Skip to main content

Recent Advancements and Perspective About Digital Holography: A Super-Tool in Biomedical and Bioengineering Fields

  • Conference paper
  • First Online:
Advancement of Optical Methods & Digital Image Correlation in Experimental Mechanics, Volume 3

Abstract

Digital holographic microscopy (DHM) has become a technique utilized widely for sample inspection, having many applications in different fields of science and technology. The capability for recovering the complex amplitude distribution scattered by the sample permits numerical refocus after acquisition and quantitative phase imaging. These are two of the features that make DHM a very versatile microscopy technique. The standard DHM system is based on a Mach–Zehnder interferometer that can be configured for operating in transmission or reflection modes, working in either the in-line or off-axis architecture. With the benefit of such special characteristics, DHM is used in basic research as much in the industry. Here we review some of the recent advancements for the label-free inspection of biological samples and the study of thin films.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mertz, J.: Optical sectioning microscopy with planar or structured illumination. Nat. Methods. 8, 811–819 (2011)

    Article  Google Scholar 

  2. Huang, D., Swanson, E.A., Lin, C.P., Schuman, J.S., Stinson, W.G., et al.: Optical coherence tomography. Science. 254, 1178–1181 (1991)

    Article  Google Scholar 

  3. Yi, J., Liu, W.Z., Chen, S.Y., Backman, V., Sheibani, N., et al.: Visible light optical coherence tomography measures retinal oxygen metabolic response to systemic oxygenation. Light Sci Appl. 4, e334 (2015)

    Article  Google Scholar 

  4. Choi, W., Fang-Yen, C., Badizadegan, K., Oh, S., Lue, N., et al.: Tomographic phase microscopy. Nat. Methods. 4, 717–719 (2007)

    Article  Google Scholar 

  5. Kim, K., Kim, K.S., Park, H., Ye, J.C., Park, Y.K.: Real-time visualization of 3-D dynamic microscopic objects using optical diffraction tomography. Opt. Express. 21, 32269–32278 (2013)

    Article  Google Scholar 

  6. Charrière, F., Marian, A., Montfort, F., Kuehn, J., Colomb, T., et al.: Cell refractive index tomography by digital holographic microscopy. Opt. Lett. 31, 178–180 (2006)

    Article  Google Scholar 

  7. Kim, T., Zhou, R.J., Mir, M., Babacan, S.D., Carney, P.S., et al.: White-light diffraction tomography of unlabelled live cells. Nat. Photonics. 8, 256–263 (2014)

    Article  Google Scholar 

  8. Mir, M., Tangella, K., Popescu, G.: Blood testing at the single cell level using quantitative phase and amplitude microscopy. Biomed. Opt. Express. 2, 3259–3266 (2011)

    Article  Google Scholar 

  9. Kim, Y., Shim, H., Kim, K., Park, H., Jang, S., et al.: Profiling individual human red blood cells using common-path diffraction optical tomography. Sci. Rep. 4, 6659 (2014)

    Article  Google Scholar 

  10. Sung, Y., Lue, N., Hamza, B., Martel, J., Irimia, D., et al.: Three-dimensional holographic refractive-index measurement of continuously flowing cells in a microfluidic channel. Phys Rev Appl. 1, 014002 (2014)

    Article  Google Scholar 

  11. Yoon, J., Kim, K., Park, H., Choi, C., Jang, S., et al.: Label-free characterization of white blood cells by measuring 3D refractive index maps. Biomed. Opt. Express. 6, 3865–3875 (2015)

    Article  Google Scholar 

  12. Bishara, W., Zhu, H.Y., Ozcan, A.: Holographic opto-fluidic microscopy. Opt. Express. 18, 27499–27510 (2010)

    Article  Google Scholar 

  13. Isikman, S.O., Bishara, W., Zhu, H.Y., Ozcan, A.: Optofluidic tomography on a chip. Appl. Phys. Lett. 98, 161109 (2011)

    Article  Google Scholar 

  14. Isikman, S.O., Bishara, W., Mavandadi, S., Yu, F.W., Feng, S., et al.: Lens-free optical tomographic microscope with a large imaging volume on a chip. Proc. Natl. Acad. Sci. U. S. A. 108, 7296–7301 (2011)

    Article  Google Scholar 

  15. Arpali, S.A., Arpali, C., Coskun, A.F., Chiang, H.H., Ozcan, A.: High-throughput screening of large volumes of whole blood using structured illumination and fluorescent on-chip imaging. Lab Chip. 12, 4968–4971 (2012)

    Article  Google Scholar 

  16. Horstmeyer, R., Chung, J., Ou, X., Zheng, G., Yang, C.: Diffraction tomography with Fourier ptychography. Optica. 3, 827–835 (2016)

    Article  Google Scholar 

  17. Kamilov, U.S., Papadopoulos, I.N., Shoreh, M.H., Goy, A., Vonesch, C., et al.: Learning approach to optical tomography. Optica. 2, 517–522 (2015)

    Article  Google Scholar 

  18. Psaltis, D., Quake, S.R., Yang, C.: Developing optofluidic technology through the fusion of microfluidics and optics. Nature. 442, 381–386 (2006)

    Article  Google Scholar 

  19. Lue, N., Choi, W., Popescu, G., Badizadegan, K., Dasari, R.R., Feld, M.S.: Synthetic aperture tomographic phase microscopy for 3D imaging of live cells in translational motion. Opt. Express. 16, 16240–16246 (2008)

    Article  Google Scholar 

  20. Merola, F., Memmolo, P., Miccio, L., Savoia, R., Mugnano, M., Fontana, A., D’Ippolito, G., Sardo, A., Iolascon, A., Gambale, A., Ferraro, P.: Tomographic flow cytometry by digital holography. Light Sci Appl. 5, e16241 (2017)

    Article  Google Scholar 

  21. Pégard, N.C., Toth, M.L., Driscoll, M., Fleischer, J.W.: Flow scanning optical tomography. Lab Chip. 14, 4447–4450 (2014)

    Article  Google Scholar 

  22. Habaza, M., Kirschbaum, M., Guernth-Marschner, C., Dardikman, G., Barnea, I., Korenstein, R., Duschl, C., Shaked, N.T.: Rapid 3D refractive-index imaging of live cells in suspension without labeling using dielectrophoretic cell rotation. Adv. Sci. 4, 1600205 (2017)

    Article  Google Scholar 

  23. Habaza, M., Gilboa, B., Roichman, Y., Shaked, N.T.: Tomographic phase microscopy with 180° rotation of live cells in suspension by holographic optical tweezers. Opt. Lett. 40, 1881–1884 (2015)

    Article  Google Scholar 

  24. Padgett, M., Di Leonardo, R.: Holographic optical tweezers and their relevance to lab on chip devices. Lab Chip. 11, 1196–1205 (2011)

    Article  Google Scholar 

  25. Merola, F., Miccio, L., Memmolo, P., Di Caprio, G., Galli, A., et al.: Digital holography as a method for 3D imaging and estimating the biovolume of motile cells. Lab Chip. 13, 4512–4516 (2013)

    Article  Google Scholar 

  26. Memmolo, P., Miccio, L., Merola, F., Gennari, O., Netti, P.A., et al.: 3D morphometry of red blood cells by digital holography. Cytometry A. 85, 1030–1036 (2014)

    Article  Google Scholar 

  27. Memmolo, P., Paturzo, M., Javidi, B., Netti, P.A., Ferraro, P.: Refocusing criterion via sparsity measurements in digital holography. Opt. Lett. 39, 4719–4722 (2014)

    Article  Google Scholar 

  28. Memmolo, P., Miccio, L., Paturzo, M., Di Caprio, G., Coppola, G., Netti, P.A., Ferraro, P.: Recent advances in holographic 3D particle tracking. Adv. Opt. Photon. 7, 713–755 (2015)

    Article  Google Scholar 

  29. Memmolo, P., Miccio, L., Finizio, A., Netti, P.A., Ferraro, P.: Holographic tracking of living cells by three-dimensional reconstructed complex wavefronts alignment. Opt. Lett. 39, 2759–2762 (2014)

    Article  Google Scholar 

  30. Merola, F., Miccio, L., Memmolo, P., Paturzo, M., Grilli, S., Ferraro, P.: Simultaneous optical manipulation, 3-D tracking, and imaging of micro-objects by digital holography in microfluidics. IEEE Photonics J. 4(2), 451–454 (2012)

    Article  Google Scholar 

  31. Wang, L.P., Zheng, B.H.: Toxic effects of fluoranthene and copper on marine diatom Phaeodactylum tricornutum. J. Environ. Sci. 20, 1363–1372 (2008)

    Article  Google Scholar 

  32. Miccio, L., Memmolo, P., Merola, F., Netti, P.A., Ferraro, P.: Red blood cell as an adaptive optofluidic microlens. Nat. Commun. 6, 6502 (2015)

    Article  Google Scholar 

  33. Villone, M., Memmolo, P., Merola, F., Mugnano, M., Miccio, L., Maffettone, P.L., Ferraro, P.: Full-angle tomographic phase microscopy of flowing quasi-spherical cells. Lab Chip. 18, 126 (2018)

    Article  Google Scholar 

  34. Heng, X., et al.: Optofluidic microscopy-a method for implementing a high resolution optical microscope on a chip. Lab Chip. 6, 1274–1276 (2006)

    Article  Google Scholar 

  35. Vercruysse, D., Dusa, A., Stahl, R., Vanmeerbeeck, G., de Wijs, K., Liu, C., Prodanov, D., Peumans, P., Lagae, L.: Three-part differential of unlabeled leukocytes with a compact lens-free imaging flow cytometer. Lab Chip. 15(4), 1123–1132 (2015)

    Article  Google Scholar 

  36. Wu, J., et al.: Optical imaging techniques in microfluidics and their applications. Lab Chip. 12, 3566–3575 (2012)

    Article  Google Scholar 

  37. Ferraro, P., Wax, A., Zalevsky, Z. (eds.): Coherent Light Microscopy: Imaging and Quantitative Phase Analysis, Springer Science & Business Media, vol. 46, Berlin (2011)

    Google Scholar 

  38. Latychevskaia, T., Fink, H.W.: Solution to the twin image problem in holography. Phys. Rev. Lett. 98, 233901 (2007)

    Article  Google Scholar 

  39. Bianco, V., Mandracchia, B., Marchesano, V., Pagliarulo, V., Olivieri, F., Coppola, S., et al.: Endowing a plain fluidic chip with micro-optics: a holographic microscope slide. Light Sci Appl. 6(9), e17055 (2017)

    Article  Google Scholar 

  40. Mandracchia, B., Bianco, V., Wang, Z., Mugnano, M., Bramanti, A., Paturzo, M., Ferraro, P.: Holographic microscope slide in a spatio-temporal imaging modality for reliable 3D cell counting. Lab Chip. 17(16), 2831–2838 (2017)

    Article  Google Scholar 

  41. Marmottant, P., Hilgenfeldt, S.: Controlled vesicle deformation and lysis by single oscillating bubbles. Nature. 423, 153–156 (2003)

    Article  Google Scholar 

  42. Massol, H., Koyaguchi, T.: The effect of magma flow on nucleation of gas bubbles in a volcanic conduit. J. Volcanol. Geotherm. Res. 143, 69–88 (2005)

    Article  Google Scholar 

  43. Salerno, A., Di Maio, E., Iannace, S., Netti, P.A.: Tailoring the pore structure of PCL scaffolds for tissue engineering prepared via gas foaming of multi-phase blends. J. Porous. Mater. 19, 181–188 (2012)

    Article  Google Scholar 

  44. Wang, Z., Mandracchia, B., Ferraro, V., Tammaro, D., Di Maio, E., Maffettone, P.L., Ferraro, P.: Interferometric measurement of film thickness during bubble blowing. Proc. SPIE Int. Soc. Opt. Eng. 10333, 6936 (2017)

    Google Scholar 

  45. Calabuig, A., Mugnano, M., Miccio, L., Grilli, S., Ferraro, P.: Investigating fibroblast cells under “safe” and “injurious” blue-light exposure by holographic microscopy. J. Biophotonics. 9, 1–9 (2016)

    Article  Google Scholar 

  46. Ash, W., Kim, M.: Digital holography of total internal reflection. Opt. Express. 16, 9811–9820 (2008)

    Article  Google Scholar 

  47. Li, S., Zhong, J.: Simultaneous amplitude-contrast and phase-contrast surface plasmon resonance imaging by use of digital holography. Biomed. Opt. Express. 3, 3190–3202 (2012)

    Article  Google Scholar 

  48. Mandracchia, B., Gennari, O., Marchesano, V., Paturzo, M., Ferraro, P.: Label free imaging of cell-substrate contacts by holographic total internal reflection microscopy. J. Biophotonics. 10(9), 1163–1170 (2017)

    Article  Google Scholar 

  49. Mandracchia, B., Gennari, O., Bramanti, A., Grilli, S., Ferraro, P.: Label-free quantification of the effects of lithium niobate polarization on cell adhesion via holographic microscopy. J. Biophotonics. (2018). https://doi.org/10.1002/jbio.201700332

    Article  Google Scholar 

  50. Mandracchia, B., Pagliarulo, V., Paturzo, M., Ferraro, P.: Surface plasmon resonance imaging by holographic enhanced mapping. Anal. Chem. 87(8), 4124–4128 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Ferraro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 The Society for Experimental Mechanics, Inc.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Merola, F. et al. (2019). Recent Advancements and Perspective About Digital Holography: A Super-Tool in Biomedical and Bioengineering Fields. In: Lamberti, L., Lin, MT., Furlong, C., Sciammarella, C., Reu, P., Sutton, M. (eds) Advancement of Optical Methods & Digital Image Correlation in Experimental Mechanics, Volume 3. Conference Proceedings of the Society for Experimental Mechanics Series. Springer, Cham. https://doi.org/10.1007/978-3-319-97481-1_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-97481-1_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-97480-4

  • Online ISBN: 978-3-319-97481-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics