haznedar MM, Hazlett EA, Tang CY, Shihabuddin L, Buchsbaum MS. White matter fractional anisotropy and outcome in schizophrenia. Schizophr Res. 2006;87(1–3):138–59. https://doi.org/10.1016/j.schres.2006.06.016.

    Article  PubMed  Google Scholar 

  151. Ertugrul A, Volkan-Salanci B, Basar K, Karli Oguz K, Demir B, Ergun E, Senturk S, Erbas B, Cila A, Ulug B. The effect of clozapine on regional cerebral blood flow and brain metabolite ratios in schizophrenia: relationship with treatment response. Psychiatry Res. 2009;174:121–9.

    Article  CAS  PubMed  Google Scholar 

  152. Lahti AC, Weiler M, Holcomb H, Tamminga C, Cropsey KL. Modulation of limbic circuitry predicts treatment response to antipsychotic medication: a functional imaging study in schizophrenia. Neuropsychopharmacology. 2009;34:2675–90.

    Article  CAS  PubMed  Google Scholar 

  153. van Haren NE, Hulshoff PH, Schnack H, Cahn W, Mandl R, Collins D, Evans A, Kahn RS. Focal gray matter changes in schizophrenia across the course of the illness: a 5-year follow-up study. Neuropychopharmacology. 2007;32:2057–66.

    Article  Google Scholar 

  154. van Haren NE, Schnack HG, Cahn W, van den Heuvel MP, Lepage C, Collins L, Evans AC, Hulshoff Pol HE, Kahn RS. Changes in cortical thickness during the course of illness in schizophrenia. Arch Gen Psychiatry. 2011;68(9):871–80. https://doi.org/10.1001/archgenpsychiatry.2011.88.

    Article  PubMed  Google Scholar 

  155. van Haren NE, Cahn W, Hulshoff Pol HE, Schnack HG, Caspers E, Lemstra A, Sitskoorn MM, Wiersma D, van den Bosch RJ, Dingemans PM, Schene AH, Kahn RS. Brain volumes as predictor of outcome in recent-onset schizophrenia: a multi-center MRI study. Schizophr Res. 2003;64(1):41–52.

    Article  PubMed  Google Scholar 

  156. Navari S, Dazzan P. Do antipsychotic drugs affect brain structure? A systematic and critical review of MRI findings. Psychol Med. 2009;39(11):1763–77. https://doi.org/10.1017/S0033291709005315.

    Article  CAS  PubMed  Google Scholar 

  157. Mane A, Falcon C, Mateos JJ, Fernandez-Egea E, Horga G, Lomena F, Bargallo N, Prats-Galino A, Bernardo M, Parellada E. Progressive gray matter changes in first episode schizophrenia: a 4-year longitudinal magnetic resonance study using VBM. Schizophr Res. 2009;114(1–3):136–43. https://doi.org/10.1016/j.schres.2009.07.014.

    Article  PubMed  Google Scholar 

  158. Lappin JM, Morgan C, Chalavi S, Morgan KD, Reinders AA, Fearon P, Heslin M, Zanelli J, Jones PB, Murray RM, Dazzan P. Bilateral hippocampal increase following first-episode psychosis is associated with good clinical, functional and cognitive outcomes. Psychol Med. 2014;44(6):1279–91. https://doi.org/10.1017/S0033291713001712.

    Article  CAS  PubMed  Google Scholar 

  159. Boter H, Peuskens J, Libiger J, Fleischhacker WW, Davidson M, Galderisi S, Kahn RS, Group ES. Effectiveness of antipsychotics in first-episode schizophrenia and schizophreniform disorder on response and remission: an open randomized clinical trial (EUFEST). Schizophr Res. 2009;115(2–3):97–103. https://doi.org/10.1016/j.schres.2009.09.019.

    Article  PubMed  Google Scholar 

  160. Emsley R, Rabinowitz J, Medori R, Early Psychosis Global Working G. Remission in early psychosis: rates, predictors, and clinical and functional outcome correlates. Schizophr Res. 2007;89(1–3):129–39. https://doi.org/10.1016/j.schres.2006.09.013.

    Article  PubMed  Google Scholar 

  161. Lambert M, Naber D, Schacht A, Wagner T, Hundemer HP, Karow A, Huber CG, Suarez D, Haro JM, Novick D, Dittmann RW, Schimmelmann BG. Rates and predictors of remission and recovery during 3 years in 392 never-treated patients with schizophrenia. Acta Psychiatr Scand. 2008;118(3):220–9. https://doi.org/10.1111/j.1600-0447.2008.01213.x.

    Article  CAS  PubMed  Google Scholar 

  162. Lieberman J, Jody D, Geisler S, Alvir J, Loebel A, Szymanski S, Woerner M, Borenstein M. Time course and biologic correlates of treatment response in first-episode schizophrenia. Arch Gen Psychiatry. 1993;50(5):369–76.

    Article  CAS  PubMed  Google Scholar 

  163. Zipursky RB, Zhang-Wong J, Lambe EK, Bean G, Beiser M. MRI correlates of treatment response in first episode psychosis. Schizophr Res. 1998;30(1):81–90.

    Article  CAS  PubMed  Google Scholar 

  164. Prasad KM, Sahni SD, Rohm BR, Keshavan MS. Dorsolateral prefrontal cortex morphology and short-term outcome in first-episode schizophrenia. Psychiatry Res. 2005;140(2):147–55. https://doi.org/10.1016/j.pscychresns.2004.05.009.

    Article  PubMed  Google Scholar 

  165. Wobrock T, Gruber O, Schneider-Axmann T, Wolwer W, Gaebel W, Riesbeck M, Maier W, Klosterkotter J, Schneider F, Buchkremer G, Moller HJ, Schmitt A, Bender S, Schlosser R, Falkai P. Internal capsule size associated with outcome in first-episode schizophrenia. Eur Arch Psychiatry Clin Neurosci. 2009;259(5):278–83. https://doi.org/10.1007/s00406-008-0867-y.

    Article  PubMed  PubMed Central  Google Scholar 

  166. Kasparek T, Prikryl R, Schwarz D, Kucerova H, Marecek R, Mikl M, Vanicek J, Ceskova E. Gray matter morphology and the level of functioning in one-year follow-up of first-episode schizophrenia patients. Prog Neuro-Psychopharmacol Biol Psychiatry. 2009;33(8):1438–46. https://doi.org/10.1016/j.pnpbp.2009.07.025.

    Article  Google Scholar 

  167. Luck D, Buchy L, Czechowska Y, Bodnar M, Pike GB, Campbell JS, Achim A, Malla A, Joober R, Lepage M. Fronto-temporal disconnectivity and clinical short-term outcome in first episode psychosis: a DTI-tractography study. J Psychiatr Res. 2011;45(3):369–77. https://doi.org/10.1016/j.jpsychires.2010.07.007.

    Article  PubMed  Google Scholar 

  168. Bodnar M, Harvey PO, Malla AK, Joober R, Lepage M. The parahippocampal gyrus as a neural marker of early remission in first-episode psychosis: a voxel-based morphometry study. Clin Schizophr Relat Psychoses. 2011;4(4):217–28. https://doi.org/10.3371/CSRP.4.4.2.

    Article  PubMed  Google Scholar 

  169. Bodnar M, Malla AK, Joober R, Lord C, Smith E, Pruessner J, Lepage M. Neural markers of early remission in first-episode schizophrenia: a volumetric neuroimaging study of the parahippocampus. Psychiatry Res. 2012;201(1):40–7. https://doi.org/10.1016/j.pscychresns.2011.07.012.

    Article  PubMed  Google Scholar 

  170. Szeszko PR, Narr KL, Phillips OR, McCormack J, Sevy S, Gunduz-Bruce H, Kane JM, Bilder RM, Robinson DG. Magnetic resonance imaging predictors of treatment response in first-episode schizophrenia. Schizophr Bull. 2012;38(3):569–78. https://doi.org/10.1093/schbul/sbq126.

    Article  PubMed  Google Scholar 

  171. Palaniyappan L, Marques TR, Taylor H, Handley R, Mondelli V, Bonaccorso S, Giordano A, McQueen G, DiForti M, Simmons A, David AS, Pariante CM, Murray RM, Dazzan P. Cortical folding defects as markers of poor treatment response in first-episode psychosis. JAMA Psychiat. 2013;70(10):1031–40. https://doi.org/10.1001/jamapsychiatry.2013.203.

    Article  Google Scholar 

  172. Reis Marques T, Taylor H, Chaddock C, Dell’Acqua F, Handley R, Reinders AATS, Mondelli V, Bonaccorso S, DiForti M, Simmons A, Murray RM, Pariante CM, Kapur S, Dazzan P. White matter integrity as a predictor of response to treatment in first episode psychosis. Brain. 2014;137:172–82.

    Article  PubMed  Google Scholar 

  173. Fung G, Cheung C, Chen E, Lam C, Chiu C, Law CW, Leung MK, Deng M, Cheung V, Qi L, Nailin Y, Tai KS, Yip L, Suckling J, Sham P, McAlonan G, Chua SE. MRI predicts remission at 1 year in first-episode schizophrenia in females with larger striato-thalamic volumes. Neuropsychobiology. 2014;69(4):243–8. https://doi.org/10.1159/000358837.

    Article  PubMed  Google Scholar 

  174. Yung AR, McGorry PD. The prodromal phase of first-episode psychosis: past and current conceptualizations. Schizophr Bull. 1996;22(2):353–70.

    Article  CAS  PubMed  Google Scholar 

  175. Yung AR, Phillips LJ, McGorry PD, McFarlane CA, Francey S, Harrigan S, Patton GC, Jackson HJ. Prediction of psychosis. A step towards indicated prevention of schizophrenia. Br J Psychiatry Suppl. 1998;172(33):14–20.

    Article  CAS  PubMed  Google Scholar 

  176. Yung AR, Stanford C, Cosgrave E, Killackey E, Phillips L, Nelson B, McGorry PD. Testing the ultra high risk (prodromal) criteria for the prediction of psychosis in a clinical sample of young people. Schizophr Res. 2006;84(1):57–66. https://doi.org/10.1016/j.schres.2006.03.014.

    Article  PubMed  Google Scholar 

  177. Fusar-Poli P, Bonoldi I, Yung AR, Borgwardt S, Kempton MJ, Valmaggia L, Barale F, Caverzasi E, McGuire P. Predicting psychosis: meta-analysis of transition outcomes in individuals at high clinical risk. Arch Gen Psychiatry. 2012;69(3):220–9. https://doi.org/10.1001/archgenpsychiatry.2011.1472.

    Article  PubMed  Google Scholar 

  178. Fusar-Poli P, Borgwardt S, Bechdolf A, Addington J, Riecher-Rossler A, Schultze-Lutter F, Keshavan M, Wood S, Ruhrmann S, Seidman LJ, Valmaggia L, Cannon T, Velthorst E, De Haan L, Cornblatt B, Bonoldi I, Birchwood M, McGlashan T, Carpenter W, McGorry P, Klosterkotter J, McGuire P, Yung A. The psychosis high-risk state: a comprehensive state-of-the-art review. JAMA Psychiat. 2013;70(1):107–20. https://doi.org/10.1001/jamapsychiatry.2013.269.

    Article  Google Scholar 

  179. Nelson B, Yuen HP, Wood SJ, Lin A, Spiliotacopoulos D, Bruxner A, Broussard C, Simmons M, Foley DL, Brewer WJ, Francey SM, Amminger GP, Thompson A, McGorry PD, Yung AR. Long-term follow-up of a group at ultra high risk (“prodromal”) for psychosis: the PACE 400 study. JAMA Psychiat. 2013;70(8):793–802. https://doi.org/10.1001/jamapsychiatry.2013.1270.

    Article  Google Scholar 

  180. Lin A, Yung AR, Nelson B, Brewer WJ, Riley R, Simmons M, Pantelis C, Wood SJ. Neurocognitive predictors of transition to psychosis: medium- to long-term findings from a sample at ultra-high risk for psychosis. Psychol Med. 2013;43(11):2349–60. https://doi.org/10.1017/S0033291713000123.

    Article  CAS  PubMed  Google Scholar 

  181. Kempton MJ, Bonoldi I, Valmaggia L, McGuire P, Fusar-Poli P. Speed of psychosis progression in people at ultra-high clinical risk: a complementary meta-analysis. JAMA Psychiat. 2015;72(6):622–3. https://doi.org/10.1001/jamapsychiatry.2015.0094.

    Article  Google Scholar 

  182. Mechelli A, Prata D, Kefford C, Kapur S. Predicting clinical response in people at ultra-high risk of psychosis: a systematic and quantitative review. Drug Discov Today. 2015;20(8):924–7. https://doi.org/10.1016/j.drudis.2015.03.003.

    Article  PubMed  Google Scholar 

  183. McGorry PD, Killackey E, Yung A. Early intervention in psychosis: concepts, evidence and future directions. World Psychiatry. 2008;7(3):148–56.

    Article  PubMed  PubMed Central  Google Scholar 

  184. Fusar-Poli P, Cappucciati M, Rutigliano G, Schultze-Lutter F, Bonoldi I, Borgwardt S, Riecher-Rossler A, Addington J, Perkins D, Woods SW, McGlashan TH, Lee J, Klosterkotter J, Yung AR, McGuire P. At risk or not at risk? A meta-analysis of the prognostic accuracy of psychometric interviews for psychosis prediction. World Psychiatry. 2015;14(3):322–32. https://doi.org/10.1002/wps.20250.

    Article  PubMed  PubMed Central  Google Scholar 

  185. Kempton MJ, McGuire P. How can neuroimaging facilitate the diagnosis and stratification of patients with psychosis? Eur Neuropsychopharmacol. 2015;25(5):725–32. https://doi.org/10.1016/j.euroneuro.2014.07.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Iwabuchi SJ, Liddle PF, Palaniyappan L. Clinical utility of machine-learning approaches in schizophrenia: improving diagnostic confidence for translational neuroimaging. Front Psych. 2013;4:95. https://doi.org/10.3389/fpsyt.2013.00095.

    Article  Google Scholar 

  187. Hastie T, Tibshirani R, Botstein D, Brown P. Supervised harvesting of expression trees. Genome Biol. 2001;2(1):RESEARCH0003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Deo RC. Machine learning in medicine. Circulation. 2015;132(20):1920–30. https://doi.org/10.1161/CIRCULATIONAHA.115.001593.

    Article  PubMed  PubMed Central  Google Scholar 

  189. Kotsiantis SB. Supervised machine learning: a review of classification techniques. Informatica. 2007;31:249–68.

    Google Scholar 

  190. McGuire P, Sato JR, Mechelli A, Jackowski A, Bressan RA, Zugman A. Can neuroimaging be used to predict the onset of psychosis? Lancet. 2015;2(12):1117–22. https://doi.org/10.1016/s2215-0366(15)00308-9.

    Article  Google Scholar 

  191. Ortiz-Rosario A, Adeli H. Brain-computer interface technologies: from signal to action. Rev Neurosci. 2013;24(5):537–52. https://doi.org/10.1515/revneuro-2013-0032.

    Article  PubMed  Google Scholar 

  192. Lemm S, Blankertz B, Dickhaus T, Muller KR. Introduction to machine learning for brain imaging. NeuroImage. 2011;56(2):387–99. https://doi.org/10.1016/j.neuroimage.2010.11.004.

    Article  PubMed  Google Scholar 

  193. Jain S, Tumkur KR, Kuo TT, Bhargava S, Lin G, Hsu CN. Weakly supervised learning of biomedical information extraction from curated data. BMC Bioinformatics. 2016;17(Suppl 1):1. https://doi.org/10.1186/s12859-015-0844-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Bastanlar Y, Ozuysal M. Introduction to machine learning. Methods Mol Biol. 2014;1107:105–28. https://doi.org/10.1007/978-1-62703-748-8_7.

    Article  PubMed  Google Scholar 

  195. Korotcov A, Tkachenko V, Russo DP, Ekins S. Comparison of deep learning with multiple machine learning methods and metrics using diverse drug discovery datasets. Mol Pharm. 2017;14(12):4462–75. https://doi.org/10.1021/acs.molpharmaceut.7b00578.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Akbari Hasanjani HR, Sohrabi MR. Artificial Neural Networks (ANN) for the simultaneous spectrophotometric determination of fluoxetine and sertraline in pharmaceutical formulations and biological fluid. Iran J Pharm Res. 2017;16(2):478–89.

    PubMed  PubMed Central  Google Scholar 

  197. Vapnik V, Chapelle O. Bounds on error expectation for support vector machines. Neural Comput. 2000;12(9):2013–36.

    Article  CAS  PubMed  Google Scholar 

  198. Pereira T, Paiva JS, Correia C, Cardoso J. An automatic method for arterial pulse waveform recognition using KNN and SVM classifiers. Med Biol Eng Comput. 2016;54(7):1049–59. https://doi.org/10.1007/s11517-015-1393-5.

    Article  PubMed  Google Scholar 

  199. Orru G, Pettersson-Yeo W, Marquand AF, Sartori G, Mechelli A. Using support vector machine to identify imaging biomarkers of neurological and psychiatric disease: a critical review. Neurosci Biobehav Rev. 2012;36(4):1140–52. https://doi.org/10.1016/j.neubiorev.2012.01.004.

    Article  PubMed  Google Scholar 

  200. Zarogianni E, Moorhead TW, Lawrie SM. Towards the identification of imaging biomarkers in schizophrenia, using multivariate pattern classification at a single-subject level. Neuroimage Clin. 2013;3:279–89. https://doi.org/10.1016/j.nicl.2013.09.003.

    Article  PubMed  PubMed Central  Google Scholar 

  201. Chan K, Lee TW, Sample PA, Goldbaum MH, Weinreb RN, Sejnowski TJ. Comparison of machine learning and traditional classifiers in glaucoma diagnosis. IEEE Trans Biomed Eng. 2002;49(9):963–74. https://doi.org/10.1109/TBME.2002.802012.

    Article  PubMed  Google Scholar 

  202. Pang S, Zhu L, Chen G, Sarrafzadeh A, Ban T, Inoue D. Dynamic class imbalance learning for incremental LPSVM. Neural Netw. 2013;44:87–100. https://doi.org/10.1016/j.neunet.2013.02.007.

    Article  PubMed  Google Scholar 

  203. Tipping M. Sparse Bayesian learning and the relevance vector machine. J Mach Learn Res. 2001;1:211–44.

    Google Scholar 

  204. Cuthbert BN, Kozak MJ. Constructing constructs for psychopathology: the NIMH research domain criteria. J Abnorm Psychol. 2013;122(3):928–37. https://doi.org/10.1037/a0034028.

    Article  PubMed  Google Scholar 

  205. Morris SE, Cuthbert BN. Research domain criteria: cognitive systems, neural circuits, and dimensions of behavior. Dialogues Clin Neurosci. 2012;14(1):29–37.

    PubMed  PubMed Central  Google Scholar 

  206. Cuthbert BN. The RDoC framework: facilitating transition from ICD/DSM to dimensional approaches that integrate neuroscience and psychopathology. World Psychiatry. 2014;13(1):28–35. https://doi.org/10.1002/wps.20087.

    Article  PubMed  PubMed Central  Google Scholar 

  207. Shen H, Wang L, Liu Y, Hu D. Discriminative analysis of resting-state functional connectivity patterns of schizophrenia using low dimensional embedding of fMRI. NeuroImage. 2010;49(4):3110–21. https://doi.org/10.1016/j.neuroimage.2009.11.011.

    Article  PubMed  Google Scholar 

  208. Venkataraman A, Whitford TJ, Westin CF, Golland P, Kubicki M. Whole brain resting state functional connectivity abnormalities in schizophrenia. Schizophr Res. 2012;139(1–3):7–12. https://doi.org/10.1016/j.schres.2012.04.021.

    Article  PubMed  PubMed Central  Google Scholar 

  209. Kambeitz J, Kambeitz-Ilankovic L, Leucht S, Wood S, Davatzikos C, Malchow B, Falkai P, Koutsouleris N. Detecting neuroimaging biomarkers for schizophrenia: a meta-analysis of multivariate pattern recognition studies. Neuropsychopharmacology. 2015;40(7):1742–51. https://doi.org/10.1038/npp.2015.22.

    Article  PubMed  PubMed Central  Google Scholar 

  210. Tognin S, Pettersson-Yeo W, Valli I, Hutton C, Woolley J, Allen P, McGuire P, Mechelli A. Using structural neuroimaging to make quantitative predictions of symptom progression in individuals at ultra-high risk for psychosis. Front Psych. 2013;4:187. https://doi.org/10.3389/fpsyt.2013.00187.

    Article  Google Scholar 

  211. Valli I, Marquand AF, Mechelli A, Raffin M, Allen P, Seal ML, McGuire P. Identifying individuals at high risk of psychosis: predictive utility of support vector machine using structural and functional MRI data. Front Psych. 2016;7:52. https://doi.org/10.3389/fpsyt.2016.00052.

    Article  Google Scholar 

  212. de Wit S, Ziermans TB, Nieuwenhuis M, Schothorst PF, van Engeland H, Kahn RS, Durston S, Schnack HG. Individual prediction of long-term outcome in adolescents at ultra-high risk for psychosis: applying machine learning techniques to brain imaging data. Hum Brain Mapp. 2017;38(2):704–14. https://doi.org/10.1002/hbm.23410.

    Article  PubMed  Google Scholar 

  213. Davatzikos C, Shen D, Gur RC, Wu X, Liu D, Fan Y, Hughett P, Turetsky BI, Gur RE. Whole-brain morphometric study of schizophrenia revealing a spatially complex set of focal abnormalities. Arch Gen Psychiatry. 2005;62(11):1218–27. https://doi.org/10.1001/archpsyc.62.11.1218.

    Article  PubMed  Google Scholar 

  214. Borgwardt S, Fusar-Poli P. White matter pathology–an endophenotype for bipolar disorder? BMC Psychiatry. 2012;12:138. https://doi.org/10.1186/1471-244X-12-138.

    Article  PubMed  PubMed Central  Google Scholar 

  215. Borgwardt S, Koutsouleris N, Aston J, Studerus E, Smieskova R, Riecher-Rossler A, Meisenzahl EM. Distinguishing prodromal from first-episode psychosis using neuroanatomical single-subject pattern recognition. Schizophr Bull. 2013;39(5):1105–14. https://doi.org/10.1093/schbul/sbs095.

    Article  PubMed  Google Scholar 

  216. Fan Y, Shen D, Gur RC, Gur RE, Davatzikos C. COMPARE: classification of morphological patterns using adaptive regional elements. IEEE Trans Med Imaging. 2007;26(1):93–105. https://doi.org/10.1109/TMI.2006.886812.

    Article  PubMed  Google Scholar 

  217. Zanetti MV, Schaufelberger MS, Doshi J, Ou Y, Ferreira LK, Menezes PR, Scazufca M, Davatzikos C, Busatto GF. Neuroanatomical pattern classification in a population-based sample of first-episode schizophrenia. Prog Neuro-Psychopharmacol Biol Psychiatry. 2013;43:116–25. https://doi.org/10.1016/j.pnpbp.2012.12.005.

    Article  Google Scholar 

  218. Kasparek T, Thomaz CE, Sato JR, Schwarz D, Janousova E, Marecek R, Prikryl R, Vanicek J, Fujita A, Ceskova E. Maximum-uncertainty linear discrimination analysis of first-episode schizophrenia subjects. Psychiatry Res. 2011;191(3):174–81. https://doi.org/10.1016/j.pscychresns.2010.09.016.

    Article  PubMed  Google Scholar 

  219. Ingalhalikar M, Kanterakis S, Gur R, Roberts TP, Verma R. DTI based diagnostic prediction of a disease via pattern classification. Med Image Comput Comput Assist Interv. 2010;13(Pt 1):558–65.

    PubMed  Google Scholar 

  220. Sun D, van Erp TG, Thompson PM, Bearden CE, Daley M, Kushan L, Hardt ME, Nuechterlein KH, Toga AW, Cannon TD. Elucidating a magnetic resonance imaging-based neuroanatomic biomarker for psychosis: classification analysis using probabilistic brain atlas and machine learning algorithms. Biol Psychiatry. 2009;66(11):1055–60. https://doi.org/10.1016/j.biopsych.2009.07.019.

    Article  PubMed  PubMed Central  Google Scholar 

  221. Yoon JH, Nguyen DV, McVay LM, Deramo P, Minzenberg MJ, Ragland JD, Niendham T, Solomon M, Carter CS. Automated classification of fMRI during cognitive control identifies more severely disorganized subjects with schizophrenia. Schizophr Res. 2012;135(1–3):28–33. https://doi.org/10.1016/j.schres.2012.01.001.

    Article  PubMed  PubMed Central  Google Scholar 

  222. Mikolas P, Melicher T, Skoch A, Matejka M, Slovakova A, Bakstein E, Hajek T, Spaniel F. Connectivity of the anterior insula differentiates participants with first-episode schizophrenia spectrum disorders from controls: a machine-learning study. Psychol Med. 2016;46(13):2695–704. https://doi.org/10.1017/S0033291716000878.

    Article  CAS  PubMed  Google Scholar 

  223. Costafreda SG, Fu CH, Picchioni M, Toulopoulou T, McDonald C, Kravariti E, Walshe M, Prata D, Murray RM, McGuire PK. Pattern of neural responses to verbal fluency shows diagnostic specificity for schizophrenia and bipolar disorder. BMC Psychiatry. 2011;11:18. https://doi.org/10.1186/1471-244X-11-18.

    Article  PubMed  PubMed Central  Google Scholar 

  224. Cabral C, Kambeitz-Ilankovic L, Kambeitz J, Calhoun VD, Dwyer DB, von Saldern S, Urquijo MF, Falkai P, Koutsouleris N. Classifying schizophrenia using multimodal multivariate pattern recognition analysis: evaluating the impact of individual clinical profiles on the neurodiagnostic performance. Schizophr Bull. 2016;42(Suppl 1):S110–7. https://doi.org/10.1093/schbul/sbw053.

    Article  PubMed  PubMed Central  Google Scholar 

  225. Marga F, Jakab K, Khatiwala C, Shepherd B, Dorfman S, Hubbard B, Colbert S, Gabor F. Toward engineering functional organ modules by additive manufacturing. Biofabrication. 2012;4(2):022001. https://doi.org/10.1088/1758-5082/4/2/022001.

    Article  PubMed  Google Scholar 

  226. Mourao-Miranda J, Reinders AA, Rocha-Rego V, Lappin J, Rondina J, Morgan C, Morgan KD, Fearon P, Jones PB, Doody GA, Murray RM, Kapur S, Dazzan P. Individualized prediction of illness course at the first psychotic episode: a support vector machine MRI study. Psychol Med. 2012;42(5):1037–47. https://doi.org/10.1017/S0033291711002005.

    Article  CAS  PubMed  Google Scholar 

  227. Sui J, Huster R, Yu Q, Segall JM, Calhoun VD. Function-structure associations of the brain: evidence from multimodal connectivity and covariance studies. NeuroImage. 2014;102(Pt 1):11–23. https://doi.org/10.1016/j.neuroimage.2013.09.044.

    Article  PubMed  Google Scholar 

  228. Demirci O, Calhoun VD. Functional magnetic resonance imaging–implications for detection of schizophrenia. Eur Neurol Rev. 2009;4(2):103–6.

    Article  PubMed  PubMed Central  Google Scholar 

  229. Salvador R, Radua J, Canales-Rodriguez EJ, Solanes A, Sarro S, Goikolea JM, Valiente A, Monte GC, Natividad MDC, Guerrero-Pedraza A, Moro N, Fernandez-Corcuera P, Amann BL, Maristany T, Vieta E, McKenna PJ, Pomarol-Clotet E. Evaluation of machine learning algorithms and structural features for optimal MRI-based diagnostic prediction in psychosis. PLoS One. 2017;12(4):e0175683. https://doi.org/10.1371/journal.pone.0175683.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Bansal R, Staib LH, Laine AF, Hao X, Xu D, Liu J, Weissman M, Peterson BS. Anatomical brain images alone can accurately diagnose chronic neuropsychiatric illnesses. PLoS One. 2012;7(12):e50698. https://doi.org/10.1371/journal.pone.0050698.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Schnack HG, Nieuwenhuis M, van Haren NE, Abramovic L, Scheewe TW, Brouwer RM, Hulshoff Pol HE, Kahn RS. Can structural MRI aid in clinical classification? A machine learning study in two independent samples of patients with schizophrenia, bipolar disorder and healthy subjects. NeuroImage. 2014;84:299–306. https://doi.org/10.1016/j.neuroimage.2013.08.053.

    Article  PubMed  Google Scholar 

  232. Koutsouleris N, Meisenzahl EM, Borgwardt S, Riecher-Rossler A, Frodl T, Kambeitz J, Kohler Y, Falkai P, Moller HJ, Reiser M, Davatzikos C. Individualized differential diagnosis of schizophrenia and mood disorders using neuroanatomical biomarkers. Brain. 2015;138(Pt 7):2059–73. https://doi.org/10.1093/brain/awv111.

    Article  PubMed  PubMed Central  Google Scholar 

  233. Knochel C, Stablein M, Prvulovic D, Ghinea D, Wenzler S, Pantel J, Alves G, Linden DE, Harrison O, Carvalho A, Reif A, Oertel-Knochel V. Shared and distinct gray matter abnormalities in schizophrenia, schizophrenia relatives and bipolar disorder in association with cognitive impairment. Schizophr Res. 2016;171(1–3):140–8. https://doi.org/10.1016/j.schres.2016.01.035.

    Article  PubMed  Google Scholar 

  234. Schaefer J, Giangrande E, Weinberger DR, Dickinson D. The global cognitive impairment in schizophrenia: consistent over decades and around the world. Schizophr Res. 2013;150(1):42–50. https://doi.org/10.1016/j.schres.2013.07.009.

    Article  PubMed  PubMed Central  Google Scholar 

  235. Genomics C-DGP. Genetic relationship between five psychiatric disorders estimated from genome-wide SNPs. Nat Genet. 2013;45(9):984–94.

    Article  Google Scholar 

  236. Craddock N, Owen MJ. The Kraepelinian dichotomy – going, going... But still not gone. Br J Psychiatry. 2010;196(2):92–5. https://doi.org/10.1192/bjp.bp.109.073429.

    Article  PubMed  PubMed Central  Google Scholar 

  237. Rajarethinam R, Venkatesh BK, Peethala R, Phan KL, Keshavan M. Reduced activation of superior temporal gyrus during auditory comprehension in young offspring of patients with schizophrenia. Schizophr Res. 2011;130(1–3):101–5. https://doi.org/10.1016/j.schres.2011.05.025.

    Article  PubMed  Google Scholar 

  238. Li X, Xia S, Bertisch HC, Branch CA, Delisi LE. Unique topology of language processing brain network: a systems-level biomarker of schizophrenia. Schizophr Res. 2012;141(2–3):128–36. https://doi.org/10.1016/j.schres.2012.07.026.

    Article  PubMed  PubMed Central  Google Scholar 

  239. Maiza O, Razafimandimby A, Brazo P, Lecardeur L, Delamillieure P, Mazoyer B, Tzourio-Mazoyer N, Dollfus S. Functional deficit in the medial prefrontal cortex in patients with chronic schizophrenia, first psychotic episode, and bipolar disorders. Bipolar Disord. 2010;12(4):450–2. https://doi.org/10.1111/j.1399-5618.2010.00821.x.

    Article  PubMed  Google Scholar 

  240. Whalley HC, Papmeyer M, Sprooten E, Lawrie SM, Sussmann JE, McIntosh AM. Review of functional magnetic resonance imaging studies comparing bipolar disorder and schizophrenia. Bipolar Disord. 2012;14(4):411–31. https://doi.org/10.1111/j.1399-5618.2012.01016.x.

    Article  PubMed  Google Scholar 

  241. Koutsouleris N, Gaser C, Patschurek-Kliche K, Scheuerecker J, Bottlender R, Decker P, Schmitt G, Reiser M, Moller HJ, Meisenzahl EM. Multivariate patterns of brain-cognition associations relating to vulnerability and clinical outcome in the at-risk mental states for psychosis. Hum Brain Mapp. 2012;33(9):2104–24. https://doi.org/10.1002/hbm.21342.

    Article  PubMed  Google Scholar 

  242. Koutsouleris N, Borgwardt S, Meisenzahl EM, Bottlender R, Moller HJ, Riecher-Rossler A. Disease prediction in the at-risk mental state for psychosis using neuroanatomical biomarkers: results from the FePsy study. Schizophr Bull. 2012;38(6):1234–46. https://doi.org/10.1093/schbul/sbr145.

    Article  PubMed  Google Scholar 

  243. Koutsouleris N, Riecher-Rossler A, Meisenzahl EM, Smieskova R, Studerus E, Kambeitz-Ilankovic L, von Saldern S, Cabral C, Reiser M, Falkai P, Borgwardt S. Detecting the psychosis prodrome across high-risk populations using neuroanatomical biomarkers. Schizophr Bull. 2015;41(2):471–82. https://doi.org/10.1093/schbul/sbu078.

    Article  PubMed  Google Scholar 

  244. Kambeitz-Ilankovic L, Meisenzahl EM, Cabral C, von Saldern S, Kambeitz J, Falkai P, Moller HJ, Reiser M, Koutsouleris N. Prediction of outcome in the psychosis prodrome using neuroanatomical pattern classification. Schizophr Res. 2016;173(3):159–65. https://doi.org/10.1016/j.schres.2015.03.005.

    Article  PubMed  Google Scholar 

  245. Fusar-Poli P, Yung AR, McGorry P, van Os J. Lessons learned from the psychosis high-risk state: towards a general staging model of prodromal intervention. Psychol Med. 2014;44(1):17–24. https://doi.org/10.1017/S0033291713000184.

    Article  CAS  PubMed  Google Scholar 

  246. Lilienfeld AM, Kordan B. A study of variability in the interpretation of chest X-rays in the detection of lung cancer. Cancer Res. 1966;26(10):2145.

    CAS  PubMed  Google Scholar 

  247. Demirci O, Clark VP, Magnotta VA, Andreasen NC, Lauriello J, Kiehl KA, Pearlson GD, Calhoun VD. A review of challenges in the use of fMRI for disease classification/characterization and a projection pursuit application from multi-site fMRI schizophrenia study. Brain Imaging Behav. 2008;2(3):147–226. https://doi.org/10.1007/s11682-008-9028-1.

    Article  PubMed  PubMed Central  Google Scholar 

  248. Dager SR, Friedman SD. Brain imaging and the effects of caffeine and nicotine. Ann Med. 2000;32(9):592–9.

    Article  CAS  PubMed  Google Scholar 

  249. Dazzan P. Neuroimaging biomarkers to predict treatment response in schizophrenia: the end of 30 years of solitude? Dialogues Clin Neurosci. 2014;16(4):491–503.

    PubMed  PubMed Central  Google Scholar 

  250. Borgwardt S, McGuire P, Fusar-Poli P. Gray matters!–mapping the transition to psychosis. Schizophr Res. 2011;133(1–3):63–7. https://doi.org/10.1016/j.schres.2011.08.021.

    Article  PubMed  Google Scholar 

  251. Fusar-Poli P, Howes OD, Allen P, Broome M, Valli I, Asselin MC, Grasby PM, McGuire PK. Abnormal frontostriatal interactions in people with prodromal signs of psychosis: a multimodal imaging study. Arch Gen Psychiatry. 2010;67(7):683–91. https://doi.org/10.1001/archgenpsychiatry.2010.77.

    Article  PubMed  Google Scholar 

  252. Smieskova R, Allen P, Simon A, Aston J, Bendfeldt K, Drewe J, Gruber K, Gschwandtner U, Klarhoefer M, Lenz C, Scheffler K, Stieglitz RD, Radue EW, McGuire P, Riecher-Rossler A, Borgwardt SJ. Different duration of at-risk mental state associated with neurofunctional abnormalities. A multimodal imaging study. Hum Brain Mapp. 2012;33(10):2281–94. https://doi.org/10.1002/hbm.21360.

    Article  PubMed  Google Scholar 

  253. Sui J, He H, Pearlson GD, Adali T, Kiehl KA, Yu Q, Clark VP, Castro E, White T, Mueller BA, Ho BC, Andreasen NC, Calhoun VD. Three-way (N-way) fusion of brain imaging data based on mCCA+jICA and its application to discriminating schizophrenia. NeuroImage. 2013;66:119–32. https://doi.org/10.1016/j.neuroimage.2012.10.051.

    Article  PubMed  Google Scholar 

  254. Demjaha A, Egerton A, Murray RM, Kapur S, Howes OD, Stone JM, McGuire PK. Antipsychotic treatment resistance in schizophrenia associated with elevated glutamate levels but normal dopamine function. Biol Psychiatry. 2014;75(5):e11–3. https://doi.org/10.1016/j.biopsych.2013.06.011.

    Article  CAS  PubMed  Google Scholar 

  255. van Berckel BN, Bossong MG, Boellaard R, Kloet R, Schuitemaker A, Caspers E, Luurtsema G, Windhorst AD, Cahn W, Lammertsma AA, Kahn RS. Microglia activation in recent-onset schizophrenia: a quantitative (R)-[11C]PK11195 positron emission tomography study. Biol Psychiatry. 2008;64(9):820–2. https://doi.org/10.1016/j.biopsych.2008.04.025.

    Article  PubMed  Google Scholar 

  256. Pasternak O, Westin CF, Bouix S, Seidman LJ, Goldstein JM, Woo TU, Petryshen TL, Mesholam-Gately RI, McCarley RW, Kikinis R, Shenton ME, Kubicki M. Excessive extracellular volume reveals a neurodegenerative pattern in schizophrenia onset. J Neurosci. 2012;32(48):17365–72. https://doi.org/10.1523/JNEUROSCI.2904-12.2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  257. Wood SJ, Berger GE, Wellard RM, Proffitt TM, McConchie M, Berk M, McGorry PD, Pantelis C. Medial temporal lobe glutathione concentration in first episode psychosis: a 1H-MRS investigation. Neurobiol Dis. 2009;33(3):354–7. https://doi.org/10.1016/j.nbd.2008.11.018.

    Article  CAS  PubMed  Google Scholar 

  258. Vijayakumar N, Bartholomeusz C, Whitford T, Hermens DF, Nelson B, Rice S, Whittle S, Pantelis C, McGorry P, Schafer MR, Amminger GP. White matter integrity in individuals at ultra-high risk for psychosis: a systematic review and discussion of the role of polyunsaturated fatty acids. BMC Psychiatry. 2016;16(1):287. https://doi.org/10.1186/s12888-016-0932-4.

    Article  PubMed  PubMed Central  Google Scholar 

  259. Cannon TD, Chung Y, He G, Sun D, Jacobson A, van Erp TG, McEwen S, Addington J, Bearden CE, Cadenhead K, Cornblatt B, Mathalon DH, McGlashan T, Perkins D, Jeffries C, Seidman LJ, Tsuang M, Walker E, Woods SW, Heinssen R, North American Prodrome Longitudinal Study C. Progressive reduction in cortical thickness as psychosis develops: a multisite longitudinal neuroimaging study of youth at elevated clinical risk. Biol Psychiatry. 2015;77(2):147–57. https://doi.org/10.1016/j.biopsych.2014.05.023.

    Article  PubMed  Google Scholar 

  260. Anticevic A, Haut K, Murray JD, Repovs G, Yang GJ, Diehl C, McEwen SC, Bearden CE, Addington J, Goodyear B, Cadenhead KS, Mirzakhanian H, Cornblatt BA, Olvet D, Mathalon DH, McGlashan TH, Perkins DO, Belger A, Seidman LJ, Tsuang MT, van Erp TG, Walker EF, Hamann S, Woods SW, Qiu M, Cannon TD. Association of thalamic dysconnectivity and conversion to psychosis in youth and young adults at elevated clinical risk. JAMA Psychiat. 2015;72(9):882–91. https://doi.org/10.1001/jamapsychiatry.2015.0566.

    Article  Google Scholar 

  261. van Os J, Rutten BP, Poulton R. Gene-environment interactions in schizophrenia: review of epidemiological findings and future directions. Schizophr Bull. 2008;34(6):1066–82. https://doi.org/10.1093/schbul/sbn117.

    Article  PubMed  PubMed Central  Google Scholar 

  262. Dazzan P, Arango C, Fleischacker W, Galderisi S, Glenthoj B, Leucht S, Meyer-Lindenberg A, Kahn R, Rujescu D, Sommer I, Winter I, McGuire P. Magnetic resonance imaging and the prediction of outcome in first-episode schizophrenia: a review of current evidence and directions for future research. Schizophr Bull. 2015;41(3):574–83. https://doi.org/10.1093/schbul/sbv024.

    Article  PubMed  PubMed Central  Google Scholar 

  263. Chung Y, Cannon TD. Brain imaging during the transition from psychosis prodrome to schizophrenia. J Nerv Ment Dis. 2015;203(5):336–41. https://doi.org/10.1097/NMD.0000000000000286.

    Article  PubMed  PubMed Central  Google Scholar 

  264. Veronese E, Castellani U, Peruzzo D, Bellani M, Brambilla P. Machine learning approaches: from theory to application in schizophrenia. Comput Math Methods Med. 2013;2013:867924. https://doi.org/10.1155/2013/867924.

    Article  PubMed  PubMed Central  Google Scholar 

  265. Kapur S, Phillips AG, Insel TR. Why has it taken so long for biological psychiatry to develop clinical tests and what to do about it? Mol Psychiatry. 2012;17(12):1174–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Galderisi, S., Giordano, G.M., DeLisi, L.E. (2019). Neuroimaging: Diagnostic Boundaries and Biomarkers. In: Galderisi, S., DeLisi, L., Borgwardt, S. (eds) Neuroimaging of Schizophrenia and Other Primary Psychotic Disorders . Springer, Cham. https://doi.org/10.1007/978-3-319-97307-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-97307-4_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-97306-7

  • Online ISBN: 978-3-319-97307-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics