Skip to main content

Spin Hall Effect

  • Chapter
  • First Online:
Topology in Magnetism

Part of the book series: Springer Series in Solid-State Sciences ((SSSOL,volume 192))

  • 4135 Accesses

Abstract

The spin Hall effect is of current interest from a fundamental and a device application point of view. Most importantly, the spin Hall effect allows to transfer an electrical charge current into a pure spin current, i.e. a current carrying only (spin) angular momentum without an accompanying charge current. This property enables us to gain access to novel spin current related effects by using electrical generation and/or detection schemes. Within this chapter, we will give an overview of the multitude of phenomena associated with it, focussing on means to quantify the spin Hall effect.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. Althammer, S. Meyer, H. Nakayama, M. Schreier, S. Altmannshofer, M. Weiler, H. Huebl, S. Geprägs, M. Opel, R. Gross, D. Meier, C. Klewe, T. Kuschel, J.M. Schmalhorst, G. Reiss, L. Shen, A. Gupta, Y.T. Chen, G.E.W. Bauer, E. Saitoh, S.T.B. Goennenwein, Quantitative study of the spin Hall magnetoresistance in ferromagnetic insulator/normal metal hybrids. Phys. Rev. B 87(22), 224401 (2013). https://doi.org/10.1103/physrevb.87.224401

    Article  ADS  Google Scholar 

  2. K. Ando, E. Saitoh, Inverse spin-Hall effect in palladium at room temperature. J. Appl. Phys. 108(11), 113925 (2010). https://doi.org/10.1063/1.3517131

    Article  ADS  Google Scholar 

  3. K. Ando, E. Saitoh, Observation of the inverse spin Hall effect in silicon. Nat. Commun. 3, 629 (2012). https://doi.org/10.1038/ncomms1640

    Article  ADS  Google Scholar 

  4. K. Ando, S. Takahashi, K. Harii, K. Sasage, J. Ieda, S. Maekawa, E. Saitoh, Electric manipulation of spin relaxation using the spin Hall effect. Phys. Rev. Lett. 101(3), 036601 (2008). https://doi.org/10.1103/physrevlett.101.036601

    Article  ADS  Google Scholar 

  5. K. Ando, S. Takahashi, J. Ieda, Y. Kajiwara, H. Nakayama, T. Yoshino, K. Harii, Y. Fujikawa, M. Matsuo, S. Maekawa, E. Saitoh, Inverse spin-Hall effect induced by spin pumping in metallic system. J. Appl. Phys. 109(10), 103913 (2011). https://doi.org/10.1063/1.3587173

    Article  ADS  Google Scholar 

  6. A. Aqeel, N. Vlietstra, J.A. Heuver, G.E.W. Bauer, B. Noheda, B.J. van Wees, T.T.M. Palstra, Spin-Hall magnetoresistance and spin Seebeck effect in spin-spiral and paramagnetic phases of multiferroic CoCr2o4 films. Phys. Rev. B 92, 224410 (2015). https://doi.org/10.1103/physrevb.92.224410

    Article  ADS  Google Scholar 

  7. C.O. Avci, K. Garello, A. Ghosh, M. Gabureac, S.F. Alvarado, P. Gambardella, Unidirectional spin Hall magnetoresistance in ferromagnet/normal metal bilayers. Nat. Phys. 11(7), 570–575 (2015). https://doi.org/10.1038/nphys3356

    Article  Google Scholar 

  8. A.A. Awad, P. Dürrenfeld, A. Houshang, M. Dvornik, E. Iacocca, R.K. Dumas, J. Åkerman, Long-range mutual synchronization of spin Hall nano-oscillators. Nat. Phys. 13, 292-299 (2017). https://doi.org/10.1038/nphys3927

    Article  ADS  Google Scholar 

  9. G.E.W. Bauer, E. Saitoh, B.J. van Wees, Spin caloritronics. Nat. Mater. 11(5), 391 (2012). https://doi.org/10.1038/nmat3301

    Article  ADS  Google Scholar 

  10. M. Baumgartner, K. Garello, J. Mendil, C.O. Avci, E. Grimaldi, C. Murer, J. Feng, M. Gabureac, C. Stamm, Y. Acremann, S. Finizio, S. Wintz, J. Raabe, P. Gambardella, Spatially and time-resolved magnetization dynamics driven by spinorbit torques. Nat. Nanotechnol. 12(10), 980–986 (2017). https://doi.org/10.1038/nnano.2017.151

    Article  ADS  Google Scholar 

  11. S.A. Bender, Y. Tserkovnyak, Interfacial spin and heat transfer between metals and magnetic insulators. Phys. Rev. B 91, 140402 (2015). https://doi.org/10.1103/physrevb.91.140402

    Article  ADS  Google Scholar 

  12. L. Berger, Generation of dc voltages by a magnetic multilayer undergoing ferromagnetic resonance. Phys. Rev. B 59(17), 11465 (1999). https://doi.org/10.1103/PhysRevB.59.11465

    Article  ADS  Google Scholar 

  13. B.A. Bernevig, T.L. Hughes, S.C. Zhang, Quantum spin Hall effect and topological phase transition in HgTe quantum wells. Science 314(5806), 1757–1761 (2006). https://doi.org/10.1126/science.1133734

    Article  ADS  Google Scholar 

  14. C. Burrowes, B. Heinrich, B. Kardasz, E.A. Montoya, E. Girt, Y. Sun, Y.Y. Song, M. Wu, Enhanced spin pumping at yttrium iron garnet/Au interfaces. Appl. Phys. Lett. 100(9), 092403 (2012). https://doi.org/10.1063/1.3690918

    Article  ADS  Google Scholar 

  15. F. Büttner, C. Moutafis, M. Schneider, B. Krüger, C.M. Günther, J. Geilhufe, C.V. Korff Schmising, J. Mohanty, B. Pfau, S. Schaffert, A. Bisig, M. Foerster, T. Schulz, C.A.F. Vaz, J.H. Franken, H.J.M. Swagten, M. Kläui, S. Eisebitt, Dynamics and inertia of skyrmionic spin structures. Nat. Phys. 11(3), 225–228 (2015). https://doi.org/10.1038/nphys3234

    Article  ADS  Google Scholar 

  16. J.N. Chazalviel, Spin-dependent Hall effect in semiconductors. Phys. Rev. B 11(10), 3918–3934 (1975). https://doi.org/10.1103/physrevb.11.3918

    Article  ADS  Google Scholar 

  17. J. Chciski, M. Frankowski, T. Stobiecki, Antiferromagnetic nano-oscillator in external magnetic fields. Phys. Rev. B 96(17) (2017). https://doi.org/10.1103/PhysRevB.96.174438

  18. W. Chen, M. Sigrist, D. Manske, Spin Hall effect induced spin transfer through an insulator. Phys. Rev. B 94(10), 104412 (2016). https://doi.org/10.1103/physrevb.94.104412

    Article  ADS  Google Scholar 

  19. Y.T. Chen, S. Takahashi, H. Nakayama, M. Althammer, S.T.B. Goennenwein, E. Saitoh, G.E.W. Bauer, Theory of spin Hall magnetoresistance. Phys. Rev. B 87, 144411 (2013). https://doi.org/10.1103/PhysRevB.87.144411

    Article  ADS  Google Scholar 

  20. Y.T. Chen, S. Takahashi, H. Nakayama, M. Althammer, S.T.B. Goennenwein, E. Saitoh, G.E.W. Bauer, Theory of spin Hall magnetoresistance (SMR) and related phenomena. J. Phys. Condens. Matter 28(10), 103004 (2016). https://doi.org/10.1088/0953-8984/28/10/103004

    Article  ADS  Google Scholar 

  21. R. Cheng, D. Xiao, A. Brataas, Terahertz antiferromagnetic spin Hall nano-oscillator. Phys. Rev. Lett. 116(20), 207603 (2016). https://doi.org/10.1103/physrevlett.116.207603

    Article  ADS  Google Scholar 

  22. A. Chernyshov, M. Overby, X. Liu, J.K. Furdyna, Y. Lyanda-Geller, L.P. Rokhinson, Evidence for reversible control of magnetization in a ferromagnetic material by means of spin–orbit magnetic field. Nat. Phys. 5(9), 656–659 (2009). https://doi.org/10.1038/nphys1362

    Article  Google Scholar 

  23. S. Cho, S.C. Baek, K.D. Lee, Y. Jo, B.G. Park, Large spin Hall magnetoresistance and its correlation to the spin-orbit torque in w/CoFeB/MgO structures. Sci. Rep. 5, 14668 (2015). https://doi.org/10.1038/srep14668

    Article  ADS  Google Scholar 

  24. M. Collet, X. de Milly, O. d’Allivy Kelly, V.V. Naletov, R. Bernard, P. Bortolotti, J.B. Youssef, V.E. Demidov, S.O. Demokritov, J.L. Prieto, M. Muñoz, V. Cros, A. Anane, G. de Loubens, O. Klein, Generation of coherent spin-wave modes in yttrium iron garnet microdiscs by spin–orbit torque. Nat. Commun. 7, 10377 (2016). https://doi.org/10.1038/ncomms10377

    Article  ADS  Google Scholar 

  25. L.J. Cornelissen, J. Liu, R.A. Duine, J.B. Youssef, B.J. van Wees, Long-distance transport of magnon spin information in a magnetic insulator at room temperature. Nat. Phys. 11(12), 1022–1026 (2015). https://doi.org/10.1038/nphys3465

    Article  Google Scholar 

  26. L.J. Cornelissen, J. Shan, B.J. van Wees, Temperature dependence of the magnon spin diffusion length and magnon spin conductivity in the magnetic insulator yttrium iron garnet. Phys. Rev. B 94, 180402 (2016). https://doi.org/10.1103/physrevb.94.180402

    Article  ADS  Google Scholar 

  27. F.D. Czeschka, Spin currents in metallic nanostructures. Ph.D. thesis, Technische Universität München (2011)

    Google Scholar 

  28. F.D. Czeschka, L. Dreher, M.S. Brandt, M. Weiler, M. Althammer, I.M. Imort, G. Reiss, A. Thomas, W. Schoch, W. Limmer, H. Huebl, R. Gross, S.T.B. Goennenwein, Scaling behavior of the spin pumping effect in ferromagnet-platinum bilayers. Phys. Rev. Lett. 107, 046601 (2011). https://doi.org/10.1103/PhysRevLett.107.046601

    Article  ADS  Google Scholar 

  29. M.W. Daniels, W. Guo, G.M. Stocks, D. Xiao, J. Xiao, Spin-transfer torque induced spin waves in antiferromagnetic insulators. New J. Phys. 17(10), 103039 (2015). https://doi.org/10.1088/1367-2630/17/10/103039

    Article  ADS  Google Scholar 

  30. A. Dankert, J. Geurs, M.V. Kamalakar, S. Charpentier, S.P. Dash, Room temperature electrical detection of spin polarized currents in topological insulators. Nano Lett. 15(12), 7976–7981 (2015). https://doi.org/10.1021/acs.nanolett.5b03080

    Article  ADS  Google Scholar 

  31. V.E. Demidov, S. Urazhdin, H. Ulrichs, V. Tiberkevich, A. Slavin, D. Baither, G. Schmitz, S.O. Demokritov, Magnetic nano-oscillator driven by pure spin current. Nat. Mater. 11, 1028-1031 (2012). https://doi.org/10.1038/nmat3459

    Article  ADS  Google Scholar 

  32. V.E. Demidov, S. Urazhdin, A. Zholud, A.V. Sadovnikov, S.O. Demokritov, Nanoconstriction-based spin-Hall nano-oscillator. Appl. Phys. Lett. 105(17), 172410 (2014). https://doi.org/10.1063/1.4901027

    Article  ADS  Google Scholar 

  33. Z. Duan, A. Smith, L. Yang, B. Youngblood, J. Lindner, V.E. Demidov, S.O. Demokritov, I.N. Krivorotov, Nanowire spin torque oscillator driven by spin orbit torques. Nat. Commun. 5, 5616 (2014). https://doi.org/10.1038/ncomms6616

    Article  ADS  Google Scholar 

  34. M. Dyakonov, V. Perel, Current-induced spin orientation of electrons in semiconductors. Phys. Lett. A 35(6), 459–460 (1971). https://doi.org/10.1016/0375-9601(71)90196-4

    Article  ADS  Google Scholar 

  35. S. Emori, U. Bauer, S.M. Ahn, E. Martinez, G.S.D. Beach, Current-driven dynamics of chiral ferromagnetic domain walls. Nat. Mater. 12(7), 611–616 (2013). https://doi.org/10.1038/nmat3675

    Article  ADS  Google Scholar 

  36. M. Erekhinsky, A. Sharoni, F. Casanova, I.K. Schuller, Surface enhanced spin-flip scattering in lateral spin valves. Appl. Phys. Lett. 96(2), 022513 (2010). https://doi.org/10.1063/1.3291047

    Article  ADS  Google Scholar 

  37. D. Fang, H. Kurebayashi, J. Wunderlich, K. Vyborny, L.P. Zarbo, R.P. Campion, A. Casiraghi, B.L. Gallagher, T. Jungwirth, A.J. Ferguson, Spin-orbit-driven ferromagnetic resonance. Nat. Nanotechnol. 6, 413 (2011). https://doi.org/10.1038/nnano.2011.68

    Article  ADS  Google Scholar 

  38. K. Ganzhorn, J. Barker, R. Schlitz, B.A. Piot, K. Ollefs, F. Guillou, F. Wilhelm, A. Rogalev, M. Opel, M. Althammer, S. Geprägs, H. Huebl, R. Gross, G.E.W. Bauer, S.T.B. Goennenwein, Spin Hall magnetoresistance in a canted ferrimagnet. Phys. Rev. B 94, 094401 (2016). https://doi.org/10.1103/physrevb.94.094401

    Article  ADS  Google Scholar 

  39. K. Garello, I.M. Miron, C.O. Avci, F. Freimuth, Y. Mokrousov, S. Blügel, S. Auffret, O. Boulle, G. Gaudin, P. Gambardella, Symmetry and magnitude of spin–orbit torques in ferromagnetic heterostructures. Nat. Nanotechnol. 8(8), 587–593 (2013). https://doi.org/10.1038/nnano.2013.145

    Article  ADS  Google Scholar 

  40. A. Giordano, M. Carpentieri, A. Laudani, G. Gubbiotti, B. Azzerboni, G. Finocchio, Spin-Hall nano-oscillator: a micromagnetic study. Appl. Phys. Lett. 105(4), 042412 (2014). https://doi.org/10.1063/1.4892168

    Article  ADS  Google Scholar 

  41. S.T.B. Goennenwein, R. Schlitz, M. Pernpeintner, K. Ganzhorn, M. Althammer, R. Gross, H. Huebl, Non-local magnetoresistance in YIG/Pt nanostructures. Appl. Phys. Lett. 107(17), 172405 (2015). https://doi.org/10.1063/1.4935074

    Article  ADS  Google Scholar 

  42. Y. Gui, N. Mecking, X. Zhou, G. Williams, C.M. Hu, Realization of a room-temperature spin dynamo: the spin rectification effect. Phys. Rev. Lett. 98(10), 107602 (2007). https://doi.org/10.1103/PhysRevLett.98.107602

    Article  ADS  Google Scholar 

  43. C. Hahn, G. de Loubens, O. Klein, M. Viret, V.V. Naletov, J.B. Youssef, Comparative measurements of inverse spin Hall effects and magnetoresistance in YIG/Pt and YIG/Ta. Phys. Rev. B 87(17), 174417 (2013). https://doi.org/10.1103/physrevb.87.174417

    Article  ADS  Google Scholar 

  44. C. Hahn, G. de Loubens, M. Viret, O. Klein, V.V. Naletov, J.B. Youssef, Detection of microwave spin pumping using the inverse spin Hall effect. Phys. Rev. Lett. 111(21), 217204 (2013). https://doi.org/10.1103/physrevlett.111.217204

    Article  ADS  Google Scholar 

  45. E.H. Hall, Anomalous Hall effect. Philos. Mag. 12 (1881)

    Google Scholar 

  46. A. Hamadeh, O. d’Allivy Kelly, C. Hahn, H. Meley, R. Bernard, A. Molpeceres, V. Naletov, M. Viret, A. Anane, V. Cros, S. Demokritov, J. Prieto, M. Muñoz, G. de Loubens, O. Klein, Full control of the spin-wave damping in a magnetic insulator using spin-orbit torque. Phys. Rev. Lett. 113(19), 197203 (2014). https://doi.org/10.1103/physrevlett.113.197203

    Article  ADS  Google Scholar 

  47. J.H. Han, C. Song, F. Li, Y.Y. Wang, G.Y. Wang, Q.H. Yang, F. Pan, Antiferromagnet-controlled spin current transport in SrMnO\(_3\)/Pt hybrids. Phys. Rev. B 90, 144431 (2014). https://doi.org/10.1103/physrevb.90.144431

    Article  ADS  Google Scholar 

  48. P.M. Haney, H.W. Lee, K.J. Lee, A. Manchon, M.D. Stiles, Current induced torques and interfacial spin-orbit coupling: semiclassical modeling. Phys. Rev. B 87(17), 174411 (2013). https://doi.org/10.1103/physrevb.87.174411

    Article  ADS  Google Scholar 

  49. B. Heinrich, C. Burrowes, E. Montoya, B. Kardasz, E. Girt, Y.Y. Song, Y. Sun, M. Wu, Spin pumping at the magnetic insulator (YIG)/normal metal (Au) interfaces. Phys. Rev. Lett. 107(6), 066604 (2011). https://doi.org/10.1103/PhysRevLett.107.066604

    Article  ADS  Google Scholar 

  50. J.E. Hirsch, Spin Hall effect. Phys. Rev. Lett. 83(9), 1834–1837 (1999). https://doi.org/10.1103/PhysRevLett.83.1834

    Article  ADS  Google Scholar 

  51. A. Hoffmann, Spin Hall effects in metals. IEEE Trans. Magn. 49(10), 5172–5193 (2013). https://doi.org/10.1109/tmag.2013.2262947

    Article  ADS  Google Scholar 

  52. M. Isasa, A. Bedoya-Pinto, S. Vélez, F. Golmar, F. Sánchez, L.E. Hueso, J. Fontcuberta, F. Casanova, Spin Hall magnetoresistance at Pt/CoFe\(_2\)O\(_4\) interfaces and texture effects. Appl. Phys. Lett. 105(14), 142402 (2014). https://doi.org/10.1063/1.4897544

    Article  ADS  Google Scholar 

  53. F.J. Jedema, A.T. Filip, B.J. van Wees, Electrical spin injection and accumulation at room temperature in an all-metal mesoscopic spin valve. Nature 410(6826), 345–348 (2001). https://doi.org/10.1038/35066533

    Article  ADS  Google Scholar 

  54. Y. Ji, A. Hoffmann, J.S. Jiang, S.D. Bader, Spin injection, diffusion, and detection in lateral spin-valves. Appl. Phys. Lett. 85(25), 6218–6220 (2004). https://doi.org/10.1063/1.1841455

    Article  ADS  Google Scholar 

  55. W. Jiang, P. Upadhyaya, W. Zhang, G. Yu, M.B. Jungfleisch, F.Y. Fradin, J.E. Pearson, Y. Tserkovnyak, K.L. Wang, O. Heinonen, S.G.E. te Velthuis, A. Hoffmann, Blowing magnetic skyrmion bubbles. Science 349(6245), 283–286 (2015). https://doi.org/10.1126/science.aaa1442

    Article  ADS  Google Scholar 

  56. H. Jiao, G.E.W. Bauer, Spin backflow and ac voltage generation by spin pumping and the inverse spin Hall effect. Phys. Rev. Lett. 110(21), 217602 (2013). https://doi.org/10.1103/PhysRevLett.110.217602

    Article  ADS  Google Scholar 

  57. M. Johnson, R.H. Silsbee, Interfacial charge-spin coupling: injection and detection of spin magnetization in metals. Phys. Rev. Lett. 55(17), 1790–1793 (1985). https://doi.org/10.1103/physrevlett.55.1790

    Article  ADS  Google Scholar 

  58. H.J. Juretschke, Electromagnetic theory of dc effects in ferromagnetic resonance. J. Appl. Phys. 31(8), 1401 (1960). https://doi.org/10.1063/1.1735851

    Article  ADS  Google Scholar 

  59. Y. Kajiwara, K. Harii, S. Takahashi, J. Ohe, K. Uchida, M. Mizuguchi, H. Umezawa, H. Kawai, K. Ando, K. Takanashi, S. Maekawa, E. Saitoh, Transmission of electrical signals by spin-wave interconversion in a magnetic insulator. Nature 464(7286), 262 (2010). https://doi.org/10.1038/nature08876

    Article  ADS  Google Scholar 

  60. Y.K. Kato, R.C. Myers, A.C. Gossard, D.D. Awschalom, Observation of the spin Hall effect in semiconductors. Science 306(5703), 1910–1913 (2004). https://doi.org/10.1126/science.1105514

    Article  ADS  Google Scholar 

  61. A.V. Khvalkovskiy, V. Cros, D. Apalkov, V. Nikitin, M. Krounbi, K.A. Zvezdin, A. Anane, J. Grollier, A. Fert, Matching domain-wall configuration and spin-orbit torques for efficient domain-wall motion. Phys. Rev. B 87(2) (2013). https://doi.org/10.1103/PhysRevB.87.020402

  62. R. Khymyn, I. Lisenkov, V. Tiberkevich, B.A. Ivanov, A. Slavin, Antiferromagnetic THz-frequency Josephson-like oscillator driven by spin current. Sci. Rep. 7, 43705 (2017). https://doi.org/10.1038/srep43705

    Article  ADS  Google Scholar 

  63. T. Kimura, Y. Otani, Large spin accumulation in a permalloy-silver lateral spin valve. Phys. Rev. Lett. 99(19), 196604 (2007). https://doi.org/10.1103/physrevlett.99.196604

    Article  ADS  Google Scholar 

  64. T. Kimura, Y. Otani, T. Sato, S. Takahashi, S. Maekawa, Room-temperature reversible spin Hall effect. Phys. Rev. Lett. 98(15), 156601 (2007). https://doi.org/10.1103/physrevlett.98.156601

    Article  ADS  Google Scholar 

  65. S.I. Kiselev, J.C. Sankey, I.N. Krivorotov, N.C. Emley, R.J. Schoelkopf, R.A. Buhrman, D.C. Ralph, Microwave oscillations of a nanomagnet driven by a spin-polarized current. Nature 425, 380–383 (2003)

    Article  ADS  Google Scholar 

  66. J. Li, Y. Xu, M. Aldosary, C. Tang, Z. Lin, S. Zhang, R. Lake, J. Shi, Observation of magnon-mediated current drag in Pt/yttrium iron garnet/Pt(Ta) trilayers. Nat. Commun. 7, 10858 (2016). https://doi.org/10.1038/ncomms10858

    Article  ADS  Google Scholar 

  67. L. Liu, C.T. Chen, J.Z. Sun, Spin Hall effect tunnelling spectroscopy. Nat. Phys. 10(8), 561–566 (2014). https://doi.org/10.1038/nphys3004

    Article  Google Scholar 

  68. L. Liu, T. Moriyama, D. Ralph, R. Buhrman, Spin-torque ferromagnetic resonance induced by the spin Hall effect. Phys. Rev. Lett. 106(3), 036601 (2011). https://doi.org/10.1103/PhysRevLett.106.036601

    Article  ADS  Google Scholar 

  69. L. Liu, C.F. Pai, Y. Li, H.W. Tseng, D.C. Ralph, R.A. Buhrman, Spin-torque switching with the giant spin Hall effect of tantalum. Science 336(6081), 555–558 (2012). https://doi.org/10.1126/science.1218197

    Article  ADS  Google Scholar 

  70. A. Manchon, H.C. Koo, J. Nitta, S.M. Frolov, R.A. Duine, New perspectives for Rashba spin–orbit coupling. Nat. Mater. 14(9), 871–882 (2015). https://doi.org/10.1038/nmat4360

    Article  ADS  Google Scholar 

  71. A. Manchon, S. Zhang, Theory of spin torque due to spin-orbit coupling. Phys. Rev. B 79(9), 094422 (2009). https://doi.org/10.1103/physrevb.79.094422

    Article  ADS  Google Scholar 

  72. A. Matos-Abiague, J. Fabian, Tunneling anomalous and spin Hall effects. Phys. Rev. Lett. 115(5), 056602 (2015). https://doi.org/10.1103/physrevlett.115.056602

    Article  ADS  MathSciNet  Google Scholar 

  73. S. Meyer, M. Althammer, S. Geprägs, M. Opel, R. Gross, S.T.B. Goennenwein, Temperature dependent spin transport properties of platinum inferred from spin Hall magnetoresistance measurements. Appl. Phys. Lett. 104(24), 242411 (2014). https://doi.org/10.1063/1.4885086

    Article  ADS  Google Scholar 

  74. I. Mihai Miron, G. Gaudin, S. Auffret, B. Rodmacq, A. Schuhl, S. Pizzini, J. Vogel, P. Gambardella, Current-driven spin torque induced by the Rashba effect in a ferromagnetic metal layer. Nat. Mater. 9, 230–234 (2010). https://doi.org/10.1038/nmat2613

    Article  ADS  Google Scholar 

  75. G. Mihajlović, J.E. Pearson, M.A. Garcia, S.D. Bader, A. Hoffmann, Negative nonlocal resistance in mesoscopic gold Hall bars: absence of the giant spin Hall effect. Phys. Rev. Lett. 103(16), 166601 (2009). https://doi.org/10.1103/physrevlett.103.166601

    Article  ADS  Google Scholar 

  76. I.M. Miron, K. Garello, G. Gaudin, P.J. Zermatten, M.V. Costache, S. Auffret, S. Bandiera, B. Rodmacq, A. Schuhl, P. Gambardella, Perpendicular switching of a single ferromagnetic layer induced by in-plane current injection. Nature 476(7359), 189–193 (2011). https://doi.org/10.1038/nature10309

    Article  ADS  Google Scholar 

  77. I.M. Miron, G. Gaudin, S. Auffret, B. Rodmacq, A. Schuhl, S. Pizzini, J. Vogel, P. Gambardella, Current-driven spin torque induced by the Rashba effect in a ferromagnetic metal layer. Nat. Mater. 9, 230–234 (2010). https://doi.org/10.1038/nmat2613

    Article  ADS  Google Scholar 

  78. I.M. Miron, T. Moore, H. Szambolics, L.D. Buda-Prejbeanu, S. Auffret, B. Rodmacq, S. Pizzini, J. Vogel, M. Bonfim, A. Schuhl, G. Gaudin, Fast current-induced domain-wall motion controlled by the Rashba effect. Nat. Mater. 10(6), 419–423 (2011). https://doi.org/10.1038/nmat3020

    Article  ADS  Google Scholar 

  79. M. Morota, Y. Niimi, K. Ohnishi, D.H. Wei, T. Tanaka, H. Kontani, T. Kimura, Y. Otani, Indication of intrinsic spin Hall effect in \(4d\) and \(5d\) transition metals. Phys. Rev. B 83, 174405 (2011). https://doi.org/10.1103/PhysRevB.83.174405

    Article  ADS  Google Scholar 

  80. A. Morrish, The Physical Principles of Magnetism (IEEE Press, New York, 2001)

    Book  Google Scholar 

  81. O. Mosendz, J.E. Pearson, F.Y. Fradin, G.E.W. Bauer, S.D. Bader, A. Hoffmann, Quantifying spin Hall angles from spin pumping: experiments and theory. Phys. Rev. Lett. 104(4), 046601 (2010). https://doi.org/10.1103/PhysRevLett.104.046601

    Article  ADS  Google Scholar 

  82. O. Mosendz, V. Vlaminck, J.E. Pearson, F.Y. Fradin, G.E.W. Bauer, S.D. Bader, A. Hoffmann, Detection and quantification of inverse spin Hall effect from spin pumping in permalloy/normal metal bilayers. Phys. Rev. B 82, 214403 (2010). https://doi.org/10.1103/PhysRevB.82.214403

    Article  ADS  Google Scholar 

  83. N. Nagaosa, J. Sinova, S. Onoda, A.H. MacDonald, N.P. Ong, Anomalous Hall effect. Rev. Modern Phys. 82(2), 1539–1592 (2010). https://doi.org/10.1103/revmodphys.82.1539

    Article  ADS  Google Scholar 

  84. H. Nakayama, M. Althammer, Y.T. Chen, K. Uchida, Y. Kajiwara, D. Kikuchi, T. Ohtani, S. Geprägs, M. Opel, S. Takahashi, R. Gross, G.E.W. Bauer, S.T.B. Goennenwein, E. Saitoh, Spin Hall magnetoresistance induced by a nonequilibrium proximity effect. Phys. Rev. Lett. 110, 206601 (2013). https://doi.org/10.1103/physrevlett.110.206601

    Article  ADS  Google Scholar 

  85. Y. Niimi, Y. Kawanishi, D.H. Wei, C. Deranlot, H.X. Yang, M. Chshiev, T. Valet, A. Fert, Y. Otani, Giant spin Hall effect induced by skew scattering from bismuth impurities inside thin film CuBi alloys. Phys. Rev. Lett. 109, 156602 (2012). https://doi.org/10.1103/PhysRevLett.109.156602

    Article  ADS  Google Scholar 

  86. K. Olejník, V. Novák, J. Wunderlich, T. Jungwirth, Electrical detection of magnetization reversal without auxiliary magnets. Phys. Rev. B 91(18), 180402 (2015). https://doi.org/10.1103/physrevb.91.180402

    Article  ADS  Google Scholar 

  87. Y. Omori, F. Auvray, T. Wakamura, Y. Niimi, A. Fert, Y. Otani, Inverse spin Hall effect in a closed loop circuit. Appl. Phys. Lett. 104(24), 242415 (2014). https://doi.org/10.1063/1.4884520

    Article  ADS  Google Scholar 

  88. Y. Ou, S. Shi, D.C. Ralph, R.A. Buhrman, Strong spin Hall effect in the antiferromagnet PtMn. Phys. Rev. B 93(22) (2016). https://doi.org/10.1103/PhysRevB.93.220405

  89. C.F. Pai, L. Liu, Y. Li, H.W. Tseng, D.C. Ralph, R.A. Buhrman, Spin transfer torque devices utilizing the giant spin Hall effect of tungsten. Appl. Phys. Lett. 101(12), 122404 (2012). https://doi.org/10.1063/1.4753947

    Article  ADS  Google Scholar 

  90. C.F. Pai, Y. Ou, L.H. Vilela-Leão, D.C. Ralph, R.A. Buhrman, Dependence of the efficiency of spin Hall torque on the transparency of Pt/ferromagnetic layer interfaces. Phys. Rev. B 92(6), 064426 (2015). https://doi.org/10.1103/physrevb.92.064426

    Article  ADS  Google Scholar 

  91. S. Parkin, S.H. Yang, Memory on the racetrack. Nat. Nanotechnol. 10(3), 195–198 (2015). https://doi.org/10.1038/nnano.2015.41

    Article  ADS  Google Scholar 

  92. S.S.P. Parkin, M. Hayashi, L. Thomas, Magnetic domain-wall racetrack memory. Science 320(5873), 190–194 (2008). https://doi.org/10.1126/science.1145799

    Article  ADS  Google Scholar 

  93. V. Puliafito, A. Giordano, A. Laudani, F. Garescì, M. Carpentieri, B. Azzerboni, G. Finocchio, Scalable synchronization of spin-Hall oscillators in out-of-plane field. Appl. Phys. Lett. 109(20), 202402 (2016). https://doi.org/10.1063/1.4967842

    Article  ADS  Google Scholar 

  94. Z. Qiu, T. An, K. Uchida, D. Hou, Y. Shiomi, Y. Fujikawa, E. Saitoh, Experimental investigation of spin Hall effect in indium tin oxide thin film. Appl. Phys. Lett. 103(18), 182404 (2013). https://doi.org/10.1063/1.4827808

    Article  ADS  Google Scholar 

  95. Z. Qiu, D. Hou, T. Kikkawa, K.I. Uchida, E. Saitoh, All-oxide spin Seebeck effects. Appl. Phys. Express 8(8), 083001 (2015). https://doi.org/10.7567/APEX.8.083001

    Article  ADS  Google Scholar 

  96. D.C. Ralph, M.D. Stiles, Spin transfer torques. JMMM 320(7), 1190–1216 (2008)

    Article  ADS  Google Scholar 

  97. K.S. Ryu, L. Thomas, S.H. Yang, S. Parkin, Chiral spin torque at magnetic domain walls. Nat. Nanotechnol. 8(7), 527–533 (2013). https://doi.org/10.1038/nnano.2013.102

    Article  ADS  Google Scholar 

  98. K.S. Ryu, S.H. Yang, S. Parkin, Experimentally tunable chiral spin transfer torque in domain wall motion. New J. Phys. 18(5), 053027 (2016). https://doi.org/10.1088/1367-2630/18/5/053027

    Article  ADS  Google Scholar 

  99. E. Saitoh, M. Ueda, H. Miyajima, G. Tatara, Conversion of spin current into charge current at room temperature: inverse spin-Hall effect. Appl. Phys. Lett. 88(18), 182509 (2006). https://doi.org/10.1063/1.2199473

    Article  ADS  Google Scholar 

  100. J. Sampaio, V. Cros, S. Rohart, A. Thiaville, A. Fert, Nucleation, stability and current-induced motion of isolated magnetic skyrmions in nanostructures. Nat. Nanotechnol. 8(11), 839–844 (2013). https://doi.org/10.1038/nnano.2013.210

    Article  ADS  Google Scholar 

  101. C. Sandweg, Y. Kajiwara, A. Chumak, A. Serga, V. Vasyuchka, M. Jungfleisch, E. Saitoh, B. Hillebrands, Spin pumping by parametrically excited exchange magnons. Phys. Rev. Lett. 106(21), 216601 (2011). https://doi.org/10.1103/PhysRevLett.106.216601

    Article  ADS  Google Scholar 

  102. M. Schreier, T. Chiba, A. Niedermayr, J. Lotze, H. Huebl, S. Geprägs, S. Takahashi, G.E.W. Bauer, R. Gross, S.T.B. Goennenwein, Current-induced spin torque resonance of a magnetic insulator. Phys. Rev. B 92(14), 144411 (2015). https://doi.org/10.1103/physrevb.92.144411

    Article  ADS  Google Scholar 

  103. T. Seifert, S. Jaiswal, U. Martens, J. Hannegan, L. Braun, P. Maldonado, F. Freimuth, A. Kronenberg, J. Henrizi, I. Radu, E. Beaurepaire, Y. Mokrousov, P.M. Oppeneer, M. Jourdan, G. Jakob, D. Turchinovich, L.M. Hayden, M. Wolf, M. Münzenberg, M. Kläui, T. Kampfrath, Efficient metallic spintronic emitters of ultrabroadband terahertz radiation. Nat. Photon. 10(7), 483–488 (2016). https://doi.org/10.1038/nphoton.2016.91

    Article  ADS  Google Scholar 

  104. T. Seki, Y. Hasegawa, S. Mitani, S. Takahashi, H. Imamura, S. Maekawa, J. Nitta, K. Takanashi, Giant spin Hall effect in perpendicularly spin-polarized FePt/Au devices. Nat. Mater. 7(2), 125–129 (2008). https://doi.org/10.1038/nmat2098

    Article  ADS  Google Scholar 

  105. J. Sinova, S.O. Valenzuela, J. Wunderlich, C. Back, T. Jungwirth, Spin Hall effects. Rev. Modern Phys. 87(4), 1213–1260 (2015). https://doi.org/10.1103/revmodphys.87.1213

    Article  ADS  Google Scholar 

  106. T.D. Skinner, K. Olejnk, L.K. Cunningham, H. Kurebayashi, R.P. Campion, B.L. Gallagher, T. Jungwirth, A.J. Ferguson, Complementary spin-Hall and inverse spin-galvanic effect torques in a ferromagnet/semiconductor bilayer. Nat. Commun. 6, 6730 (2015). https://doi.org/10.1038/ncomms7730

  107. Y. Sun, H. Chang, M. Kabatek, Y.Y. Song, Z. Wang, M. Jantz, W. Schneider, M. Wu, E. Montoya, B. Kardasz, B. Heinrich, S.G.E. te Velthuis, H. Schultheiss, A. Hoffmann, Damping in yttrium iron garnet nanoscale films capped by platinum. Phys. Rev. Lett. 111(10), 106601 (2013). https://doi.org/10.1103/PhysRevLett.111.106601

    Article  ADS  Google Scholar 

  108. S. Takahashi, S. Maekawa, Spin current in metals and superconductors. J. Phys. Soc. Jpn. 77(3), 031009 (2008). https://doi.org/10.1143/jpsj.77.031009

    Article  ADS  Google Scholar 

  109. A. Thiaville, S. Rohart, M. Ju, V. Cros, A. Fert, Dynamics of Dzyaloshinskii domain walls in ultrathin magnetic films. EPL (Europhys. Lett.) 100(5), 57002 (2012). https://doi.org/10.1209/0295-5075/100/57002

    Article  ADS  Google Scholar 

  110. Y. Tserkovnyak, A. Brataas, G.E.W. Bauer, Enhanced gilbert damping in thin ferromagnetic films. Phys. Rev. Lett. 88(11), 117601 (2002). https://doi.org/10.1103/PhysRevLett.88.117601

    Article  ADS  Google Scholar 

  111. Y. Tserkovnyak, A. Brataas, G.E.W. Bauer, Spin pumping and magnetization dynamics in metallic multilayers. Phys. Rev. B 66, 224403 (2002). https://doi.org/10.1103/PhysRevB.66.224403

    Article  ADS  Google Scholar 

  112. Y. Tserkovnyak, A. Brataas, G.E.W. Bauer, B.I. Halperin, Nonlocal magnetization dynamics in ferromagnetic heterostructures. Rev. Modern Phys. 77(4), 1375–1421 (2005). https://doi.org/10.1103/RevModPhys.77.1375

    Article  ADS  Google Scholar 

  113. K. Uchida, S. Takahashi, K. Harii, J. Ieda, W. Koshibae, K. Ando, S. Maekawa, E. Saitoh, Observation of the spin Seebeck effect. Nature 455(7214), 778–781 (2008). https://doi.org/10.1038/nature07321

    Article  ADS  Google Scholar 

  114. K. Uchida, J. Xiao, H. Adachi, J. Ohe, S. Takahashi, J. Ieda, T. Ota, Y. Kajiwara, H. Umezawa, H. Kawai, G.E.W. Bauer, S. Maekawa, E. Saitoh, Spin Seebeck insulator. Nat. Mater. 9(11), 894–897 (2010). https://doi.org/10.1038/nmat2856

    Article  ADS  Google Scholar 

  115. H. Ulrichs, V.E. Demidov, S.O. Demokritov, W.L. Lim, J. Melander, N. Ebrahim-Zadeh, S. Urazhdin, Optimization of Pt-based spin-Hall-effect spintronic devices. Appl. Phys. Lett. 102(13), 132402 (2013). https://doi.org/10.1063/1.4799492

    Article  ADS  Google Scholar 

  116. S.O. Valenzuela, M. Tinkham, Direct electronic measurement of the spin Hall effect. Nature 442(7099), 176–179 (2006)

    Article  ADS  Google Scholar 

  117. N. Vlietstra, J. Shan, V. Castel, B.J. van Wees, J.B. Youssef, Spin-Hall magnetoresistance in platinum on yttrium iron garnet: dependence on platinum thickness and in-plane/out-of-plane magnetization. Phys. Rev. B 87(18), 184421 (2013). https://doi.org/10.1103/physrevb.87.184421

    Article  ADS  Google Scholar 

  118. S.V. Vonsovskii, Ferromagnetic Resonance (Pergamon Press, New York, 1960)

    Google Scholar 

  119. D. Wei, M. Obstbaum, M. Ribow, C.H. Back, G. Woltersdorf, Spin Hall voltages from a.c. and d.c. spin currents. Nat. Commun. 5 (2014). https://doi.org/10.1038/ncomms4768

  120. M. Weiler, J.M. Shaw, H.T. Nembach, T.J. Silva, Phase-sensitive detection of spin pumping via the ac inverse spin Hall effect. Phys. Rev. Lett. 113(15), 157204 (2014). https://doi.org/10.1103/physrevlett.113.157204

    Article  ADS  Google Scholar 

  121. M. Weiler, G. Woltersdorf, M. Althammer, H. Huebl, S.T.B. Goennenwein, Spin pumping and spin currents in magnetic insulators. Recent advances in magnetic insulators—from spintronics to microwave applications, in Solid State Physics, vol. 64, chap. 5, ed. by M. Wu, A. Hoffmann (Academic Press, 2013), pp. 123–156

    Google Scholar 

  122. G. Woltersdorf, O. Mosendz, B. Heinrich, C.H. Back, Magnetization dynamics due to pure spin currents in magnetic double layers. Phys. Rev. Lett. 99(24), 246603 (2007). https://doi.org/10.1103/PhysRevLett.99.246603

    Article  ADS  Google Scholar 

  123. S. Woo, K. Litzius, B. Krüger, M.Y. Im, L. Caretta, K. Richter, M. Mann, A. Krone, R.M. Reeve, M. Weigand, P. Agrawal, I. Lemesh, M.A. Mawass, P. Fischer, M. Kläui, G.S.D. Beach, Observation of room-temperature magnetic skyrmions and their current-driven dynamics in ultrathin metallic ferromagnets. Nat. Mater. 15(5), 501–506 (2016). https://doi.org/10.1038/nmat4593

    Article  ADS  Google Scholar 

  124. H. Wu, C.H. Wan, X. Zhang, Z.H. Yuan, Q.T. Zhang, J.Y. Qin, H.X. Wei, X.F. Han, S. Zhang, Observation of magnon-mediated electric current drag at room temperature. Phys. Rev. B 93(6) (2016). https://doi.org/10.1103/physrevb.93.060403

  125. H. Wu, Q. Zhang, C. Wan, S.S. Ali, Z. Yuan, L. You, J. Wang, Y. Choi, X. Han, Spin Hall magnetoresistance in CoFe\(_2\)O\(_4\)/Pt films. IEEE Trans. Magn. 51(11), 1–4 (2015). https://doi.org/10.1109/tmag.2015.2433060

    Article  Google Scholar 

  126. J. Wunderlich, B. Kaestner, J. Sinova, T. Jungwirth, Experimental observation of the spin-Hall effect in a two-dimensional spin-orbit coupled semiconductor system. Phys. Rev. Lett. 94(4), 047204 (2005). https://doi.org/10.1103/physrevlett.94.047204

    Article  ADS  Google Scholar 

  127. J. Wunderlich, B.G. Park, A.C. Irvine, L.P. Zarbo, E. Rozkotova, P. Nemec, V. Novak, J. Sinova, T. Jungwirth, Spin Hall effect transistor. Science 330(6012), 1801–1804 (2010). https://doi.org/10.1126/science.1195816

    Article  ADS  Google Scholar 

  128. S.H. Yang, K.S. Ryu, S. Parkin, Domain-wall velocities of up to 750 m s1 driven by exchange-coupling torque in synthetic antiferromagnets. Nat. Nanotechnol. 10(3), 221–226 (2015). https://doi.org/10.1038/nnano.2014.324

    Article  ADS  Google Scholar 

  129. S.S.L. Zhang, G. Vignale, Theory of unidirectional spin Hall magnetoresistance in heavy-metal/ferromagnetic-metal bilayers. Phys. Rev. B 94(14), 140411 (2016). https://doi.org/10.1103/physrevb.94.140411

    Article  ADS  Google Scholar 

  130. S.S.L. Zhang, S. Zhang, Magnon mediated electric current drag across a ferromagnetic insulator layer. Phys. Rev. Lett. 109, 096603 (2012). https://doi.org/10.1103/physrevlett.109.096603

    Article  ADS  Google Scholar 

  131. S.S.L. Zhang, S. Zhang, Spin convertance at magnetic interfaces. Phys. Rev. B 86, 214424 (2012). https://doi.org/10.1103/physrevb.86.214424

    Article  ADS  Google Scholar 

  132. W. Zhang, W. Han, S.H. Yang, Y. Sun, Y. Zhang, B. Yan, S.S.P. Parkin, Giant facet-dependent spin-orbit torque and spin Hall conductivity in the triangular antiferromagnet IrMn3. Sci. Adv. 2(9), e1600759–e1600759 (2016). https://doi.org/10.1126/sciadv.1600759

    Article  ADS  Google Scholar 

  133. W. Zhang, M.B. Jungfleisch, F. Freimuth, W. Jiang, J. Sklenar, J.E. Pearson, J.B. Ketterson, Y. Mokrousov, A. Hoffmann, All-electrical manipulation of magnetization dynamics in a ferromagnet by antiferromagnets with anisotropic spin Hall effects. Phys. Rev. B 92(14) (2015). https://doi.org/10.1103/PhysRevB.92.144405

  134. W. Zhang, M.B. Jungfleisch, W. Jiang, J.E. Pearson, A. Hoffmann, F. Freimuth, Y. Mokrousov, Spin hall effects in metallic antiferromagnets. Phys. Rev. Lett. 113(19) (2014). https://doi.org/10.1103/PhysRevLett.113.196602

Download references

Acknowledgements

I would like to thank S. T. B. Goennenwein for all his help and support while writing this chapter. Moreover, helpful discussions with H. Huebl, R. Gross, and M. Weiler are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Althammer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Althammer, M. (2018). Spin Hall Effect. In: Zang, J., Cros, V., Hoffmann, A. (eds) Topology in Magnetism. Springer Series in Solid-State Sciences, vol 192. Springer, Cham. https://doi.org/10.1007/978-3-319-97334-0_7

Download citation

Publish with us

Policies and ethics