Skip to main content

Part of the book series: Contemporary Cardiology ((CONCARD))

  • 1353 Accesses

Abstract

Due to the epidemic of Type 2 diabetes related to increased adiposity and sedentary lifestyles and the increasing incidence and improved prognosis of Type 1 diabetes, the primary care clinician (general practitioner) is likely to care for many people with diabetes during their career, the majority of whom will have Type 2 diabetes. The prevention, early diagnosis, and excellent management of diabetes are key to reducing the patient’s risk of diabetes complications. The chronic complications of diabetes relate to damage to the small and large vasculature and nerves, leading to diabetic retinopathy, nephropathy, and neuropathy; and accelerated atherosclerosis, leading to coronary artery disease (CAD), cerebrovascular disease, and peripheral vascular disease. People with diabetes who develop its microvascular complications are at particularly high risk of developing cardiovascular disease, which is the cause of death of over 60% of people with diabetes and is often silent. For the primary and secondary prevention of cardiovascular disease in people with diabetes (and the related microvascular complications), multiple risk factors need to be assessed and managed, including lifestyle (diet, exercise, and non-smoking), adiposity, glycemia and insulin resistance, blood pressure (BP), lipids, and vaccinations. Regular screening and treating vascular risk factors to proven targets are important. Clinical trials and meta-analyses provide evidence of the efficacy of many beneficial treatments for the primary and secondary prevention of diabetes-related vascular damage, yet often less than 10% of people with diabetes meet all recommended treatment targets. The primary care physician is ideally placed to manage diabetes, both directly and via assembling and coordinating a multidisciplinary team with the common goal of improving the quantity and quality of life of their patient with diabetes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

4S :

Scandinavian Simvastatin Survival Study

ACCORD :

Action to Control Cardiovascular Risk in Diabetes

ACE :

Angiotensin-converting enzyme

ACR :

Albumin–creatinine ratio

ADA :

American Diabetes Association

ADS :

Australian Diabetes Society

ADVANCE :

Action in Diabetes and Vascular Disease: Preterax and Diamicron MR Controlled Evaluation

AGEs :

Advanced glycation end-products

Apo :

Apolipoprotein

ARB :

Angiotensin receptor blocker

ARIC :

Atherosclerosis Risk in Communities

ASCOT :

Anglo-Scandinavian Cardiac Outcomes Trial

BP:

Blood pressure

CAC :

Coronary artery calcium

CACTI :

Coronary Artery Calcification in Type 1 Diabetes study

CAD :

Coronary artery disease

CARDS :

Collaborative Atorvastatin Diabetes Study

CARE :

Cholesterol and Recurrent Events

CKD :

Chronic kidney disease

COX-1 :

Cyclooxygenase-1

CTTC :

Cholesterol Treatment Trialists’ Collaboration

CVD:

Cardiovascular disease

DASH :

Dietary Approaches to Stop Hypertension

DCCT :

Diabetes Control and Complications Trial

DPP :

Diabetes Prevention Program

EASD :

European Association for the Study of Diabetes

EDIC:

Epidemiology of Diabetes Intervention and Complications

eGFR :

estimated glomerular filtration rate

EKG :

Electrocardiogram

ESRD :

End-stage renal disease

ET-1 :

Endothelin-1

ETDRS :

Early Treatment Diabetic Retinopathy Study

FIELD :

Fenofibrate Intervention and Event Lowering in Diabetes

FMD :

Flow-mediated dilation

GFR :

Glomerular filtration rate

HDL-C :

High-density lipoprotein cholesterol

HMG-CoA :

Hydroxymethylglutaroyl coenzyme A

HPS :

Heart Protection Study

IDF :

International Diabetes Federation

IMT :

Intima-media thickness

JPAD :

Japanese Prevention of Atherosclerosis with Aspirin for Diabetes

LDL-C :

Low-density lipoprotein cholesterol

MI :

Myocardial infarction

PKC :

Protein kinase C

POPADAD :

Prevention of progression of arterial disease and diabetes

PPAR:

Peroxisome proliferator-activated receptor

PWV :

Pulse wave velocity

RAAS:

Renin-angiotensin-aldosterone system

RACGP :

Royal Australian College of General Practitioners

SLE:

Systemic lupus erythematosus

UKPDS :

UK Prospective Diabetes Study

VADT :

Veterans Affairs Diabetes Trial

VEGF :

Vascular endothelial growth factor

VLDL:

Very low-density lipoprotein

References

  1. Jenkins AJ, Toth PP, Lyons TJ. Lipoproteins in diabetes mellitus. Contemporary diabetes, vol. xiv. New York: Humana Press/Springer; 2014. p. 466.

    Book  Google Scholar 

  2. IDF Diabetes Atlas, 7th edn. 2015 [cited 2017 26-Apr-]; 7th:[Available from: http://www.diabetesatlas.org.

  3. Standards of medical care in diabetes-2017. Diabetes Care. 2017;40(Suppl 1):S1–S132.

    Google Scholar 

  4. Ahlqvist E, et al. Novel subgroups of adult-onset diabetes and their association with outcomes: a data-driven cluster analysis of six variables. Lancet Diabetes Endocrinol. 2018;6(5):361–9.

    Article  PubMed  Google Scholar 

  5. Weng J, et al. Incidence of type 1 diabetes in China, 2010-13: population based study. BMJ. 2018;360:j5295.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Wilmot E, Idris I. Early onset type 2 diabetes: risk factors, clinical impact and management. Ther Adv Chronic Dis. 2014;5(6):234–44.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Pettitt DJ, et al. Prevalence of diabetes in U.S. youth in 2009: the SEARCH for diabetes in youth study. Diabetes Care. 2014;37(2):402–8.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Constantino MI, et al. Long-term complications and mortality in young-onset diabetes: type 2 diabetes is more hazardous and lethal than type 1 diabetes. Diabetes Care. 2013;36(12):3863–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Al-Saeed AH, et al. An Inverse Relationship Between Age of Type 2 Diabetes Onset and Complication Risk and Mortality: The Impact of Youth-Onset Type 2 Diabetes. Diabetes Care. 2016;39(5):823–9.

    Article  CAS  PubMed  Google Scholar 

  10. Kilpatrick ES, Rigby AS, Atkin SL. Insulin resistance, the metabolic syndrome, and complication risk in type 1 diabetes: “double diabetes” in the Diabetes Control and Complications Trial. Diabetes Care. 2007;30(3):707–12.

    Article  CAS  PubMed  Google Scholar 

  11. Teupe B, Bergis K. Epidemiological evidence for “double diabetes”. Lancet. 1991;337(8737):361–2.

    Article  CAS  PubMed  Google Scholar 

  12. McGill M, et al. The interdisciplinary team in type 2 diabetes management: Challenges and best practice solutions from real-world scenarios. J Clin Transl Endocrinol. 2017;7:21–7.

    PubMed  Google Scholar 

  13. Ehrlich SF, et al. The risk of large for gestational age across increasing categories of pregnancy glycemia. Am J Obstet Gynecol. 2011;204(3):240 e1-6.

    Article  PubMed  CAS  Google Scholar 

  14. Ferrara A. Increasing prevalence of gestational diabetes mellitus: a public health perspective. Diabetes Care. 2007;30(Suppl 2):S141–6.

    Article  PubMed  Google Scholar 

  15. Hedderson M, et al. Racial/ethnic disparities in the prevalence of gestational diabetes mellitus by BMI. Diabetes Care. 2012;35(7):1492–8.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Noctor E, Dunne FP. Type 2 diabetes after gestational diabetes: The influence of changing diagnostic criteria. World J Diabetes. 2015;6(2):234–44.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Griffin MD, et al. Thioflavin T fluorescence in human serum: correlations with vascular health and cardiovascular risk factors. Clin Biochem. 2010;43(3):278–86.

    Article  CAS  PubMed  Google Scholar 

  18. Wong M, et al. Reduced arterial elasticity in rheumatoid arthritis and the relationship to vascular disease risk factors and inflammation. Arthritis Rheum. 2003;48(1):81–9.

    Article  PubMed  Google Scholar 

  19. Van Doornum S, et al. Screening for atherosclerosis in patients with rheumatoid arthritis: comparison of two in vivo tests of vascular function. Arthritis Rheum. 2003;48(1):72–80.

    Article  PubMed  Google Scholar 

  20. Derosa G, et al. Efficacy and safety of ezetimibe/simvastatin association on non-diabetic and diabetic patients with polygenic hypercholesterolemia or combined hyperlipidemia and previously intolerant to standard statin treatment. J Clin Pharm Ther. 2009;34(3):267–76.

    Article  CAS  PubMed  Google Scholar 

  21. Ishikawa M, et al. Effect of pravastatin and atorvastatin on glucose metabolism in nondiabetic patients with hypercholesterolemia. Intern Med. 2006;45(2):51–5.

    Article  PubMed  Google Scholar 

  22. Sukhija R, et al. Effect of statins on fasting plasma glucose in diabetic and nondiabetic patients. J Investig Med. 2009;57(3):495–9.

    Article  CAS  PubMed  Google Scholar 

  23. Chogtu B, Magazine R, Bairy KL. Statin use and risk of diabetes mellitus. World J Diabetes. 2015;6(2):352–7.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Sattar N, et al. Statins and risk of incident diabetes: a collaborative meta-analysis of randomised statin trials. Lancet. 2010;375(9716):735–42.

    Article  CAS  PubMed  Google Scholar 

  25. Cholesterol Treatment Trialists, C., et al. Efficacy and safety of more intensive lowering of LDL cholesterol: a meta-analysis of data from 170,000 participants in 26 randomised trials. Lancet. 2010;376(9753):1670–81.

    Google Scholar 

  26. Henriksbo BD, et al. Fluvastatin causes NLRP3 inflammasome-mediated adipose insulin resistance. Diabetes. 2014;63(11):3742–7.

    Article  CAS  PubMed  Google Scholar 

  27. Lotta LA, et al. Association Between Low-Density Lipoprotein Cholesterol-Lowering Genetic Variants and Risk of Type 2 Diabetes: A Meta-analysis. JAMA. 2016;316(13):1383–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Schmidt AF, et al. PCSK9 genetic variants and risk of type 2 diabetes: a mendelian randomisation study. Lancet Diabetes Endocrinol. 2017;5(2):97–105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Jenkins AJ, O’Neal DN, Nolan CJ, Januszewski A. The pathobiology of diabetes mellitus. New York: Springer Berlin Heidelberg; 2016. p. 1–48.

    Google Scholar 

  30. American Diabetes, A. 2. Classification and Diagnosis of Diabetes. Diabetes Care. 2016;39(Suppl 1):S13–22.

    Google Scholar 

  31. Phillips PJ. Oral glucose tolerance testing. Aust Fam Physician. 2012;41(6):391–3.

    PubMed  Google Scholar 

  32. EASD diagnostic criteria. 2016 [cited 2016 04 Nov ]; Available from: https://www.escardio.org/static_file/Escardio/education/eLearning/webinars/general-cardiology/guidelines_impmeetingdiabetes_1Ryden.pdf.

  33. IDF diagnostic criteria. 2016 [cited 2016 04 Nov ]; Available from: http://www.idf.org/sites/default/files/IDF-Guideline-for-Type-2-Diabetes.pdf.

  34. ADS diagnostic criteria. 2016 [cited 2016 04 Nov ]; Available from: https://diabetessociety.com.au/position-statements.asp and https://diabetessociety.com.au/documents/ADSPOSITIONSTATEMENTv2.12016Uploadedtowebsite.pdf.

  35. Hanna FW, et al. Diagnosing gestational diabetes mellitus: implications of recent changes in diagnostic criteria and role of glycated haemoglobin (HbA1c). Clin Med (Lond). 2017;17(2):108–13.

    Article  Google Scholar 

  36. What increases my risk of diabetes? 2016 [cited 2017 04 May ]; Available from: http://www.webmd.com/diabetes/guide/risk-factors-for-diabetes#1.

  37. Engelgau MM, Narayan KM, Herman WH. Screening for type 2 diabetes. Diabetes Care. 2000;23(10):1563–80.

    Article  CAS  PubMed  Google Scholar 

  38. Diabetes Prevention Program Research, G. The Diabetes Prevention Program (DPP): description of lifestyle intervention. Diabetes Care. 2002;25(12):2165–71.

    Article  Google Scholar 

  39. Lindstrom J, et al. The Finnish Diabetes Prevention Study (DPS): Lifestyle intervention and 3-year results on diet and physical activity. Diabetes Care. 2003;26(12):3230–6.

    Article  PubMed  Google Scholar 

  40. Lindstrom J, et al. Improved lifestyle and decreased diabetes risk over 13 years: long-term follow-up of the randomised Finnish Diabetes Prevention Study (DPS). Diabetologia. 2013;56(2):284–93.

    Article  CAS  PubMed  Google Scholar 

  41. Diabetes Prevention Program Research, G. Long-term effects of lifestyle intervention or metformin on diabetes development and microvascular complications over 15-year follow-up: the Diabetes Prevention Program Outcomes Study. Lancet Diabetes Endocrinol. 2015;3(11):866–75.

    Article  CAS  Google Scholar 

  42. Pan XR, et al. Effects of diet and exercise in preventing NIDDM in people with impaired glucose tolerance. The Da Qing IGT and Diabetes Study. Diabetes Care. 1997;20(4):537–44.

    Article  CAS  PubMed  Google Scholar 

  43. Keidar A. Bariatric surgery for type 2 diabetes reversal: the risks. Diabetes Care. 2011;34(Suppl 2):S361–266.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Panunzi S, et al. Determinants of Diabetes Remission and Glycemic Control After Bariatric Surgery. Diabetes Care. 2016;39(1):166–74.

    Article  CAS  PubMed  Google Scholar 

  45. Singh AK, Singh R, Kota SK. Bariatric surgery and diabetes remission: Who would have thought it? Indian J Endocrinol Metab. 2015;19(5):563–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Diabetes Prevention Program Research, G. Long-term safety, tolerability, and weight loss associated with metformin in the Diabetes Prevention Program Outcomes Study. Diabetes Care. 2012;35(4):731–7.

    Article  CAS  Google Scholar 

  47. Aleman-Gonzalez-Duhart D, et al. Current Advances in the Biochemical and Physiological Aspects of the Treatment of Type 2 Diabetes Mellitus with Thiazolidinediones. PPAR Res. 2016;2016:7614270.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Mingrone G, et al. Bariatric-metabolic surgery versus conventional medical treatment in obese patients with type 2 diabetes: 5 year follow-up of an open-label, single-centre, randomised controlled trial. Lancet. 2015;386(9997):964–73.

    Article  PubMed  Google Scholar 

  49. Wentworth JM, et al. Five-Year Outcomes of a Randomized Trial of Gastric Band Surgery in Overweight but Not Obese People With Type 2 Diabetes. Diabetes Care. 2017;40(4):e44–5.

    Article  PubMed  Google Scholar 

  50. Chowdhury TA, Shaho S, Moolla A. Complications of diabetes: progress, but significant challenges ahead. Ann Transl Med. 2014;2(12):120.

    PubMed  PubMed Central  Google Scholar 

  51. Most RS, Sinnock P. The epidemiology of lower extremity amputations in diabetic individuals. Diabetes Care. 1983;6(1):87–91.

    Article  CAS  PubMed  Google Scholar 

  52. Deaths: Final Data for 2013 2016 [cited 2017 09 May ]; Available from: https://www.cdc.gov/nchs/data/nvsr/nvsr64/nvsr64_02.pdf.

  53. Gobl CS, et al. Sex-specific differences in glycemic control and cardiovascular risk factors in older patients with insulin-treated type 2 diabetes mellitus. Gend Med. 2010;7(6):593–9.

    Article  PubMed  Google Scholar 

  54. Maric C. Risk factors for cardiovascular disease in women with diabetes. Gend Med. 2010;7(6):551–6.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Thiruvoipati T, Kielhorn CE, Armstrong EJ. Peripheral artery disease in patients with diabetes: Epidemiology, mechanisms, and outcomes. World J Diabetes. 2015;6(7):961–9.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Berenson GS, et al. Association between multiple cardiovascular risk factors and atherosclerosis in children and young adults. The Bogalusa Heart Study. N Engl J Med. 1998;338(23):1650–6.

    Article  CAS  PubMed  Google Scholar 

  57. Enos WF, Holmes RH, Beyer J. Coronary disease among United States soldiers killed in action in Korea; preliminary report. J Am Med Assoc. 1953;152(12):1090–3.

    Article  CAS  PubMed  Google Scholar 

  58. Imakita M, et al. Second nation-wide study of atherosclerosis in infants, children and young adults in Japan. Atherosclerosis. 2001;155(2):487–97.

    Article  CAS  PubMed  Google Scholar 

  59. McGill HC Jr, et al. Associations of coronary heart disease risk factors with the intermediate lesion of atherosclerosis in youth. The Pathobiological Determinants of Atherosclerosis in Youth (PDAY) Research Group. Arterioscler Thromb Vasc Biol. 2000;20(8):1998–2004.

    Article  PubMed  Google Scholar 

  60. McNamara JJ, et al. Coronary artery disease in combat casualties in Vietnam. JAMA. 1971;216(7):1185–7.

    Article  CAS  PubMed  Google Scholar 

  61. Stary HC. Evolution and progression of atherosclerotic lesions in coronary arteries of children and young adults. Arteriosclerosis. 1989;9(1 Suppl):I19–32.

    CAS  PubMed  Google Scholar 

  62. Tanaka K, et al. A nation-wide study of atherosclerosis in infants, children and young adults in Japan. Atherosclerosis. 1988;72(2–3):143–56.

    Article  CAS  PubMed  Google Scholar 

  63. Tuzcu EM, et al. High prevalence of coronary atherosclerosis in asymptomatic teenagers and young adults: evidence from intravascular ultrasound. Circulation. 2001;103(22):2705–10.

    Article  CAS  PubMed  Google Scholar 

  64. Conte MS. Challenges of distal bypass surgery in patients with diabetes: patient selection, techniques, and outcomes. J Vasc Surg. 2010;52(3 Suppl):96S–103S.

    Article  PubMed  Google Scholar 

  65. Kapur A, De Palma R. Mortality after myocardial infarction in patients with diabetes mellitus. Heart. 2007;93(12):1504–6.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Menegazzo L, et al. Diabetes modifies the relationships among carotid plaque calcification, composition and inflammation. Atherosclerosis. 2015;241(2):533–8.

    Article  CAS  PubMed  Google Scholar 

  67. Haffner SM, et al. Mortality from coronary heart disease in subjects with type 2 diabetes and in nondiabetic subjects with and without prior myocardial infarction. N Engl J Med. 1998;339(4):229–34.

    Article  CAS  PubMed  Google Scholar 

  68. Bulugahapitiya U, et al. Is diabetes a coronary risk equivalent? Systematic review and meta-analysis. Diabet Med. 2009;26(2):142–8.

    Article  CAS  PubMed  Google Scholar 

  69. Carson AP, et al. Declines in coronary heart disease incidence and mortality among middle-aged adults with and without diabetes. Ann Epidemiol. 2014;24(8):581–7.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Cholesterol Treatment Trialists, C, et al. The effects of lowering LDL cholesterol with statin therapy in people at low risk of vascular disease: meta-analysis of individual data from 27 randomised trials. Lancet. 2012;380(9841):581–90.

    Article  CAS  Google Scholar 

  71. JDRF statement. 2017 [cited 2017 28 Apr ]; Available from: https://www.idf.org/webdata/docs/background_info_AFR.pdf.

  72. Rajamani K, et al. Effect of fenofibrate on amputation events in people with type 2 diabetes mellitus (FIELD study): a prespecified analysis of a randomised controlled trial. Lancet. 2009;373(9677):1780–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Yuan J, Rajamani K, King E, Bursill C, Lecce L, Jenkins A, Keech A, Ng M. Fenofibrate rescues diabetes-related impairment of ischaemia-mediated angiogenesis by a PPAR alpha independent pathway. in Cardiac Society of Australia and New Zealand Annual Scientific Meeting and the International Society for Heart Research Australasian Section Annual Scientific Meeting. Heart Lung Circ. 2015;24(3):S113–4.

    Google Scholar 

  74. Looker HC, et al. Diabetic retinopathy at diagnosis of type 2 diabetes in Scotland. Diabetologia. 2012;55(9):2335–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. American Diabetes Association. Diabetes & hypoglycemia : topical and important articles from the American Diabetes Association scholarly journals. Alexandria: American Diabetes Association; 2012. 266 p

    Google Scholar 

  76. Cryer PE, American Diabetes Association. Hypoglycemia in diabetes : pathophysiology, prevalence, and prevention, vol. xi. 2nd ed. Alexandria: American Diabetes Association; 2013. p. 236.

    Google Scholar 

  77. Fox LA, Weber SL, American Diabetes Association. Diabetes 911 : how to handle everyday emergencies, vol. viii. Alexandria, Va: American Diabetes Association; 2009. p. 117.

    Google Scholar 

  78. Jenkins AJ, et al. Lipoproteins, glycoxidation and diabetic angiopathy. Diabetes Metab Res Rev. 2004;20(5):349–68.

    Article  CAS  PubMed  Google Scholar 

  79. Thomas MC, et al. Relationship between levels of advanced glycation end products and their soluble receptor and adverse outcomes in adults with type 2 diabetes. Diabetes Care. 2015;38(10):1891–7.

    Article  CAS  PubMed  Google Scholar 

  80. Tremblay J, Hamet P. Biomarkers of vascular complications in type 2 diabetes. Metabolism. 2015;64(3 Suppl 1):S28–32.

    Article  CAS  PubMed  Google Scholar 

  81. Stitt AW, et al. The progress in understanding and treatment of diabetic retinopathy. Prog Retin Eye Res. 2016;51:156–86.

    Article  PubMed  Google Scholar 

  82. Stitt AW, et al. Advances in our understanding of diabetic retinopathy. Clin Sci (Lond). 2013;125(1):1–17.

    Article  Google Scholar 

  83. Maguire AM, et al. Autonomic nerve testing predicts the development of complications: a 12-year follow-up study. Diabetes Care. 2007;30(1):77–82.

    Article  PubMed  Google Scholar 

  84. Stern K, et al. QT interval, corrected for heart rate, is associated with HbA1c concentration and autonomic function in diabetes. Diabet Med. 2016;33(10):1415–21.

    Article  CAS  PubMed  Google Scholar 

  85. Thamotharampillai K, et al. Decline in neurophysiological function after 7 years in an adolescent diabetic cohort and the role of aldose reductase gene polymorphisms. Diabetes Care. 2006;29(9):2053–7.

    Article  CAS  PubMed  Google Scholar 

  86. Ding J, et al. Retinal vascular calibre as a predictor of incidence and progression of diabetic retinopathy. Clin Exp Optom. 2012;95(3):290–6.

    Article  PubMed  Google Scholar 

  87. Liew G, et al. Diabetic macular ischaemia is associated with narrower retinal arterioles in patients with type 2 diabetes. Acta Ophthalmol. 2015;93(1):e45–51.

    Article  PubMed  Google Scholar 

  88. Tikellis G, et al. The relationship of retinal vascular calibre to diabetes and retinopathy: the Australian Diabetes, Obesity and Lifestyle (AusDiab) study. Diabetologia. 2007;50(11):2263–71.

    Article  CAS  PubMed  Google Scholar 

  89. Grauslund J, et al. Retinal vessel calibre and micro- and macrovascular complications in type 1 diabetes. Diabetologia. 2009;52(10):2213–7.

    Article  CAS  PubMed  Google Scholar 

  90. Wang JJ, et al. Retinal vascular calibre and the risk of coronary heart disease-related death. Heart. 2006;92(11):1583–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Al-Fiadh AH, et al. Usefulness of retinal microvascular endothelial dysfunction as a predictor of coronary artery disease. Am J Cardiol. 2015;115(5):609–13.

    Article  PubMed  Google Scholar 

  92. Broe R, et al. Retinal vessel calibers predict long-term microvascular complications in type 1 diabetes: the Danish Cohort of Pediatric Diabetes 1987 (DCPD1987). Diabetes. 2014;63(11):3906–14.

    Article  CAS  PubMed  Google Scholar 

  93. Ding J, et al. Retinal vascular caliber and the development of hypertension: a meta-analysis of individual participant data. J Hypertens. 2014;32(2):207–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Kawasaki R, et al. Retinal microvascular signs and risk of stroke: the Multi-Ethnic Study of Atherosclerosis (MESA). Stroke. 2012;43(12):3245–51.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Kee AR, Wong TY, Li LJ. Retinal vascular imaging technology to monitor disease severity and complications in type 1 diabetes mellitus: a systematic review. Microcirculation. 2017;24(2):1–12.

    Article  Google Scholar 

  96. Yip W, et al. Retinal microvascular abnormalities and risk of renal failure in Asian populations. PLoS One. 2015;10(2):e0118076.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  97. Wong TY, et al. Retinal microvascular abnormalities and their relationship with hypertension, cardiovascular disease, and mortality. Surv Ophthalmol. 2001;46(1):59–80.

    Article  CAS  PubMed  Google Scholar 

  98. Wong TY, et al. Retinal microvascular abnormalities and 10-year cardiovascular mortality: a population-based case-control study. Ophthalmology. 2003;110(5):933–40.

    Article  PubMed  Google Scholar 

  99. Health Education Leads to More Eye Exams in Group at Risk for Vision Loss. 1999 [cited 2017 09 May ]; Available from: https://nei.nih.gov/news/pressreleases/morexam.

  100. Zheng Y, He M, Congdon N. The worldwide epidemic of diabetic retinopathy. Indian J Ophthalmol. 2012;60(5):428–31.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Chaturvedi N, et al. Effect of candesartan on prevention (DIRECT-Prevent 1) and progression (DIRECT-Protect 1) of retinopathy in type 1 diabetes: randomised, placebo-controlled trials. Lancet. 2008;372(9647):1394–402.

    Article  CAS  PubMed  Google Scholar 

  102. Keech AC, et al. Effect of fenofibrate on the need for laser treatment for diabetic retinopathy (FIELD study): a randomised controlled trial. Lancet. 2007;370(9600):1687–97.

    Article  CAS  PubMed  Google Scholar 

  103. Tuttle KR, et al. Diabetic kidney disease: a report from an ADA Consensus Conference. Diabetes Care. 2014;37(10):2864–83.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Jenkins AJ, et al. Increased plasma apolipoprotein(a) levels in IDDM patients with microalbuminuria. Diabetes. 1991;40(6):787–90.

    Article  CAS  PubMed  Google Scholar 

  105. Jenkins AJ, et al. Plasma apolipoprotein (a) is increased in type 2 (non-insulin-dependent) diabetic patients with microalbuminuria. Diabetologia. 1992;35(11):1055–9.

    Article  CAS  PubMed  Google Scholar 

  106. Lee P, et al. Prothrombotic and antithrombotic factors are elevated in patients with type 1 diabetes complicated by microalbuminuria. Diabet Med. 1993;10(2):122–8.

    Article  CAS  PubMed  Google Scholar 

  107. Hirano T. Abnormal lipoprotein metabolism in diabetic nephropathy. Clin Exp Nephrol. 2014;18(2):206–9.

    Article  CAS  PubMed  Google Scholar 

  108. Haneda M, et al. A new Classification of Diabetic Nephropathy 2014: a report from Joint Committee on Diabetic Nephropathy. J Diabetes Investig. 2015;6(2):242–6.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Fonseca VA. Defining and characterizing the progression of type 2 diabetes. Diabetes Care. 2009;32(Suppl 2):S151–6.

    Article  PubMed  PubMed Central  Google Scholar 

  110. Chatterjee S, et al. Type 2 Diabetes as a Risk Factor for Dementia in Women Compared With Men: A Pooled Analysis of 2.3 Million People Comprising More Than 100,000 Cases of Dementia. Diabetes Care. 2016;39(2):300–7.

    CAS  PubMed  Google Scholar 

  111. Kalra S. Sodium Glucose Co-Transporter-2 (SGLT2) Inhibitors: A Review of Their Basic and Clinical Pharmacology. Diabetes Ther. 2014;5(2):355–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Burgess DC, et al. Incidence and predictors of silent myocardial infarction in type 2 diabetes and the effect of fenofibrate: an analysis from the Fenofibrate Intervention and Event Lowering in Diabetes (FIELD) study. Eur Heart J. 2010;31(1):92–9.

    Article  PubMed  Google Scholar 

  113. Braffett BH, Wessells H, Sarma AV. Urogenital Autonomic Dysfunction in Diabetes. Curr Diab Rep. 2016;16(12):119.

    Article  PubMed  Google Scholar 

  114. Defeudis G, et al. Erectile dysfunction and its management in patients with diabetes mellitus. Rev Endocr Metab Disord. 2015;16(3):213–31.

    Article  CAS  Google Scholar 

  115. Makinen VP, et al. Metabolic phenotypes, vascular complications, and premature deaths in a population of 4,197 patients with type 1 diabetes. Diabetes. 2008;57(9):2480–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Taniguchi CM, Emanuelli B, Kahn CR. Critical nodes in signalling pathways: insights into insulin action. Nat Rev Mol Cell Biol. 2006;7(2):85–96.

    Article  CAS  PubMed  Google Scholar 

  117. Schwingshandl J, et al. Pupillary abnormalities in type I diabetes occurring during adolescence. Comparisons with cardiovascular reflexes. Diabetes Care. 1993;16(4):630–3.

    Article  CAS  PubMed  Google Scholar 

  118. Pena MM, et al. The prospective assessment of autonomic nerve function by pupillometry in adolescents with type 1 diabetes mellitus. Diabet Med. 1995;12(10):868–73.

    Article  CAS  PubMed  Google Scholar 

  119. Pappachan JM, et al. Cardiac autonomic neuropathy in diabetes mellitus: prevalence, risk factors and utility of corrected QT interval in the ECG for its diagnosis. Postgrad Med J. 2008;84(990):205–10.

    Article  CAS  PubMed  Google Scholar 

  120. Schouten EG, et al. QT interval prolongation predicts cardiovascular mortality in an apparently healthy population. Circulation. 1991;84(4):1516–23.

    Article  CAS  PubMed  Google Scholar 

  121. Fagher K, Londahl M. The impact of metabolic control and QTc prolongation on all-cause mortality in patients with type 2 diabetes and foot ulcers. Diabetologia. 2013;56(5):1140–7.

    Article  CAS  PubMed  Google Scholar 

  122. Giunti S, et al. Increased QT interval dispersion predicts 15-year cardiovascular mortality in type 2 diabetic subjects: the population-based Casale Monferrato Study. Diabetes Care. 2012;35(3):581–3.

    Article  PubMed  PubMed Central  Google Scholar 

  123. Linnemann B, Janka HU. Prolonged QTc interval and elevated heart rate identify the type 2 diabetic patient at high risk for cardiovascular death. The Bremen Diabetes Study. Exp Clin Endocrinol Diabetes. 2003;111(4):215–22.

    Article  CAS  PubMed  Google Scholar 

  124. Rana BS, et al. QT interval abnormalities are often present at diagnosis in diabetes and are better predictors of cardiac death than ankle brachial pressure index and autonomic function tests. Heart. 2005;91(1):44–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Whitsel EA, Boyko EJ, Siscovick DS. Reassessing the role of QTc in the diagnosis of autonomic failure among patients with diabetes: a meta-analysis. Diabetes Care. 2000;23(2):241–7.

    Article  CAS  PubMed  Google Scholar 

  126. Secrest AM, et al. Characterizing sudden death and dead-in-bed syndrome in Type 1 diabetes: analysis from two childhood-onset Type 1 diabetes registries. Diabet Med. 2011;28(3):293–300.

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Koltin D, Daneman D. Dead-in-bed syndrome - a diabetes nightmare. Pediatr Diabetes. 2008;9(5):504–7.

    Article  PubMed  Google Scholar 

  128. Skrivarhaug T, et al. Long-term mortality in a nationwide cohort of childhood-onset type 1 diabetic patients in Norway. Diabetologia. 2006;49(2):298–305.

    Article  CAS  PubMed  Google Scholar 

  129. Gill GV, et al. Cardiac arrhythmia and nocturnal hypoglycaemia in type 1 diabetes--the 'dead in bed' syndrome revisited. Diabetologia. 2009;52(1):42–5.

    Article  CAS  PubMed  Google Scholar 

  130. Tanenberg RJ, Newton CA, Drake AJ. Confirmation of hypoglycemia in the "dead-in-bed" syndrome, as captured by a retrospective continuous glucose monitoring system. Endocr Pract. 2010;16(2):244–8.

    Article  PubMed  Google Scholar 

  131. Buckingham B, et al. Duration of nocturnal hypoglycemia before seizures. Diabetes Care. 2008;31(11):2110–2.

    Article  PubMed  PubMed Central  Google Scholar 

  132. Chow E, et al. Risk of cardiac arrhythmias during hypoglycemia in patients with type 2 diabetes and cardiovascular risk. Diabetes. 2014;63(5):1738–47.

    Article  CAS  PubMed  Google Scholar 

  133. Clark AL, Best CJ, Fisher SJ. Even silent hypoglycemia induces cardiac arrhythmias. Diabetes. 2014;63(5):1457–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Srivastava PM, et al. Prevalence and predictors of cardiac hypertrophy and dysfunction in patients with Type 2 diabetes. Clin Sci (Lond). 2008;114(4):313–20.

    Article  Google Scholar 

  135. Wai B, et al. Prevalence, predictors and evolution of echocardiographically defined cardiac abnormalities in adults with type 1 diabetes: an observational cohort study. J Diabetes Complicat. 2014;28(1):22–8.

    Article  Google Scholar 

  136. Zhang X, Chen C. A new insight of mechanisms, diagnosis and treatment of diabetic cardiomyopathy. Endocrine. 2012;41(3):398–409.

    Article  CAS  PubMed  Google Scholar 

  137. Owan TE, et al. Trends in prevalence and outcome of heart failure with preserved ejection fraction. N Engl J Med. 2006;355(3):251–9.

    Article  CAS  PubMed  Google Scholar 

  138. Holscher ME, Bode C, Bugger H. Diabetic Cardiomyopathy: Does the Type of Diabetes Matter?. Int J Mol Sci. 2016;17(12):1–10.

    Article  PubMed Central  Google Scholar 

  139. Bowling FL, Rashid ST, Boulton AJ. Preventing and treating foot complications associated with diabetes mellitus. Nat Rev Endocrinol. 2015;11(10):606–16.

    Article  PubMed  Google Scholar 

  140. Rhee SY, Kim YS. Peripheral Arterial Disease in Patients with Type 2 Diabetes Mellitus. Diabetes Metab J. 2015;39(4):283–90.

    Article  PubMed  PubMed Central  Google Scholar 

  141. Wong J, et al. Different accelerators to early-onset Type 2 diabetes: a comparison of Anglo-Celtic and Chinese patients. J Diabetes Complicat. 2008;22(6):389–94.

    Article  Google Scholar 

  142. Delbridge LM, et al. Diabetic Cardiomyopathy: The Case for a Role of Fructose in Disease Etiology. Diabetes. 2016;65(12):3521–8.

    Article  CAS  PubMed  Google Scholar 

  143. Mizamtsidi M, et al. Diabetic cardiomyopathy: a clinical entity or a cluster of molecular heart changes? Eur J Clin Investig. 2016;46(11):947–53.

    Article  Google Scholar 

  144. Xu Z, et al. The Role of ERK1/2 in the Development of Diabetic Cardiomyopathy. Int J Mol Sci. 2016;17(12):1–17.

    Article  CAS  PubMed Central  Google Scholar 

  145. Voulgari C, Papadogiannis D, Tentolouris N. Diabetic cardiomyopathy: from the pathophysiology of the cardiac myocytes to current diagnosis and management strategies. Vasc Health Risk Manag. 2010;6:883–903.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Murphy E, et al. Sex Differences in Metabolic Cardiomyopathy. Cardiovasc Res. 2017;113(4):370–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Jenkins AJ, et al. Lipoproteins and diabetic microvascular complications. Curr Pharm Des. 2004;10(27):3395–418.

    Article  CAS  PubMed  Google Scholar 

  148. Cliff WJ. Blood vessels. Biological structure and function, vol. ix. etes therapy and ocular: Cambridge University Press; 1976. p. 214.

    Google Scholar 

  149. Jaffe EA. Cell biology of endothelial cells. Hum Pathol. 1987;18(3):234–9.

    Article  CAS  PubMed  Google Scholar 

  150. Gross PL, Aird WC. The endothelium and thrombosis. Semin Thromb Hemost. 2000;26(5):463–78.

    Article  CAS  PubMed  Google Scholar 

  151. Wagner DD, Frenette PS. The vessel wall and its interactions. Blood. 2008;111(11):5271–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Brownlee M. Biochemistry and molecular cell biology of diabetic complications. Nature. 2001;414(6865):813–20.

    Article  CAS  PubMed  Google Scholar 

  153. Mochly-Rosen D, Das K, Grimes KV. Protein kinase C, an elusive therapeutic target? Nat Rev Drug Discov. 2012;11(12):937–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Peyroux J, Sternberg M. Advanced glycation endproducts (AGEs): Pharmacological inhibition in diabetes. Pathol Biol (Paris). 2006;54(7):405–19.

    Article  CAS  Google Scholar 

  155. Diabetes C, et al. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med. 1993;329(14):977–86.

    Article  Google Scholar 

  156. Nathan DM, et al. Intensive diabetes treatment and cardiovascular disease in patients with type 1 diabetes. N Engl J Med. 2005;353(25):2643–53.

    Article  PubMed  Google Scholar 

  157. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). UK Prospective Diabetes Study (UKPDS) Group. Lancet. 1998;352(9131):837–53.

    Google Scholar 

  158. Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34). UK Prospective Diabetes Study (UKPDS) Group. Lancet. 1998;352(9131):854–65.

    Google Scholar 

  159. Action to Control Cardiovascular Risk in Diabetes Study, G., et al. Effects of intensive glucose lowering in type 2 diabetes. N Engl J Med. 2008;358(24):2545–59.

    Google Scholar 

  160. Group, A.C., et al. Intensive blood glucose control and vascular outcomes in patients with type 2 diabetes. N Engl J Med. 2008;358(24):2560–72.

    Google Scholar 

  161. Duckworth W, et al. Glucose control and vascular complications in veterans with type 2 diabetes. N Engl J Med. 2009;360(2):129–39.

    Article  CAS  PubMed  Google Scholar 

  162. Diabetes C, et al. Effect of intensive diabetes therapy on the progression of diabetic retinopathy in patients with type 1 diabetes: 18 years of follow-up in the DCCT/EDIC. Diabetes. 2015;64(2):631–42.

    Article  CAS  Google Scholar 

  163. Holman RR, et al. 10-year follow-up of intensive glucose control in type 2 diabetes. N Engl J Med. 2008;359(15):1577–89.

    Article  CAS  PubMed  Google Scholar 

  164. White NH, et al. Prolonged effect of intensive therapy on the risk of retinopathy complications in patients with type 1 diabetes mellitus: 10 years after the Diabetes Control and Complications Trial. Arch Ophthalmol. 2008;126(12):1707–15.

    Article  PubMed  Google Scholar 

  165. Group, D.E.R., et al. Intensive diabetes therapy and ocular surgery in type 1 diabetes. N Engl J Med. 2015;372(18):1722–33.

    Google Scholar 

  166. Early worsening of diabetic retinopathy in the Diabetes Control and Complications Trial. Arch Ophthalmol. 1998;116(7):874–86.

    Google Scholar 

  167. Chen Z, et al. Epigenomic profiling reveals an association between persistence of DNA methylation and metabolic memory in the DCCT/EDIC type 1 diabetes cohort. Proc Natl Acad Sci U S A. 2016;113(21):E3002–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. McClelland AD, Kantharidis P. microRNA in the development of diabetic complications. Clin Sci (Lond). 2014;126(2):95–110.

    Article  CAS  Google Scholar 

  169. Tam HL, et al. Effects of atorvastatin on serum soluble receptors for advanced glycation end-products in type 2 diabetes. Atherosclerosis. 2010;209(1):173–7.

    Article  CAS  PubMed  Google Scholar 

  170. Viollet B, et al. Cellular and molecular mechanisms of metformin: an overview. Clin Sci (Lond). 2012;122(6):253–70.

    Article  CAS  Google Scholar 

  171. Yamagishi S, et al. A novel pleiotropic effect of atorvastatin on advanced glycation end product (AGE)-related disorders. Med Hypotheses. 2007;69(2):338–40.

    Article  CAS  PubMed  Google Scholar 

  172. Zwergel C, Stazi G, Valente S, Mai A. Histone Deacetylase Inhibitors: Updated Studies in Various Epigenetic-Related Diseases. J Clin Epigenet. 2016;2(1:7):15.

    Google Scholar 

  173. Jermendy G. Vascular memory: can we broaden the concept of the metabolic memory? Cardiovasc Diabetol. 2012;11:44.

    Article  PubMed  PubMed Central  Google Scholar 

  174. Elam MB, et al. Association of Fenofibrate Therapy With Long-term Cardiovascular Risk in Statin-Treated Patients With Type 2 Diabetes. JAMA Cardiol. 2017;2(4):370–80.

    Article  PubMed  Google Scholar 

  175. Group, A.S., et al. Effects of combination lipid therapy in type 2 diabetes mellitus. N Engl J Med. 2010;362(17):1563–74.

    Google Scholar 

  176. Biomarkers Definitions Working, G., Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin Pharmacol Ther. 2001;69(3):89–95.

    Google Scholar 

  177. Cardiovascular disease, diabetes and chronic kidney disease: Australian facts mortality. Cardiovascular, diabetes and chronic kidney disease series. 2014 [cited 2017 04 May ]; Available from: http://www.aihw.gov.au/publication-detail/?id=60129549287.

  178. Amin R, et al. Risk of microalbuminuria and progression to macroalbuminuria in a cohort with childhood onset type 1 diabetes: prospective observational study. BMJ. 2008;336(7646):697–701.

    Article  PubMed  PubMed Central  Google Scholar 

  179. Gallego PH, et al. Role of blood pressure in development of early retinopathy in adolescents with type 1 diabetes: prospective cohort study. BMJ. 2008;337:a918.

    Article  PubMed  PubMed Central  Google Scholar 

  180. Murea M, Ma L, Freedman BI. Genetic and environmental factors associated with type 2 diabetes and diabetic vascular complications. Rev Diabet Stud. 2012;9(1):6–22.

    Article  PubMed  PubMed Central  Google Scholar 

  181. Katsiki N, Mantzoros C, Mikhailidis DP. Adiponectin, lipids and atherosclerosis. Curr Opin Lipidol. 2017;28(4):347–54.

    Article  CAS  PubMed  Google Scholar 

  182. Mallamaci F, Tripepi G. Obesity and CKD progression: hard facts on fat CKD patients. Nephrol Dial Transplant. 2013;28(Suppl 4):iv105-8.

    Article  PubMed  Google Scholar 

  183. Whaley-Connell A, Sowers JR. Obesity and kidney disease: from population to basic science and the search for new therapeutic targets. Kidney Int. 2017;92(2):313–23.

    Article  CAS  PubMed  Google Scholar 

  184. Cases A, Coll E. Dyslipidemia and the progression of renal disease in chronic renal failure patients. Kidney Int Suppl. 2005;99:S87–93.

    Article  CAS  Google Scholar 

  185. Cardiovascular disease, diabetes and chronic kidney disease: Australian facts: Risk factors. Cardiovascular, diabetes and chronic kidney disease series. 2015 [cited 2017 04 May ]; Available from: http://www.aihw.gov.au/WorkArea/DownloadAsset.aspx?id=60129550535.

  186. Qi Q, et al. Genetic predisposition to dyslipidemia and type 2 diabetes risk in two prospective cohorts. Diabetes. 2012;61(3):745–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Schofield JD, et al. Diabetes Dyslipidemia. Diabetes Ther. 2016;7(2):203–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Lyons TJ, Jenkins AJ. Lipoprotein glycation and its metabolic consequences. Curr Opin Lipidol. 1997;8(3):174–80.

    Article  CAS  PubMed  Google Scholar 

  189. Vijan S. Diabetes: treating hypertension. BMJ Clin Evid. 2012;2012:1–37.

    Google Scholar 

  190. Lastra G, et al. Type 2 diabetes mellitus and hypertension: an update. Endocrinol Metab Clin N Am. 2014;43(1):103–22.

    Article  Google Scholar 

  191. Wilson AM, et al. Comparison of arterial assessments in low and high vascular disease risk groups. Am J Hypertens. 2004;17(4):285–91.

    Article  PubMed  Google Scholar 

  192. Agarwal S, et al. Coronary calcium score predicts cardiovascular mortality in diabetes: diabetes heart study. Diabetes Care. 2013;36(4):972–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Anand DV, et al. Risk stratification in uncomplicated type 2 diabetes: prospective evaluation of the combined use of coronary artery calcium imaging and selective myocardial perfusion scintigraphy. Eur Heart J. 2006;27(6):713–21.

    Article  PubMed  Google Scholar 

  194. Festa A, et al. Differences in insulin resistance in nondiabetic subjects with isolated impaired glucose tolerance or isolated impaired fasting glucose. Diabetes. 2004;53(6):1549–55.

    Article  CAS  PubMed  Google Scholar 

  195. Paquot N, et al. Hepatic insulin resistance in obese non-diabetic subjects and in type 2 diabetic patients. Obes Res. 2002;10(3):129–34.

    Article  CAS  PubMed  Google Scholar 

  196. DeFronzo RA, Simonson D, Ferrannini E. Hepatic and peripheral insulin resistance: a common feature of type 2 (non-insulin-dependent) and type 1 (insulin-dependent) diabetes mellitus. Diabetologia. 1982;23(4):313–9.

    Article  CAS  PubMed  Google Scholar 

  197. Williams KV, et al. Can clinical factors estimate insulin resistance in type 1 diabetes? Diabetes. 2000;49(4):626–32.

    Article  CAS  PubMed  Google Scholar 

  198. Gast KB, et al. Insulin resistance and risk of incident cardiovascular events in adults without diabetes: meta-analysis. PLoS One. 2012;7(12):e52036.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Cleland SJ, et al. Insulin resistance in type 1 diabetes: what is ‘double diabetes’ and what are the risks? Diabetologia. 2013;56(7):1462–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Paneni F, Cosentino F. Mechanisms of diabetic atherosclerosis. New York: Springer Berlin Heidelberg; 2015. p. 23–33.

    Chapter  Google Scholar 

  201. Vella S, et al. The use of metformin in type 1 diabetes: a systematic review of efficacy. Diabetologia. 2010;53(5):809–20.

    Article  CAS  PubMed  Google Scholar 

  202. Rask-Madsen C, Kahn CR. Tissue-specific insulin signaling, metabolic syndrome, and cardiovascular disease. Arterioscler Thromb Vasc Biol. 2012;32(9):2052–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Pitocco D, et al. Metformin improves endothelial function in type 1 diabetic subjects: a pilot, placebo-controlled randomized study. Diabetes Obes Metab. 2013;15(5):427–31.

    Article  CAS  PubMed  Google Scholar 

  204. Januszewski AS, et al. Shorter telomeres in adults with Type 1 diabetes correlate with diabetes duration, but only weakly with vascular function and risk factors. Diabetes Res Clin Pract. 2016;117:4–11.

    Article  CAS  PubMed  Google Scholar 

  205. Astrup AS, et al. Telomere length predicts all-cause mortality in patients with type 1 diabetes. Diabetologia. 2010;53(1):45–8.

    Article  CAS  PubMed  Google Scholar 

  206. Bonfigli AR, et al. Leukocyte telomere length and mortality risk in patients with type 2 diabetes. Oncotarget. 2016;7(32):50835–44.

    Article  PubMed  PubMed Central  Google Scholar 

  207. Fyhrquist F, et al. Telomere length and progression of diabetic nephropathy in patients with type 1 diabetes. J Intern Med. 2010;267(3):278–86.

    Article  CAS  PubMed  Google Scholar 

  208. Masi S, et al. Telomere length, antioxidant status and incidence of ischaemic heart disease in type 2 diabetes. Int J Cardiol. 2016;216:159–64.

    Article  PubMed  PubMed Central  Google Scholar 

  209. Luttmer R, et al. Metabolic syndrome components are associated with DNA hypomethylation. Obes Res Clin Pract. 2013;7(2):e106–15.

    Article  PubMed  Google Scholar 

  210. Handy DE, Castro R, Loscalzo J. Epigenetic modifications: basic mechanisms and role in cardiovascular disease. Circulation. 2011;123(19):2145–56.

    Article  PubMed  PubMed Central  Google Scholar 

  211. Mastropasqua R, et al. Role of microRNAs in the modulation of diabetic retinopathy. Prog Retin Eye Res. 2014;43:92–107.

    Article  CAS  PubMed  Google Scholar 

  212. Weiland M, et al. Small RNAs have a large impact: circulating microRNAs as biomarkers for human diseases. RNA Biol. 2012;9(6):850–9.

    Article  CAS  PubMed  Google Scholar 

  213. Dunmire JJ, et al. MicroRNA in aqueous humor from patients with cataract. Exp Eye Res. 2013;108:68–71.

    Article  CAS  PubMed  Google Scholar 

  214. Ragusa M, et al. MicroRNAs in vitreus humor from patients with ocular diseases. Mol Vis. 2013;19:430–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  215. Li J, et al. MiR-138 downregulates miRNA processing in HeLa cells by targeting RMND5A and decreasing Exportin-5 stability. Nucleic Acids Res. 2014;42(1):458–74.

    Article  CAS  PubMed  Google Scholar 

  216. Qing S, et al. Serum miRNA biomarkers serve as a fingerprint for proliferative diabetic retinopathy. Cell Physiol Biochem. 2014;34(5):1733–40.

    Article  CAS  PubMed  Google Scholar 

  217. Protopsaltis ID, et al. Comparative study of prognostic value for coronary disease risk between the U.K. prospective diabetes study and Framingham models. Diabetes Care. 2004;27(1):277–8.

    Article  PubMed  Google Scholar 

  218. Allan GM, Garrison S, McCormack J. Comparison of cardiovascular disease risk calculators. Curr Opin Lipidol. 2014;25(4):254–65.

    Article  CAS  PubMed  Google Scholar 

  219. Guzder RN, et al. Prognostic value of the Framingham cardiovascular risk equation and the UKPDS risk engine for coronary heart disease in newly diagnosed Type 2 diabetes: results from a United Kingdom study. Diabet Med. 2005;22(5):554–62.

    Article  CAS  PubMed  Google Scholar 

  220. Stevens RJ, et al. The UKPDS risk engine: a model for the risk of coronary heart disease in Type II diabetes (UKPDS 56). Clin Sci (Lond). 2001;101(6):671–9.

    Article  CAS  Google Scholar 

  221. Hippisley-Cox J, Coupland C, Brindle P. Development and validation of QRISK3 risk prediction algorithms to estimate future risk of cardiovascular disease: prospective cohort study. BMJ. 2017;357:2099.

    Google Scholar 

  222. National Institute for Health and Clinical Excellence, Cardiovascular disease: risk assessment and reduction, including lipid modification. London: NICE; 2014.

    Google Scholar 

  223. Pambianco G, Costacou T, Orchard TJ. The prediction of major outcomes of type 1 diabetes: a 12-year prospective evaluation of three separate definitions of the metabolic syndrome and their components and estimated glucose disposal rate: the Pittsburgh Epidemiology of Diabetes Complications Study experience. Diabetes Care. 2007;30(5):1248–54.

    Article  PubMed  Google Scholar 

  224. Soedamah-Muthu SS, et al. Predicting major outcomes in type 1 diabetes: a model development and validation study. Diabetologia. 2014;57(11):2304–14.

    Article  PubMed  PubMed Central  Google Scholar 

  225. Folsom AR, et al. An assessment of incremental coronary risk prediction using C-reactive protein and other novel risk markers: the atherosclerosis risk in communities study. Arch Intern Med. 2006;166(13):1368–73.

    Article  CAS  PubMed  Google Scholar 

  226. Wackers FJ, et al. Detection of silent myocardial ischemia in asymptomatic diabetic subjects: the DIAD study. Diabetes Care. 2004;27(8):1954–61.

    Article  PubMed  Google Scholar 

  227. Zhang L, et al. Silent myocardial ischemia detected by single photon emission computed tomography (SPECT) and risk of cardiac events among asymptomatic patients with type 2 diabetes: a meta-analysis of prospective studies. J Diabetes Complicat. 2014;28(3):413–8.

    Article  CAS  Google Scholar 

  228. Kawano Y, et al. Silent myocardial ischemia in asymptomatic patients with type 2 diabetes mellitus without previous histories of cardiovascular disease. Int J Cardiol. 2016;216:151–5.

    Article  PubMed  Google Scholar 

  229. Lievre MM, et al. Detection of silent myocardial ischemia in asymptomatic patients with diabetes: results of a randomized trial and meta-analysis assessing the effectiveness of systematic screening. Trials. 2011;12:23.

    Article  PubMed  PubMed Central  Google Scholar 

  230. Kang X, et al. Comparative ability of myocardial perfusion single-photon emission computed tomography to detect coronary artery disease in patients with and without diabetes mellitus. Am Heart J. 1999;137(5):949–57.

    Article  CAS  PubMed  Google Scholar 

  231. Young LH, et al. Cardiac outcomes after screening for asymptomatic coronary artery disease in patients with type 2 diabetes: the DIAD study: a randomized controlled trial. JAMA. 2009;301(15):1547–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Zellweger MJ, et al. Progression to overt or silent CAD in asymptomatic patients with diabetes mellitus at high coronary risk: main findings of the prospective multicenter BARDOT trial with a pilot randomized treatment substudy. JACC Cardiovasc Imaging. 2014;7(10):1001–10.

    Article  PubMed  Google Scholar 

  233. Park GM, et al. Coronary computed tomographic angiographic findings in asymptomatic patients with type 2 diabetes mellitus. Am J Cardiol. 2014;113(5):765–71.

    Article  PubMed  Google Scholar 

  234. Budoff MJ, et al. Diagnostic performance of 64-multidetector row coronary computed tomographic angiography for evaluation of coronary artery stenosis in individuals without known coronary artery disease: results from the prospective multicenter ACCURACY (Assessment by Coronary Computed Tomographic Angiography of Individuals Undergoing Invasive Coronary Angiography) trial. J Am Coll Cardiol. 2008;52(21):1724–32.

    Article  PubMed  Google Scholar 

  235. Tonino PA, et al. Angiographic versus functional severity of coronary artery stenoses in the FAME study fractional flow reserve versus angiography in multivessel evaluation. J Am Coll Cardiol. 2010;55(25):2816–21.

    Article  PubMed  Google Scholar 

  236. Muhlestein JB, et al. Effect of screening for coronary artery disease using CT angiography on mortality and cardiac events in high-risk patients with diabetes: the FACTOR-64 randomized clinical trial. JAMA. 2014;312(21):2234–43.

    Article  CAS  PubMed  Google Scholar 

  237. Elkeles RS, et al. Coronary calcium measurement improves prediction of cardiovascular events in asymptomatic patients with type 2 diabetes: the PREDICT study. Eur Heart J. 2008;29(18):2244–51.

    Article  CAS  PubMed  Google Scholar 

  238. Carr J, et al. Association of coronary artery calcium in adults aged 32 to 46 years with incident coronary heart disease and death. JAMA Cardiology. 2017;2(4):391–9.

    Article  PubMed  PubMed Central  Google Scholar 

  239. Raggi P, et al. Prognostic value of coronary artery calcium screening in subjects with and without diabetes. J Am Coll Cardiol. 2004;43(9):1663–9.

    Article  CAS  PubMed  Google Scholar 

  240. Budoff MJ, et al. Diagnostic accuracy of coronary artery calcium for obstructive disease: results from the ACCURACY trial. Int J Cardiol. 2013;166(2):505–8.

    Article  PubMed  Google Scholar 

  241. American Diabetes Association. Cardiovascular disease and risk management. Sec. 8. In Standards of Medical Care in Diabetes - 2016. Diabetes Care. 2016;39(Suppl. 1):S60–71.

    Google Scholar 

  242. Castelvecchio S, et al. Myocardial Revascularization for Patients With Diabetes: Coronary Artery Bypass Grafting or Percutaneous Coronary Intervention? Ann Thorac Surg. 2016;102(3):1012–22.

    Article  PubMed  Google Scholar 

  243. Bell DS. Dead in bed syndrome--a hypothesis. Diabetes Obes Metab. 2006;8(3):261–3.

    Article  PubMed  Google Scholar 

  244. Cha SA, et al. Baseline-Corrected QT (QTc) Interval Is Associated with Prolongation of QTc during Severe Hypoglycemia in Patients with Type 2 Diabetes Mellitus. Diabetes Metab J. 2016;40(6):463–72.

    Article  PubMed  PubMed Central  Google Scholar 

  245. Heller SR. Abnormalities of the electrocardiogram during hypoglycaemia: the cause of the dead in bed syndrome? Int J Clin Pract Suppl. 2002;129:27–32.

    Google Scholar 

  246. Hsieh A, Twigg SM. The enigma of the dead-in-bed syndrome: challenges in predicting and preventing this devastating complication of type 1 diabetes. J Diabetes Complicat. 2014;28(5):585–7.

    Article  Google Scholar 

  247. Kacheva S, et al. QT prolongation caused by insulin-induced hypoglycaemia - An interventional study in 119 individuals. Diabetes Res Clin Pract. 2017;123:165–72.

    Article  CAS  PubMed  Google Scholar 

  248. Lee AS, et al. Hypoglycaemia and QT interval prolongation: Detection by simultaneous Holter and continuous glucose monitoring. Diabetes Res Clin Pract. 2016;113:211–4.

    Article  CAS  PubMed  Google Scholar 

  249. General practice management of type 2 diabetes – 2014–15. Melbourne: the Royal Australian College of General Practitioners and Diabetes Australia. 2014.

    Google Scholar 

  250. Jenkins AJ, Januszewski AS, O'Neal DN. Addressing vascular risk factors in diabetes. Endocrinol Today. 2015;4(4):4.

    Google Scholar 

  251. Group, A.S., et al. Effects of medical therapies on retinopathy progression in type 2 diabetes. N Engl J Med. 2010;363(3):233–44.

    Google Scholar 

  252. Yusuf S, et al. Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the INTERHEART study): case-control study. Lancet. 2004;364(9438):937–52.

    Article  PubMed  Google Scholar 

  253. Cerhan JR, et al. A pooled analysis of waist circumference and mortality in 650,000 adults. Mayo Clin Proc. 2014;89(3):335–45.

    Article  PubMed  Google Scholar 

  254. Bardsley JK. Does Self-Management Education Improve Glycemic Control in Diabetes?. Endocrinology Advisor 2015 [cited 2017 05 May ]; Available from: www.endocrinologyadvisor.com/aade-2015/aade-dsme-diabetes-education/article/433887/.

  255. Drugs for Type 2 Diabetes. 2016 [cited 2017 05 May ]; Available from: http://pharmacistsletter.therapeuticresearch.com/pl/ArticleDD.aspx?nidchk=1&cs=&s=PL&pt=2&segment=4407&dd=280601&AspxAutoDetectCookieSupport=1.

  256. Semenkovich K, et al. Depression in type 2 diabetes mellitus: prevalence, impact, and treatment. Drugs. 2015;75(6):577–87.

    Article  CAS  PubMed  Google Scholar 

  257. Naicker K, et al. Type 2 Diabetes and Comorbid Symptoms of Depression and Anxiety: Longitudinal Associations With Mortality Risk. Diabetes Care. 2017;40(3):352–8.

    Article  PubMed  Google Scholar 

  258. Galling B, et al. Type 2 Diabetes Mellitus in Youth Exposed to Antipsychotics: A Systematic Review and Meta-analysis. JAMA Psychiat. 2016;73(3):247–59.

    Article  Google Scholar 

  259. Jesus C, Jesus I, Agius M. What evidence is there to show which antipsychotics are more diabetogenic than others? Psychiatr Danub. 2015;27(Suppl 1):S423–8.

    PubMed  Google Scholar 

  260. Marazziti D, et al. Current Trends on Antipsychotics: Focus on Asenapine. Curr Med Chem. 2016;23(21):2204–16.

    Article  CAS  PubMed  Google Scholar 

  261. Nanasawa H, et al. Development of diabetes mellitus associated with quetiapine: A case series. Medicine (Baltimore). 2017;96(3):e5900.

    Article  CAS  Google Scholar 

  262. Nicolucci A, et al. Diabetes Attitudes, Wishes and Needs second study (DAWN2): cross-national benchmarking of diabetes-related psychosocial outcomes for people with diabetes. Diabet Med. 2013;30(7):767–77.

    Article  CAS  PubMed  Google Scholar 

  263. Fisher L, et al. When is diabetes distress clinically meaningful?: establishing cut points for the Diabetes Distress Scale. Diabetes Care. 2012;35(2):259–64.

    Article  PubMed  PubMed Central  Google Scholar 

  264. Laake JP, et al. The association between depressive symptoms and systemic inflammation in people with type 2 diabetes: findings from the South London Diabetes Study. Diabetes Care. 2014;37(8):2186–92.

    Article  CAS  PubMed  Google Scholar 

  265. Fisher L, et al. Development of a brief diabetes distress screening instrument. Ann Fam Med. 2008;6(3):246–52.

    Article  PubMed  PubMed Central  Google Scholar 

  266. Beeney JK. Managing Diabetes Distress. Diabetes Manag J. 2016;57:4.

    Google Scholar 

  267. Axelsson T, et al. Nicotine infusion acutely impairs insulin sensitivity in type 2 diabetic patients but not in healthy subjects. J Intern Med. 2001;249(6):539–44.

    Article  CAS  PubMed  Google Scholar 

  268. Wilkes S, Evans A. A cross-sectional study comparing the motivation for smoking cessation in apparently healthy patients who smoke to those who smoke and have ischaemic heart disease, hypertension or diabetes. Fam Pract. 1999;16(6):608–10.

    Article  CAS  PubMed  Google Scholar 

  269. Wu J, Sin DD. Improved patient outcome with smoking cessation: when is it too late? Int J Chron Obstruct Pulmon Dis. 2011;6:259–67.

    PubMed  PubMed Central  Google Scholar 

  270. Ramoa CP, et al. Electronic cigarette nicotine delivery can exceed that of combustible cigarettes: a preliminary report. Tob Control. 2016;25(e1):e6–9.

    Article  PubMed  Google Scholar 

  271. Breland A, et al. Electronic cigarettes: what are they and what do they do? Ann N Y Acad Sci. 2016.

    Google Scholar 

  272. Bhatnagar A, et al. Electronic cigarettes: a policy statement from the American Heart Association. Circulation. 2014;130(16):1418–36.

    Article  PubMed  PubMed Central  Google Scholar 

  273. Kalkhoran S, Glantz SA. E-cigarettes and smoking cessation in real-world and clinical settings: a systematic review and meta-analysis. Lancet Respir Med. 2016;4(2):116–28.

    Article  PubMed  PubMed Central  Google Scholar 

  274. Crude and Age-Adjusted Hospital Discharge Rates for Major Cardiovascular Disease as First-Listed Diagnosis per 1,000 Diabetic Population, United States, 1988–2006. 2014 [cited 2017 06 May ]; Available from: https://www.cdc.gov/diabetes/statistics/cvdhosp/cvd/fig3.htm.

  275. Chia N, Fulcher J, Keech A. Beta-blocker, angiotensin-converting enzyme inhibitor/angiotensin receptor blocker, nitrate-hydralazine, diuretics, aldosterone antagonist, ivabradine, devices and digoxin (BANDAID(2)): an evidence-based mnemonic for the treatment of systolic heart failure. Intern Med J. 2016;46(6):653–62.

    Article  CAS  PubMed  Google Scholar 

  276. Chin J, et al. Is it time to repair a Fairly Fast SAAB Convertible? Testing an evidence-based mnemonic for the secondary prevention of cardiovascular disease. Heart Lung Circ. 2015;24(5):480–7.

    Article  PubMed  Google Scholar 

  277. Critchley JA, Capewell S. Mortality risk reduction associated with smoking cessation in patients with coronary heart disease: a systematic review. JAMA. 2003;290(1):86–97.

    Article  PubMed  Google Scholar 

  278. National Health and Medical Research Council. Australian Dietary Guidelines. 2013 [cited 2017 04 May ]; Available from: https://www.nhmrc.gov.au/guidelines-publications/n55.

  279. National Vascular Disease Prevention Alliance. Guidelines for the management of absolute cardiovascular disease risk. 2012 [cited 2017 03 May]; Available from: https://www.heartfoundation.org.au/images/uploads/publications/Absolute-CVD-Risk-Full-Guidelines.pdf.

  280. Liese AD, et al. Adherence to the DASH Diet is inversely associated with incidence of type 2 diabetes: the insulin resistance atherosclerosis study. Diabetes Care. 2009;32(8):1434–6.

    Article  PubMed  PubMed Central  Google Scholar 

  281. Azadbakht L, et al. Effects of the Dietary Approaches to Stop Hypertension (DASH) eating plan on cardiovascular risks among type 2 diabetic patients: a randomized crossover clinical trial. Diabetes Care. 2011;34(1):55–7.

    Article  CAS  PubMed  Google Scholar 

  282. de Paula TP, et al. The role of Dietary Approaches to Stop Hypertension (DASH) diet food groups in blood pressure in type 2 diabetes. Br J Nutr. 2012;108(1):155–62.

    Article  PubMed  CAS  Google Scholar 

  283. Paula TP, et al. Effects of the DASH Diet and Walking on Blood Pressure in Patients With Type 2 Diabetes and Uncontrolled Hypertension: A Randomized Controlled Trial. J Clin Hypertens (Greenwich). 2015;17(11):895–901.

    Article  Google Scholar 

  284. Salehi-Abargouei A, et al. Effects of Dietary Approaches to Stop Hypertension (DASH)-style diet on fatal or nonfatal cardiovascular diseases--incidence: a systematic review and meta-analysis on observational prospective studies. Nutrition. 2013;29(4):611–8.

    Article  PubMed  Google Scholar 

  285. Estruch R, et al. Primary prevention of cardiovascular disease with a Mediterranean diet. N Engl J Med. 2013;368(14):1279–90.

    Article  CAS  PubMed  Google Scholar 

  286. Mead A, et al. Dietetic guidelines on food and nutrition in the secondary prevention of cardiovascular disease - evidence from systematic reviews of randomized controlled trials (second update, January 2006). J Hum Nutr Diet. 2006;19(6):401–19.

    Article  CAS  PubMed  Google Scholar 

  287. Panagiotakos DB, et al. The Mediterranean and other Dietary Patterns in Secondary Cardiovascular Disease Prevention: A Review. Curr Vasc Pharmacol. 2016;14(5):442–51.

    Article  CAS  PubMed  Google Scholar 

  288. Look ARG, et al. Cardiovascular effects of intensive lifestyle intervention in type 2 diabetes. N Engl J Med. 2013;369(2):145–54.

    Article  CAS  Google Scholar 

  289. Taylor RS, et al. Exercise-based rehabilitation for patients with coronary heart disease: systematic review and meta-analysis of randomized controlled trials. Am J Med. 2004;116(10):682–92.

    Article  PubMed  Google Scholar 

  290. Park LG, et al. Mobile Phone Interventions for the Secondary Prevention of Cardiovascular Disease. Prog Cardiovasc Dis. 2016;58(6):639–50.

    Article  PubMed  PubMed Central  Google Scholar 

  291. Colwell JA, Nesto RW. The platelet in diabetes: focus on prevention of ischemic events. Diabetes Care. 2003;26(7):2181–8.

    Article  PubMed  Google Scholar 

  292. Vinik AI, et al. Platelet dysfunction in type 2 diabetes. Diabetes Care. 2001;24(8):1476–85.

    Article  CAS  PubMed  Google Scholar 

  293. Chew EY, et al. Effects of aspirin on vitreous/preretinal hemorrhage in patients with diabetes mellitus. Early Treatment Diabetic Retinopathy Study report no. 20. Arch Ophthalmol. 1995;113(1):52–5.

    Article  CAS  PubMed  Google Scholar 

  294. Campbell CL, et al. Aspirin dose for the prevention of cardiovascular disease: a systematic review. JAMA. 2007;297(18):2018–24.

    Article  CAS  PubMed  Google Scholar 

  295. Mylotte D, et al. Platelet reactivity in type 2 diabetes mellitus: a comparative analysis with survivors of myocardial infarction and the role of glycaemic control. Platelets. 2012;23(6):439–46.

    Article  CAS  PubMed  Google Scholar 

  296. Tschoepe D. The activated megakaryocyte-platelet-system in vascular disease: focus on diabetes. Semin Thromb Hemost. 1995;21(2):152–60.

    Article  CAS  PubMed  Google Scholar 

  297. Capodanno D, et al. Pharmacodynamic effects of different aspirin dosing regimens in type 2 diabetes mellitus patients with coronary artery disease. Circ Cardiovasc Interv. 2011;4(2):180–7.

    Article  CAS  PubMed  Google Scholar 

  298. Spectre G, et al. Twice daily dosing of aspirin improves platelet inhibition in whole blood in patients with type 2 diabetes mellitus and micro- or macrovascular complications. Thromb Haemost. 2011;106(3):491–9.

    Article  PubMed  Google Scholar 

  299. Basili S, et al. Insulin resistance as a determinant of platelet activation in obese women. J Am Coll Cardiol. 2006;48(12):2531–8.

    Article  CAS  PubMed  Google Scholar 

  300. Rocca B, et al. The recovery of platelet cyclooxygenase activity explains interindividual variability in responsiveness to low-dose aspirin in patients with and without diabetes. J Thromb Haemost. 2012;10(7):1220–30.

    Article  CAS  PubMed  Google Scholar 

  301. Antithrombotic Trialists C. Collaborative meta-analysis of randomised trials of antiplatelet therapy for prevention of death, myocardial infarction, and stroke in high risk patients. BMJ. 2002;324(7329):71–86.

    Article  Google Scholar 

  302. Antithrombotic Trialists C. Aspirin in the primary and secondary prevention of vascular disease: collaborative meta-analysis of individual participant data from randomised trials. Lancet. 2009;373(9678):1849–60.

    Article  CAS  Google Scholar 

  303. American Diabetes A. (8) Cardiovascular disease and risk management. Diabetes Care. 2015;38(Suppl):S49–57.

    Article  Google Scholar 

  304. National Heart Foundation of Australia and the Cardiac Society of Australia and New Zealand. Reducing risk in heart disease: an expert guide to clinical practice for secondary prevention of coronary heart disease. 2012 [cited 2017 30 May ]; Available from: https://www.heartfoundation.org.au/images/uploads/publications/Reducing-risk-in-heart-disease.pdf.

  305. Belch J, et al. The prevention of progression of arterial disease and diabetes (POPADAD) trial: factorial randomised placebo controlled trial of aspirin and antioxidants in patients with diabetes and asymptomatic peripheral arterial disease. BMJ. 2008;337:a1840.

    Article  PubMed  PubMed Central  Google Scholar 

  306. Ogawa H, et al. Low-dose aspirin for primary prevention of atherosclerotic events in patients with type 2 diabetes: a randomized controlled trial. JAMA. 2008;300(18):2134–41.

    Article  CAS  PubMed  Google Scholar 

  307. Pignone M, et al. Aspirin for primary prevention of cardiovascular events in people with diabetes: a position statement of the American Diabetes Association, a scientific statement of the American Heart Association, and an expert consensus document of the American College of Cardiology Foundation. Diabetes Care. 2010;33(6):1395–402.

    Article  PubMed  PubMed Central  Google Scholar 

  308. Ekstrom N, et al. Aspirin treatment and risk of first incident cardiovascular diseases in patients with type 2 diabetes: an observational study from the Swedish National Diabetes Register. BMJ Open. 2013;3(4):1–9.

    Article  PubMed  PubMed Central  Google Scholar 

  309. Kokoska LA, et al. Aspirin for primary prevention of cardiovascular disease in patients with diabetes: A meta-analysis. Diabetes Res Clin Pract. 2016;120:31–9.

    Article  CAS  PubMed  Google Scholar 

  310. British Heart Foundation. ASCEND: a study of cardiovascular events in diabetes. 2015 [cited 2017 03 May ]; Available from: https://clinicaltrials.gov/ct2/show/NCT00135226.

  311. De Berardis G, et al. Aspirin and Simvastatin Combination for Cardiovascular Events Prevention Trial in Diabetes (ACCEPT-D): design of a randomized study of the efficacy of low-dose aspirin in the prevention of cardiovascular events in subjects with diabetes mellitus treated with statins. Trials. 2007;8:21.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  312. Arjomand H, et al. Platelets and antiplatelet therapy in patients with diabetes mellitus. J Invasive Cardiol. 2003;15(5):264–9.

    PubMed  Google Scholar 

  313. Committee CS. A randomised, blinded, trial of clopidogrel versus aspirin in patients at risk of ischaemic events (CAPRIE). CAPRIE Steering Committee. Lancet. 1996;348(9038):1329–39.

    Article  Google Scholar 

  314. Bhatt DL, et al. Amplified benefit of clopidogrel versus aspirin in patients with diabetes mellitus. Am J Cardiol. 2002;90(6):625–8.

    Article  PubMed  Google Scholar 

  315. Bhatt DL, et al. Clopidogrel and aspirin versus aspirin alone for the prevention of atherothrombotic events. N Engl J Med. 2006;354(16):1706–17.

    Article  CAS  PubMed  Google Scholar 

  316. Yusuf S, et al. Effects of clopidogrel in addition to aspirin in patients with acute coronary syndromes without ST-segment elevation. N Engl J Med. 2001;345(7):494–502.

    Article  CAS  PubMed  Google Scholar 

  317. Wiviott SD, et al. Greater clinical benefit of more intensive oral antiplatelet therapy with prasugrel in patients with diabetes mellitus in the trial to assess improvement in therapeutic outcomes by optimizing platelet inhibition with prasugrel-Thrombolysis in Myocardial Infarction 38. Circulation. 2008;118(16):1626–36.

    Article  CAS  PubMed  Google Scholar 

  318. Wallentin L, et al. Ticagrelor versus clopidogrel in patients with acute coronary syndromes. N Engl J Med. 2009;361(11):1045–57.

    Article  CAS  PubMed  Google Scholar 

  319. American Diabetes A. 9. Cardiovascular Disease and Risk Management. Diabetes Care. 2017;40(Suppl 1):S75–87.

    Article  Google Scholar 

  320. Haffner SM, et al. Reduced coronary events in simvastatin-treated patients with coronary heart disease and diabetes or impaired fasting glucose levels: subgroup analyses in the Scandinavian Simvastatin Survival Study. Arch Intern Med. 1999;159(22):2661–7.

    Article  CAS  PubMed  Google Scholar 

  321. Goldberg RB, et al. Cardiovascular events and their reduction with pravastatin in diabetic and glucose-intolerant myocardial infarction survivors with average cholesterol levels: subgroup analyses in the cholesterol and recurrent events (CARE) trial. The Care Investigators. Circulation. 1998;98(23):2513–9.

    Article  CAS  PubMed  Google Scholar 

  322. Sever PS, et al. Prevention of coronary and stroke events with atorvastatin in hypertensive patients who have average or lower-than-average cholesterol concentrations, in the Anglo-Scandinavian Cardiac Outcomes Trial--Lipid Lowering Arm (ASCOT-LLA): a multicentre randomised controlled trial. Lancet. 2003;361(9364):1149–58.

    Article  CAS  PubMed  Google Scholar 

  323. Colhoun HM, et al. Primary prevention of cardiovascular disease with atorvastatin in type 2 diabetes in the Collaborative Atorvastatin Diabetes Study (CARDS): multicentre randomised placebo-controlled trial. Lancet. 2004;364(9435):685–96.

    Article  CAS  PubMed  Google Scholar 

  324. Davidson MH. Efficacy of simvastatin and ezetimibe in treating hypercholesterolemia. J Am Coll Cardiol. 2003;42(2):398–9. author reply 399

    Article  PubMed  Google Scholar 

  325. Shepherd J, et al. Effect of lowering LDL cholesterol substantially below currently recommended levels in patients with coronary heart disease and diabetes: the Treating to New Targets (TNT) study. Diabetes Care. 2006;29(6):1220–6.

    Article  CAS  PubMed  Google Scholar 

  326. Cholesterol Treatment Trialists, C., et al. Efficacy of cholesterol-lowering therapy in 18,686 people with diabetes in 14 randomised trials of statins: a meta-analysis. Lancet. 2008;371(9607):117–25.

    Google Scholar 

  327. ASCVD Risk Estimator. 2014 [cited 2017 06 May ]; Available from: http://tools.acc.org/ascvd-risk-estimator/.

  328. National Clinical Guideline Centre. Cardiovascular disease: risk assessment and reduction, including lipid modification. 2014 [cited 2017 03 May ]; Available from: https://www.nice.org.uk/guidance/cg181/resources/cardiovascular-disease-risk-assessment-and-reduction-including-lipid-modification-35109807660997.

  329. Davis WA, Colagiuri S, Davis TM. Comparison of the Framingham and United Kingdom Prospective Diabetes Study cardiovascular risk equations in Australian patients with type 2 diabetes from the Fremantle Diabetes Study. Med J Aust. 2009;190(4):180–4.

    PubMed  Google Scholar 

  330. Nelson MR, et al. Prediction of cardiovascular events in subjects in the second Australian National Blood Pressure study. Hypertension. 2010;56(1):44–8.

    Article  CAS  PubMed  Google Scholar 

  331. Meek C, et al. Daily and intermittent rosuvastatin 5 mg therapy in statin intolerant patients: an observational study. Curr Med Res Opin. 2012;28(3):371–8.

    Article  CAS  PubMed  Google Scholar 

  332. Agouridis AP, Nair DR, Mikhailidis DP. Strategies to overcome statin intolerance. Expert Opin Drug Metab Toxicol. 2015;11(6):851–5.

    Article  CAS  PubMed  Google Scholar 

  333. Ahmad Z. Statin intolerance. Am J Cardiol. 2014;113(10):1765–71.

    Article  CAS  PubMed  Google Scholar 

  334. Guyton JR, et al. An assessment by the Statin Intolerance Panel: 2014 update. J Clin Lipidol. 2014;8(3 Suppl):S72–81.

    Article  PubMed  Google Scholar 

  335. Laufs U, et al. Practical aspects in the management of statin-associated muscle symptoms (SAMS). Atheroscler Suppl. 2017;26:45–55.

    Article  PubMed  Google Scholar 

  336. Tompkins R, et al. A current approach to statin intolerance. Clin Pharmacol Ther. 2014;96(1):74–80.

    Article  CAS  PubMed  Google Scholar 

  337. Scott R, et al. Effects of fenofibrate treatment on cardiovascular disease risk in 9,795 individuals with type 2 diabetes and various components of the metabolic syndrome: the Fenofibrate Intervention and Event Lowering in Diabetes (FIELD) study. Diabetes Care. 2009;32(3):493–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  338. Skyler JS, et al. Intensive glycemic control and the prevention of cardiovascular events: implications of the ACCORD, ADVANCE, and VA diabetes trials: a position statement of the American Diabetes Association and a scientific statement of the American College of Cardiology Foundation and the American Heart Association. Diabetes Care. 2009;32(1):187–92.

    Article  PubMed  PubMed Central  Google Scholar 

  339. Alagona P Jr. Fenofibric acid: a new fibrate approved for use in combination with statin for the treatment of mixed dyslipidemia. Vasc Health Risk Manag. 2010;6:351–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  340. Jones PH, Davidson MH. Reporting rate of rhabdomyolysis with fenofibrate + statin versus gemfibrozil + any statin. Am J Cardiol. 2005;95(1):120–2.

    Article  CAS  PubMed  Google Scholar 

  341. da Luz PL, et al. High ratio of triglycerides to HDL-cholesterol predicts extensive coronary disease. Clinics (Sao Paulo). 2008;63(4):427–32.

    Article  Google Scholar 

  342. Barter PJ, et al. Effects of torcetrapib in patients at high risk for coronary events. N Engl J Med. 2007;357(21):2109–22.

    Article  CAS  PubMed  Google Scholar 

  343. Schwartz GG, et al. Effects of dalcetrapib in patients with a recent acute coronary syndrome. N Engl J Med. 2012;367(22):2089–99.

    Article  CAS  PubMed  Google Scholar 

  344. Cannon CP, et al. Ezetimibe Added to Statin Therapy after Acute Coronary Syndromes. N Engl J Med. 2015;372(25):2387–97.

    Article  CAS  PubMed  Google Scholar 

  345. Baigent C, et al. The effects of lowering LDL cholesterol with simvastatin plus ezetimibe in patients with chronic kidney disease (Study of Heart and Renal Protection): a randomised placebo-controlled trial. Lancet. 2011;377(9784):2181–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  346. Investigators A-H, et al. Niacin in patients with low HDL cholesterol levels receiving intensive statin therapy. N Engl J Med. 2011;365(24):2255–67.

    Article  CAS  Google Scholar 

  347. Sabatine MS, et al. Evolocumab and clinical outcomes in patients with cardiovascular disease. N Engl J Med. 2017;376(18):1713–22.

    Article  CAS  PubMed  Google Scholar 

  348. Diamantis E, et al. The anti-inflammatory effects of statins on coronary artery disease: an updated review of the literature. Curr Cardiol Rev. 2017.

    Google Scholar 

  349. Oesterle A, Laufs U, Liao JK. Pleiotropic Effects of Statins on the Cardiovascular System. Circ Res. 2017;120(1):229–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  350. Sandhu K, Mamas M, Butler R. Endothelial progenitor cells: Exploring the pleiotropic effects of statins. World J Cardiol. 2017;9(1):1–13.

    Article  PubMed  PubMed Central  Google Scholar 

  351. Henriksbo BD, Schertzer JD. Is immunity a mechanism contributing to statin-induced diabetes? Adipocyte. 2015;4(4):232–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  352. James PA, et al. 2014 evidence-based guideline for the management of high blood pressure in adults: report from the panel members appointed to the Eighth Joint National Committee (JNC 8). JAMA. 2014;311(5):507–20.

    Article  CAS  PubMed  Google Scholar 

  353. Law MR, Morris JK, Wald NJ. Use of blood pressure lowering drugs in the prevention of cardiovascular disease: meta-analysis of 147 randomised trials in the context of expectations from prospective epidemiological studies. BMJ. 2009;338:b1665.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  354. Law MR, et al. Value of low dose combination treatment with blood pressure lowering drugs: analysis of 354 randomised trials. BMJ. 2003;326(7404):1427.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  355. Lv J, et al. Antihypertensive agents for preventing diabetic kidney disease. Cochrane Database Syst Rev. 2012;12:CD004136.

    PubMed  Google Scholar 

  356. Mancia G, Fagard R. Guidelines for the management of hypertension and target organ damage: reply. J Hypertens. 2013;31(12):2464–5.

    Article  CAS  PubMed  Google Scholar 

  357. Musini VM, et al. Blood pressure-lowering efficacy of monotherapy with thiazide diuretics for primary hypertension. Cochrane Database Syst Rev. 2014;5:CD003824.

    Google Scholar 

  358. Musini VM, et al. Blood pressure-lowering efficacy of loop diuretics for primary hypertension. Cochrane Database Syst Rev. 2015;5:CD003825.

    Google Scholar 

  359. Olde Engberink RH, et al. Effects of thiazide-type and thiazide-like diuretics on cardiovascular events and mortality: systematic review and meta-analysis. Hypertension. 2015;65(5):1033–40.

    Article  CAS  PubMed  Google Scholar 

  360. Tam TS, et al. Eplerenone for hypertension. Cochrane Database Syst Rev. 2017;2:CD008996.

    PubMed  Google Scholar 

  361. Wiysonge CS, et al. Beta-blockers for hypertension. Cochrane Database Syst Rev. 2012;11:CD002003.

    PubMed  Google Scholar 

  362. Wong GW, Boyda HN, Wright JM. Blood pressure lowering efficacy of beta-1 selective beta blockers for primary hypertension. Cochrane Database Syst Rev. 2016;3:CD007451.

    PubMed  Google Scholar 

  363. Wong GW, Laugerotte A, Wright JM. Blood pressure lowering efficacy of dual alpha and beta blockers for primary hypertension. Cochrane Database Syst Rev. 2015;8:CD007449.

    Google Scholar 

  364. Wong GW, Wright JM. Blood pressure lowering efficacy of nonselective beta-blockers for primary hypertension. Cochrane Database Syst Rev. 2014;2:CD007452.

    Google Scholar 

  365. Emdin CA, et al. Blood pressure lowering in type 2 diabetes: a systematic review and meta-analysis. JAMA. 2015;313(6):603–15.

    Article  PubMed  CAS  Google Scholar 

  366. Tight blood pressure control and risk of macrovascular and microvascular complications in type 2 diabetes: UKPDS 38. UK Prospective Diabetes Study Group. BMJ. 1998;317(7160):703–13.

    Article  PubMed Central  Google Scholar 

  367. Estacio RO, et al. The effect of nisoldipine as compared with enalapril on cardiovascular outcomes in patients with non-insulin-dependent diabetes and hypertension. N Engl J Med. 1998;338(10):645–52.

    Article  CAS  PubMed  Google Scholar 

  368. Bangalore S, et al. Blood pressure targets in subjects with type 2 diabetes mellitus/impaired fasting glucose: observations from traditional and bayesian random-effects meta-analyses of randomized trials. Circulation. 2011;123(24):2799–810. 9 p following 810

    Article  CAS  PubMed  Google Scholar 

  369. Group, A.S., et al. Effects of intensive blood-pressure control in type 2 diabetes mellitus. N Engl J Med. 2010;362(17):1575–85.

    Google Scholar 

  370. Group, S.R., et al. A Randomized Trial of Intensive versus Standard Blood-Pressure Control. N Engl J Med. 2015;373(22):2103–16.

    Google Scholar 

  371. Bangalore S, et al. Diabetes mellitus as a compelling indication for use of renin angiotensin system blockers: systematic review and meta-analysis of randomized trials. BMJ. 2016;352:i438.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  372. Hermida RC, et al. Influence of time of day of blood pressure-lowering treatment on cardiovascular risk in hypertensive patients with type 2 diabetes. Diabetes Care. 2011;34(6):1270–6.

    Article  PubMed  PubMed Central  Google Scholar 

  373. Ayala DE, et al. Cardiovascular risk of resistant hypertension: dependence on treatment-time regimen of blood pressure-lowering medications. Chronobiol Int. 2013;30(1–2):340–52.

    Article  CAS  PubMed  Google Scholar 

  374. Davidson MB, American Diabetes Association. Meeting the American Diabetes Association standards of care: an algorithmic approach to clinical care of the diabetic patient. 2010, Alexandria, VA: American Diabetes Association. xi, 116 p.

    Google Scholar 

  375. Gerstein HC. Glucose: a continuous risk factor for cardiovascular disease. Diabet Med. 1997;14(Suppl 3):S25–31.

    Article  PubMed  Google Scholar 

  376. Shah HS, et al. Genetic Predictors of Cardiovascular Mortality During Intensive Glycemic Control in Type 2 Diabetes: Findings From the ACCORD Clinical Trial. Diabetes Care. 2016;39(11):1915–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  377. U.S. Department of Health and Human Services. Final Guidance for Industry: Guidance for Industry: Diabetes Mellitus – Evaluating cardiovascular risk in new antidiabetic therapies to treat type 2 diabetes. 2008 [cited 2017 03 May ]; Available from: https://www.fda.gov/downloads/Drugs/.../Guidances/ucm071627.pdf.

  378. European Medicines Agency. Guideline on the Investigation of Drug Interactions. 2012 [cited 2017 03 may ]; Available from: http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2012/07/WC500129606.pdf.

  379. Selvin E, et al. Meta-analysis: glycosylated hemoglobin and cardiovascular disease in diabetes mellitus. Ann Intern Med. 2004;141(6):421–31.

    Article  CAS  PubMed  Google Scholar 

  380. Hayward RA, et al. Follow-up of Glycemic Control and Cardiovascular Outcomes in Type 2 Diabetes. N Engl J Med. 2015;373(10):978.

    PubMed  Google Scholar 

  381. Bonds DE, et al. The association between symptomatic, severe hypoglycaemia and mortality in type 2 diabetes: retrospective epidemiological analysis of the ACCORD study. BMJ. 2010;340:b4909.

    Article  PubMed  PubMed Central  Google Scholar 

  382. Riddle MC, et al. Epidemiologic relationships between A1C and all-cause mortality during a median 3.4-year follow-up of glycemic treatment in the ACCORD trial. Diabetes Care. 2010;33(5):983–90.

    Article  PubMed  PubMed Central  Google Scholar 

  383. Fox CS, et al. Update on Prevention of Cardiovascular Disease in Adults With Type 2 Diabetes Mellitus in Light of Recent Evidence: A Scientific Statement From the American Heart Association and the American Diabetes Association. Diabetes Care. 2015;38(9):1777–803.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  384. Reno CM, et al. Defective counterregulation and hypoglycemia unawareness in diabetes: mechanisms and emerging treatments. Endocrinol Metab Clin N Am. 2013;42(1):15–38.

    Article  Google Scholar 

  385. Zoungas S, et al. Severe hypoglycemia and risks of vascular events and death. N Engl J Med. 2010;363(15):1410–8.

    Article  CAS  PubMed  Google Scholar 

  386. Diabetes, C., I. Complications Trial/Epidemiology of Diabetes, and G. Complications Study Research. Intensive Diabetes Treatment and Cardiovascular Outcomes in Type 1 Diabetes: The DCCT/EDIC Study 30-Year Follow-up. Diabetes Care. 2016;39(5):686–93.

    Article  CAS  Google Scholar 

  387. Cheung NW, et al. Position statement of the Australian Diabetes Society: individualisation of glycated haemoglobin targets for adults with diabetes mellitus. Med J Aust. 2009;191(6):339.

    PubMed  Google Scholar 

  388. American Diabetes Association. Standards of medical care in diabetes – 2013. Diabetes Care. 2013;36(Suppl 1):S11–66.

    Article  CAS  Google Scholar 

  389. Qaseem A, et al. Hemoglobin A1c Targets for Glycemic Control With Pharmacologic Therapy for Nonpregnant Adults With Type 2 Diabetes Mellitus: A Guidance Statement Update From the American College of Physicians. Ann Intern Med. 2018;168(8):569–76.

    Article  PubMed  Google Scholar 

  390. Eurich DT, et al. Comparative safety and effectiveness of metformin in patients with diabetes mellitus and heart failure: systematic review of observational studies involving 34,000 patients. Circ Heart Fail. 2013;6(3):395–402.

    Article  CAS  PubMed  Google Scholar 

  391. Zinman B, et al. Empagliflozin, Cardiovascular Outcomes, and Mortality in Type 2 Diabetes. N Engl J Med. 2015;373(22):2117–28.

    Article  CAS  PubMed  Google Scholar 

  392. CANVAS – CANagliflozin cardioVascular Assessment Study. 2009 [cited 2017 03 May ]; Available from: https://clinicaltrials.gov/ct2/show/NCT01032629.

  393. Multicenter Trial to Evaluate the Effect of Dapagliflozin on the Incidence of Cardiovascular Events (DECLARE-TIMI58). 2012 [cited 2017 03 May ]; Available from: https://clinicaltrials.gov/ct2/show/NCT01730534.

  394. Pfeffer MA, et al. Lixisenatide in Patients with Type 2 Diabetes and Acute Coronary Syndrome. N Engl J Med. 2015;373(23):2247–57.

    Article  CAS  PubMed  Google Scholar 

  395. American Diabetes A. 8. Cardiovascular Disease and Risk Management. Diabetes Care. 2016;39(Suppl 1):S60–71.

    Google Scholar 

  396. Scirica BM, et al. Saxagliptin and cardiovascular outcomes in patients with type 2 diabetes mellitus. N Engl J Med. 2013;369(14):1317–26.

    Article  CAS  PubMed  Google Scholar 

  397. Zannad F, et al. Heart failure and mortality outcomes in patients with type 2 diabetes taking alogliptin versus placebo in EXAMINE: a multicentre, randomised, double-blind trial. Lancet. 2015;385(9982):2067–76.

    Article  CAS  PubMed  Google Scholar 

  398. Green JB, et al. Effect of Sitagliptin on Cardiovascular Outcomes in Type 2 Diabetes. N Engl J Med. 2015;373(3):232–42.

    Article  CAS  PubMed  Google Scholar 

  399. Zheng SL, et al. Association Between Use of Sodium-Glucose Cotransporter 2 Inhibitors, Glucagon-like Peptide 1 Agonists, and Dipeptidyl Peptidase 4 Inhibitors With All-Cause Mortality in Patients With Type 2 Diabetes: A Systematic Review and Meta-analysis. JAMA. 2018;319(15):1580–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  400. A new blood glucose management algorithm for type 2 diabetes A position statement of the Australian Diabetes Society. 2014 [cited 2017 03 May ]; Available from: https://diabetessociety.com.au/downloads/20141218%20A%20New%20Blood%20Glucose%20Management%20Algorithm%20for%20Type%202%20Diabetes.pdf.

  401. Qaseem A, et al. Oral pharmacologic treatment of type 2 diabetes mellitus: a clinical practice guideline from the American College of Physicians. Ann Intern Med. 2012;156(3):218–31.

    Article  PubMed  Google Scholar 

  402. Sherifali D, et al. The effect of oral antidiabetic agents on A1C levels: a systematic review and meta-analysis. Diabetes Care. 2010;33(8):1859–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  403. In MIMS Online. 2017: http://www.mims.com.au.

  404. FDA MedWatch Safety Information and Adverse Event Reporting Program. Metformin-containing drugs: drug safety communication-revised warnings for certain patients with reduced kidney function. 2016 [cited 2017 09/02/17]; Available from: http://www.fda.gov/Safety/MedWatch/SafetyInformation/SafetyAlertsforHumanMedicalProducts/ucm494829.htm.

  405. Lipska KJ, Bailey CJ, Inzucchi SE. Use of metformin in the setting of mild-to-moderate renal insufficiency. Diabetes Care. 2011;34(6):1431–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  406. Hong J, et al. Effects of metformin versus glipizide on cardiovascular outcomes in patients with type 2 diabetes and coronary artery disease. Diabetes Care. 2013;36(5):1304–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  407. Roumie CL, et al. Comparative effectiveness of sulfonylurea and metformin monotherapy on cardiovascular events in type 2 diabetes mellitus: a cohort study. Ann Intern Med. 2012;157(9):601–10.

    Article  PubMed  PubMed Central  Google Scholar 

  408. Zeller M, et al. Impact of type of preadmission sulfonylureas on mortality and cardiovascular outcomes in diabetic patients with acute myocardial infarction. J Clin Endocrinol Metab. 2010;95(11):4993–5002.

    Article  CAS  PubMed  Google Scholar 

  409. Canadian Diabetes Association Clinical Practice Guidelines Expert, C., et al. Pharmacologic management of type 2 diabetes. Can J Diabetes. 2013;37 Suppl 1:S61–8.

    Google Scholar 

  410. Garber AJ, et al. Consensus Statement by the American Association of Clinical Endocrinologists and American College of Endocrinology on the Comprehensive Type 2 Diabetes Management Algorithm--2016 Executive Summary. Endocr Pract. 2016;22(1):84–113.

    Article  PubMed  Google Scholar 

  411. Vilsboll T, et al. Effects of glucagon-like peptide-1 receptor agonists on weight loss: systematic review and meta-analyses of randomised controlled trials. BMJ. 2012;344:d7771.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  412. Marso SP, et al. Liraglutide and Cardiovascular Outcomes in Type 2 Diabetes. N Engl J Med. 2016;375(4):311–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  413. Heerspink HJ, et al. Sodium Glucose Cotransporter 2 Inhibitors in the Treatment of Diabetes Mellitus: Cardiovascular and Kidney Effects, Potential Mechanisms, and Clinical Applications. Circulation. 2016;134(10):752–72.

    Article  CAS  PubMed  Google Scholar 

  414. Watts NB, et al. Effects of Canagliflozin on Fracture Risk in Patients With Type 2 Diabetes Mellitus. J Clin Endocrinol Metab. 2016;101(1):157–66.

    Article  CAS  PubMed  Google Scholar 

  415. Palmer BF, et al. Diabetic ketoacidosis, sodium glucose transporter-2 inhibitors and the kidney. J Diabetes Complicat. 2016;30(6):1162–6.

    Article  Google Scholar 

  416. Sodium-glucose co-transporter 2 inhibitors. 2017, Australian Medicines Handbook: https://amh.net.au/.

  417. Wanner C, et al. Empagliflozin and Progression of Kidney Disease in Type 2 Diabetes. N Engl J Med. 2016;375(4):323–34.

    Article  CAS  PubMed  Google Scholar 

  418. Liu XY, et al. Efficacy and safety of sodium-glucose cotransporter 2 inhibitors in type 2 diabetes: a meta-analysis of randomized controlled trials for 1 to 2years. J Diabetes Complicat. 2015;29(8):1295–303.

    Article  Google Scholar 

  419. Dormandy JA, et al. Secondary prevention of macrovascular events in patients with type 2 diabetes in the PROactive Study (PROspective pioglitAzone Clinical Trial In macroVascular Events): a randomised controlled trial. Lancet. 2005;366(9493):1279–89.

    Article  CAS  PubMed  Google Scholar 

  420. Thiazolidinediones, in Australian Medicines Handbook. 2017: https://amh.net.au/.

  421. Lincoff AM, et al. Pioglitazone and risk of cardiovascular events in patients with type 2 diabetes mellitus: a meta-analysis of randomized trials. JAMA. 2007;298(10):1180–8.

    Article  CAS  PubMed  Google Scholar 

  422. Lipscombe LL, et al. Thiazolidinediones and cardiovascular outcomes in older patients with diabetes. JAMA. 2007;298(22):2634–43.

    Article  CAS  PubMed  Google Scholar 

  423. Home PD, et al. Rosiglitazone evaluated for cardiovascular outcomes in oral agent combination therapy for type 2 diabetes (RECORD): a multicentre, randomised, open-label trial. Lancet. 2009;373(9681):2125–35.

    Article  CAS  PubMed  Google Scholar 

  424. Acarbose, in Australian Medicines Handbook. 2017: https://amh.net.au/.

  425. Chiasson JL, et al. Acarbose treatment and the risk of cardiovascular disease and hypertension in patients with impaired glucose tolerance: the STOP-NIDDM trial. JAMA. 2003;290(4):486–94.

    Article  CAS  PubMed  Google Scholar 

  426. Gunton JE, et al. A new blood glucose management algorithm for type 2 diabetes: a position statement of the Australian Diabetes Society. Med J Aust. 2014;201(11):650–3.

    Article  PubMed  Google Scholar 

  427. Insulins: comparative information, in Australian Medicines Handbook. 2017: https://amh.net.au/.

  428. Haahr H, Heise T. A review of the pharmacological properties of insulin degludec and their clinical relevance. Clin Pharmacokinet. 2014;53(9):787–800.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  429. Investigators OT, et al. Basal insulin and cardiovascular and other outcomes in dysglycemia. N Engl J Med. 2012;367(4):319–28.

    Article  CAS  Google Scholar 

  430. O’Neal DN, Jenkins AJ. Metabolic memory in type 1 diabetes. Diabetes Management. 2009;(27):5–6.

    Google Scholar 

  431. Steineck I, et al. Insulin pump therapy, multiple daily injections, and cardiovascular mortality in 18,168 people with type 1 diabetes: observational study. BMJ. 2015;350:h3234.

    Article  PubMed  PubMed Central  Google Scholar 

  432. Zabeen B, et al. Insulin Pump Therapy is associated with lower rates of Retinopathy and Peripheral Nerve Abnormality. PLoS One. 2016;11(4):e0153033.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  433. Group, D.E.R., et al. Frequency of evidence-based screening for Retinopathy in type 1 diabetes. N Engl J Med. 2017;376(16):1507–16.

    Google Scholar 

  434. Leese GP, et al. Progression of diabetes retinal status within community screening programs and potential implications for screening intervals. Diabetes Care. 2015;38(3):488–94.

    Article  PubMed  Google Scholar 

  435. Tubbs CG, et al. Clinical inquiries. Do routine eye exams reduce occurrence of blindness from type 2 diabetes? J Fam Pract. 2004;53(9):732–4.

    PubMed  Google Scholar 

  436. Adal KM, et al. Accuracy assessment of intra- and intervisit fundus image registration for diabetic retinopathy screening. Invest Ophthalmol Vis Sci. 2015;56(3):1805–12.

    Article  PubMed  Google Scholar 

  437. Rosses AP, et al. Diagnostic performance of retinal digital photography for diabetic retinopathy screening in primary care. Fam Pract. 2017;34(5):546–51.

    Article  PubMed  Google Scholar 

  438. White NH, et al. Effect of prior intensive therapy in type 1 diabetes on 10-year progression of retinopathy in the DCCT/EDIC: comparison of adults and adolescents. Diabetes. 2010;59(5):1244–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  439. Ismail-Beigi F, et al. Effect of intensive treatment of hyperglycaemia on microvascular outcomes in type 2 diabetes: an analysis of the ACCORD randomised trial. Lancet. 2010;376(9739):419–30.

    Article  PubMed  PubMed Central  Google Scholar 

  440. Azad N, et al. Association of blood glucose control and pancreatic reserve with diabetic retinopathy in the Veterans Affairs Diabetes Trial (VADT). Diabetologia. 2014;57(6):1124–31.

    Article  CAS  PubMed  Google Scholar 

  441. Lloyd CE, et al. The progression of retinopathy over 2 years: the Pittsburgh Epidemiology of Diabetes Complications (EDC) Study. J Diabetes Complicat. 1995;9(3):140–8.

    Article  CAS  Google Scholar 

  442. Chew EY, et al. Association of elevated serum lipid levels with retinal hard exudate in diabetic retinopathy. Early Treatment Diabetic Retinopathy Study (ETDRS) Report 22. Arch Ophthalmol. 1996;114(9):1079–84.

    Article  CAS  PubMed  Google Scholar 

  443. van Leiden HA, et al. Blood Pressure, Lipids, and Obesity Are Associated With Retinopathy. Diabetes Care. 2002;25(8):1320.

    Article  PubMed  Google Scholar 

  444. Klein R, et al. The association of atherosclerosis, vascular risk factors, and retinopathy in adults with diabetes : the atherosclerosis risk in communities study. Ophthalmology. 2002;109(7):1225–34.

    Article  PubMed  Google Scholar 

  445. Du M, et al. Effects of modified LDL and HDL on retinal pigment epithelial cells: a role in diabetic retinopathy? Diabetologia. 2013;56(10):2318–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  446. Fu D, et al. Mechanisms of modified LDL-induced pericyte loss and retinal injury in diabetic retinopathy. Diabetologia. 2012;55(11):3128–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  447. Fu D, et al. Immune complex formation in human diabetic retina enhances toxicity of oxidized LDL towards retinal capillary pericytes. J Lipid Res. 2014;55(5):860–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  448. Wu M, et al. Intraretinal leakage and oxidation of LDL in diabetic retinopathy. Invest Ophthalmol Vis Sci. 2008;49(6):2679–85.

    Article  PubMed  Google Scholar 

  449. Yu JY, et al. Extravascular modified lipoproteins: a role in the propagation of diabetic retinopathy in a mouse model of type 1 diabetes. Diabetologia. 2016;59(9):2026–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  450. Yu JY, Lyons TJ. Modified Lipoproteins in Diabetic Retinopathy: a local action in the Retina. J Clin Exp Ophthalmol. 2013;4(6):1–17.

    Google Scholar 

  451. Chen Y, et al. Therapeutic effects of PPARalpha agonists on diabetic retinopathy in type 1 diabetes models. Diabetes. 2013;62(1):261–72.

    Article  CAS  PubMed  Google Scholar 

  452. Noonan JE, et al. An update on the molecular actions of fenofibrate and its clinical effects on diabetic retinopathy and other microvascular end points in patients with diabetes. Diabetes. 2013;62(12):3968–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  453. Simo R, et al. Fenofibrate: a new treatment for diabetic retinopathy. Molecular mechanisms and future perspectives. Curr Med Chem. 2013;20(26):3258–66.

    Article  CAS  PubMed  Google Scholar 

  454. Silva PS, et al. Effect of systemic medications on onset and progression of diabetic retinopathy. Nat Rev Endocrinol. 2010;6(9):494–508.

    Article  CAS  PubMed  Google Scholar 

  455. Yau JW, et al. Global prevalence and major risk factors of diabetic retinopathy. Diabetes Care. 2012;35(3):556–64.

    Article  PubMed  PubMed Central  Google Scholar 

  456. Sjølie AK, et al. Effect of candesartan on progression and regression of retinopathy in type 2 diabetes (DIRECT-Protect 2): a randomised placebo-controlled trial. Lancet. 2008;372(9647):1385–93.

    Article  PubMed  CAS  Google Scholar 

  457. Do DV, et al. Blood pressure control for diabetic retinopathy. Cochrane Database Syst Rev. 2015;1:CD006127.

    PubMed  Google Scholar 

  458. Preliminary report on effects of photocoagulation therapy. The Diabetic Retinopathy Study Research Group. Am J Ophthalmol. 1976;81(4):383–96.

    Google Scholar 

  459. Early photocoagulation for diabetic retinopathy. ETDRS report number 9. Early Treatment Diabetic Retinopathy Study Research Group. Ophthalmology. 1991;98(5 Suppl):766–85.

    Google Scholar 

  460. Ferris F. Early photocoagulation in patients with either type I or type II diabetes. Trans Am Ophthalmol Soc. 1996;94:505–37.

    CAS  PubMed  PubMed Central  Google Scholar 

  461. Ang L, et al. Glucose control and diabetic neuropathy: lessons from recent large clinical trials. Curr Diab Rep. 2014;14(9):528.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  462. Elman MJ, et al. Expanded 2-year follow-up of ranibizumab plus prompt or deferred laser or triamcinolone plus prompt laser for diabetic macular edema. Ophthalmology. 2011;118(4):609–14.

    Article  PubMed  Google Scholar 

  463. Mitchell P, et al. The RESTORE study: ranibizumab monotherapy or combined with laser versus laser monotherapy for diabetic macular edema. Ophthalmology. 2011;118(4):615–25.

    Article  PubMed  Google Scholar 

  464. Nguyen QD, et al. Ranibizumab for diabetic macular edema: results from 2 phase III randomized trials: RISE and RIDE. Ophthalmology. 2012;119(4):789–801.

    Article  PubMed  Google Scholar 

  465. Writing Committee for the Diabetic Retinopathy Clinical Research, N., et al. Panretinal Photocoagulation vs Intravitreous Ranibizumab for Proliferative Diabetic Retinopathy: a Randomized Clinical Trial. JAMA. 2015;314(20):2137–46.

    Google Scholar 

  466. Falavarjani KG, Nguyen QD. Adverse events and complications associated with intravitreal injection of anti-VEGF agents: a review of literature. Eye (Lond). 2013;27(7):787–94.

    Article  CAS  Google Scholar 

  467. Group, D.E.R., et al. Intensive diabetes therapy and glomerular filtration rate in type 1 diabetes. N Engl J Med. 2011;365(25):2366–76.

    Google Scholar 

  468. Group, D.E.R., Effect of intensive diabetes treatment on albuminuria in type 1 diabetes: long-term follow-up of the Diabetes Control and Complications Trial and Epidemiology of Diabetes Interventions and Complications study. Lancet Diabetes Endocrinol. 2014;2(10):793–800.

    Google Scholar 

  469. Tolwinska J, Glowinska-Olszewska B, Bossowski A. Insulin therapy with personal insulin pumps and early angiopathy in children with type 1 diabetes mellitus. Mediat Inflamm. 2013;2013:791283.

    Article  CAS  Google Scholar 

  470. Virk SA, et al. Interventions for Diabetic Retinopathy in Type 1 Diabetes: Systematic Review and Meta-Analysis. Am J Ophthalmol. 2015;160(5):1055–64. e4

    Article  PubMed  Google Scholar 

  471. Cooper ME, et al. Kidney Disease End Points in a Pooled Analysis of Individual Patient-Level Data From a Large Clinical Trials Program of the Dipeptidyl Peptidase 4 Inhibitor Linagliptin in Type 2 Diabetes. Am J Kidney Dis. 2015;66(3):441–9.

    Article  CAS  PubMed  Google Scholar 

  472. Peene B, Benhalima K. Sodium glucose transporter protein 2 inhibitors: focusing on the kidney to treat type 2 diabetes. Ther Adv Endocrinol Metab. 2014;5(5):124–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  473. Petrie JR, et al. Cardiovascular and metabolic effects of metformin in patients with type 1 diabetes (REMOVAL): a double-blind, randomised, placebo-controlled trial. Lancet Diabetes Endocrinol. 2017;5(8):597–609.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  474. Papademetriou V, et al. Chronic kidney disease and intensive glycemic control increase cardiovascular risk in patients with type 2 diabetes. Kidney Int. 2015;87(3):649–59.

    Article  PubMed  Google Scholar 

  475. Haller H, et al. Olmesartan for the delay or prevention of microalbuminuria in type 2 diabetes. N Engl J Med. 2011;364(10):907–17.

    Article  CAS  PubMed  Google Scholar 

  476. Mauer M, et al. Renal and retinal effects of enalapril and losartan in type 1 diabetes. N Engl J Med. 2009;361(1):40–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  477. Effects of ramipril on cardiovascular and microvascular outcomes in people with diabetes mellitus: results of the HOPE study and MICRO-HOPE substudy. Heart Outcomes Prevention Evaluation Study Investigators. Lancet. 2000;355(9200):253–9.

    Google Scholar 

  478. Barnett AH, et al. Angiotensin-receptor blockade versus converting-enzyme inhibition in type 2 diabetes and nephropathy. N Engl J Med. 2004;351(19):1952–61.

    Article  CAS  PubMed  Google Scholar 

  479. Lozano-Maneiro L, Puente-Garcia A. Renin-Angiotensin-Aldosterone System Blockade in Diabetic Nephropathy. Present Evidences. J Clin Med. 2015;4(11):1908–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  480. Investigators O, et al. Telmisartan, ramipril, or both in patients at high risk for vascular events. N Engl J Med. 2008;358(15):1547–59.

    Article  Google Scholar 

  481. Werner C, et al. RAS blockade with ARB and ACE inhibitors: current perspective on rationale and patient selection. Clin Res Cardiol. 2008;97(7):418–31.

    Article  CAS  PubMed  Google Scholar 

  482. Berl T, et al. Cardiovascular outcomes in the Irbesartan Diabetic Nephropathy Trial of patients with type 2 diabetes and overt nephropathy. Ann Intern Med. 2003;138(7):542–9.

    Article  CAS  PubMed  Google Scholar 

  483. Bakris GL, et al. Effect of Finerenone on Albuminuria in Patients With Diabetic Nephropathy: A Randomized Clinical Trial. JAMA. 2015;314(9):884–94.

    Article  CAS  PubMed  Google Scholar 

  484. Filippatos G, et al. A randomized controlled study of finerenone vs. eplerenone in patients with worsening chronic heart failure and diabetes mellitus and/or chronic kidney disease. Eur Heart J. 2016;37(27):2105–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  485. Williams B, et al. Spironolactone versus placebo, bisoprolol, and doxazosin to determine the optimal treatment for drug-resistant hypertension (PATHWAY-2): a randomised, double-blind, crossover trial. Lancet. 2015;386(10008):2059–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  486. Shen X, et al. Efficacy of statins in patients with diabetic nephropathy: a meta-analysis of randomized controlled trials. Lipids Health Dis. 2016;15(1):179.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  487. Bonds DE, et al. Fenofibrate-associated changes in renal function and relationship to clinical outcomes among individuals with type 2 diabetes: the Action to Control Cardiovascular Risk in Diabetes (ACCORD) experience. Diabetologia. 2012;55(6):1641–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  488. Davis TM, et al. Effects of fenofibrate on renal function in patients with type 2 diabetes mellitus: the Fenofibrate Intervention and Event Lowering in Diabetes (FIELD) Study. Diabetologia. 2011;54(2):280–90.

    Article  CAS  PubMed  Google Scholar 

  489. Mychaleckyj JC, et al. Reversibility of fenofibrate therapy-induced renal function impairment in ACCORD type 2 diabetic participants. Diabetes Care. 2012;35(5):1008–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  490. Ting RD, et al. Benefits and safety of long-term fenofibrate therapy in people with type 2 diabetes and renal impairment: the FIELD Study. Diabetes Care. 2012;35(2):218–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  491. Hottelart C, et al. Fenofibrate increases blood creatinine, but does not change the glomerular filtration rate in patients with mild renal insufficiency. Nephrologie. 1999;20(1):41–4.

    CAS  PubMed  Google Scholar 

  492. Renal Disease and Adult Vaccination. 2014 [cited 2017 03 May ]; Available from: https://www.cdc.gov/vaccines/adults/rec-vac/health-conditions/renal-disease.html.

  493. Smart NA, et al. Early referral to specialist nephrology services for preventing the progression to end-stage kidney disease. Cochrane Database Syst Rev. 2014;6:CD007333.

    Google Scholar 

  494. Martin CL, et al. Neuropathy and related findings in the diabetes control and complications trial/epidemiology of diabetes interventions and complications study. Diabetes Care. 2014;37(1):31–8.

    Article  CAS  PubMed  Google Scholar 

  495. Pop-Busui R, et al. Impact of glycemic control strategies on the progression of diabetic peripheral neuropathy in the Bypass Angioplasty Revascularization Investigation 2 Diabetes (BARI 2D) Cohort. Diabetes Care. 2013;36(10):3208–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  496. American Diabetes A. 10. Microvascular Complications and Foot Care. Diabetes Care. 2017;40(Suppl 1):S88–98.

    Article  Google Scholar 

  497. Cakici N, et al. Systematic review of treatments for diabetic peripheral neuropathy. Diabet Med. 2016;33(11):1466–76.

    Article  CAS  PubMed  Google Scholar 

  498. Finnerup NB, et al. Pharmacotherapy for neuropathic pain in adults: a systematic review and meta-analysis. Lancet Neurol. 2015;14(2):162–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  499. Pop-Busui R, et al. Diabetic Neuropathy: A Position Statement by the American Diabetes Association. Diabetes Care. 2017;40(1):136–54.

    Article  CAS  PubMed  Google Scholar 

  500. Snyder MJ, Gibbs LM, Lindsay TJ. Treating Painful Diabetic Peripheral Neuropathy: An Update. Am Fam Physician. 2016;94(3):227–34.

    PubMed  Google Scholar 

  501. Ziegler D, Fonseca V. From guideline to patient: a review of recent recommendations for pharmacotherapy of painful diabetic neuropathy. J Diabetes Complicat. 2015;29(1):146–56.

    Article  Google Scholar 

  502. Sadosky A, et al. Burden of illness associated with painful diabetic peripheral neuropathy among adults seeking treatment in the US: results from a retrospective chart review and cross-sectional survey. Diabetes Metab Syndr Obes. 2013;6:79–92.

    Article  PubMed  PubMed Central  Google Scholar 

  503. Freeman R, Durso-Decruz E, Emir B. Efficacy, safety, and tolerability of pregabalin treatment for painful diabetic peripheral neuropathy: findings from seven randomized, controlled trials across a range of doses. Diabetes Care. 2008;31(7):1448–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  504. Raskin P, et al. Pregabalin in patients with inadequately treated painful diabetic peripheral neuropathy: a randomized withdrawal trial. Clin J Pain. 2014;30(5):379–90.

    PubMed  Google Scholar 

  505. Wernicke JF, et al. A randomized controlled trial of duloxetine in diabetic peripheral neuropathic pain. Neurology. 2006;67(8):1411–20.

    Article  CAS  PubMed  Google Scholar 

  506. Quilici S, et al. Meta-analysis of duloxetine vs. pregabalin and gabapentin in the treatment of diabetic peripheral neuropathic pain. BMC Neurol. 2009;9:6.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  507. Tesfaye S, et al. Duloxetine and pregabalin: high-dose monotherapy or their combination? The "COMBO-DN study"--a multinational, randomized, double-blind, parallel-group study in patients with diabetic peripheral neuropathic pain. Pain. 2013;154(12):2616–25.

    Article  CAS  PubMed  Google Scholar 

  508. Schwartz S, et al. Safety and efficacy of tapentadol ER in patients with painful diabetic peripheral neuropathy: results of a randomized-withdrawal, placebo-controlled trial. Curr Med Res Opin. 2011;27(1):151–62.

    Article  CAS  PubMed  Google Scholar 

  509. Vinik AI, et al. A randomized withdrawal, placebo-controlled study evaluating the efficacy and tolerability of tapentadol extended release in patients with chronic painful diabetic peripheral neuropathy. Diabetes Care. 2014;37(8):2302–9.

    Article  CAS  PubMed  Google Scholar 

  510. Finnerup NB, Attal N. Tapentadol prolonged release in the treatment of neuropathic pain related to diabetic polyneuropathy--authors' reply. Lancet Neurol. 2015;14(7):685–6.

    Article  PubMed  Google Scholar 

  511. Gaede P, et al. Effect of a multifactorial intervention on mortality in type 2 diabetes. N Engl J Med. 2008;358(6):580–91.

    Article  CAS  PubMed  Google Scholar 

  512. Stark Casagrande S, et al. The prevalence of meeting A1C, blood pressure, and LDL goals among people with diabetes, 1988-2010. Diabetes Care. 2013;36(8):2271–9.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  513. Hu H, et al. Hba1c, Blood Pressure, and Lipid Control in People with Diabetes: Japan Epidemiology Collaboration on Occupational Health Study. PLoS One. 2016;11(7):e0159071.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  514. Janghorbani M, Papi B, Amini M. Current status of glucose, blood pressure and lipid management in type 2 diabetes clinic attendees in Isfahan, Iran. J Diabetes Investig. 2015;6(6):716–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  515. Perez CM, et al. Are adults diagnosed with diabetes achieving the American Diabetes Association clinical practice recommendations? P R Health Sci J. 2012;31(1):18–23.

    PubMed  PubMed Central  Google Scholar 

  516. Wong ND, et al. Trends in control of cardiovascular risk factors among US adults with type 2 diabetes from 1999 to 2010: comparison by prevalent cardiovascular disease status. Diab Vasc Dis Res. 2013;10(6):505–13.

    Article  PubMed  Google Scholar 

  517. Adherence to Long-Term Therapies. Essential Medicines and Health Products Information Portal 2003 [cited 2017 04 May ]; Available from: http://apps.who.int/medicinedocs/pdf/s4883e/s4883e.pdf.

  518. O’Connor PJ, Sperl-Hillen JAM, Johnson PE, Rush WA, Biltz G. In: Henriksen K, et al., editors. Clinical Inertia and Outpatient Medical Errors in Advances in Patient Safety: From Research to Implementation (Volume 2: Concepts and Methodology). Rockville (MD); 2005.

    Google Scholar 

  519. Byrnes P. Why haven’t I changed that? Therapeutic inertia in general practice. Aust Fam Physician. 2011;40:24–8.

    PubMed  Google Scholar 

  520. Lucas Martin AM, et al. Breaking Therapeutic Inertia in Type 2 Diabetes: Active Detection of In-Patient Cases Allows Improvement of Metabolic Control at Midterm. Int J Endocrinol. 2015;2015:381415.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  521. Ryan CM, van Duinkerken E, Rosano C. Neurocognitive consequences of diabetes. Am Psychol. 2016;71(7):563–76.

    Article  PubMed  Google Scholar 

  522. Saedi E, et al. Diabetes mellitus and cognitive impairments. World J Diabetes. 2016;7(17):412–22.

    Article  PubMed  PubMed Central  Google Scholar 

  523. Munshi MN. Cognitive Dysfunction in Older Adults With Diabetes: What a Clinician Needs to Know. Diabetes Care. 2017;40(4):461–7.

    Article  PubMed  CAS  Google Scholar 

  524. Lignalli AT. Handbook of type 2 diabetes in the middle aged and elderly, vol. xxvi. Hauppauge: Nova Science Publishers; 2009. p. 667.

    Google Scholar 

  525. American Diabetes A. Diabetes management in correctional institutions. Diabetes Care. 2011;34(Suppl 1):S75–81.

    Article  Google Scholar 

  526. Udell JA, et al. Association between influenza vaccination and cardiovascular outcomes in high-risk patients: a meta-analysis. JAMA. 2013;310(16):1711–20.

    Article  CAS  PubMed  Google Scholar 

  527. Saremi A, et al. Periodontal disease and mortality in type 2 diabetes. Diabetes Care. 2005;28(1):27–32.

    Article  PubMed  Google Scholar 

  528. Casanova L, Hughes FJ, Preshaw PM. Diabetes and periodontal disease: a two-way relationship. Br Dent J. 2014;217(8):433–7.

    Article  CAS  PubMed  Google Scholar 

  529. Liew AK, et al. Effect of non-surgical periodontal treatment on HbA1c: a meta-analysis of randomized controlled trials. Aust Dent J. 2013;58(3):350–7.

    Article  CAS  PubMed  Google Scholar 

  530. Chow CK, et al. mHealth in Cardiovascular Health Care. Heart Lung Circ. 2016;25(8):802–7.

    Article  PubMed  Google Scholar 

  531. Hou C, et al. Do Mobile Phone Applications Improve Glycemic Control (HbA1c) in the Self-management of Diabetes? A Systematic Review, Meta-analysis, and GRADE of 14 Randomized Trials. Diabetes Care. 2016;39(11):2089–95.

    Article  PubMed  Google Scholar 

  532. Whitehead L, Seaton P. The Effectiveness of Self-Management Mobile Phone and Tablet Apps in Long-term Condition Management: A Systematic Review. J Med Internet Res. 2016;18(5):e97.

    Article  PubMed  PubMed Central  Google Scholar 

  533. Bursell SE, Brazionis L, Jenkins A. Telemedicine and ocular health in diabetes mellitus. Clin Exp Optom. 2012;95(3):311–27.

    Article  PubMed  Google Scholar 

  534. Bursell SE, et al. Telehealth in Australia: an evolution in health care services. Med J Aust. 2013;199(1):23–4.

    Article  PubMed  Google Scholar 

  535. Bursell SE, et al. Evolving telehealth reimbursement in Australia. Intern Med J. 2016;46(8):977–81.

    Article  PubMed  Google Scholar 

  536. Jenkins A. The world I want--a world with less diabetes. Med J Aust. 2015;202(2):108–9.

    Article  PubMed  Google Scholar 

  537. Jenkins AJ. Sometimes you have to give a man a fish. Med J Aust. 2014;200(2):122–3.

    Article  PubMed  Google Scholar 

  538. Ogle GD, et al. Financial costs for families of children with Type 1 diabetes in lower-income countries. Diabet Med. 2016;33(6):820–6.

    Article  CAS  PubMed  Google Scholar 

  539. Collins FS, Varmus H. A new initiative on precision medicine. N Engl J Med. 2015;372(9):793–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  540. Florez JC. Precision Medicine in Diabetes: Is It Time? Diabetes Care. 2016;39(7):1085–8.

    Article  CAS  PubMed  Google Scholar 

  541. Li X, Oprea-Ilies GM, Krishnamurti U. New Developments in Breast Cancer and Their Impact on Daily Practice in Pathology. Arch Pathol Lab Med. 2017;141(4):490–8.

    Article  PubMed  Google Scholar 

  542. Shepherd M, et al. Systematic Population Screening, Using Biomarkers and Genetic Testing, Identifies 2.5% of the U.K. Pediatric Diabetes Population With Monogenic Diabetes. Diabetes Care. 2016;39(11):1879–88.

    Article  CAS  PubMed  Google Scholar 

  543. Joglekar MV, et al. Circulating microRNA Biomarkers of Diabetic Retinopathy. Diabetes. 2016;65(1):22–4.

    Article  CAS  PubMed  Google Scholar 

  544. Kaidonis G, et al. A single-nucleotide polymorphism in the MicroRNA-146a gene is associated with diabetic nephropathy and sight-threatening diabetic retinopathy in Caucasian patients. Acta Diabetol. 2016;53(4):643–50.

    Article  CAS  PubMed  Google Scholar 

  545. Ma RC, Cooper ME. Genetics of Diabetic Kidney Disease-From the Worst of Nightmares to the Light of Dawn? J Am Soc Nephrol. 2017;28(2):389–93.

    Article  CAS  PubMed  Google Scholar 

  546. Heinzel A, et al. Molecular disease presentation in diabetic nephropathy. Nephrol Dial Transplant. 2015;30(Suppl 4):iv17–25.

    Article  CAS  PubMed  Google Scholar 

  547. Dubois-Laforgue D, et al. Diabetes, Associated Clinical Spectrum, Long-term Prognosis and Genotype/Phenotype Correlations in 201 Adult Patients With Hepatocyte Nuclear Factor 1 B (HNF1B) Molecular Defects. Diabetes Care. 2017;40(11):1436–43.

    Article  CAS  PubMed  Google Scholar 

  548. ADA diagnostic criteria. 2016 [cited 2016 04 Nov ]; Available from: http://www.ndei.org/ADA-diabetes-management-guidelines-cardiovascular-disease-CVD-management-lipids-BP.aspx.html.

  549. American Association of Clinical Endocrinologists and American College of Endocrinology Guidelines for Management of Dyslipidemia and Prevention of Cardiovascular Disease. 2017 [cited 2017 04 May ]; Available from: https://www.aace.com/files/lipid-guidelines.pdf.

  550. Fulcher J, Keech A. Asprin use in people with diabetes: the evidence. Diabetes Management Journal. 2013;45:20–2.

    Google Scholar 

  551. Pignone M, Alberts MJ, Colwell JA, et al. Aspirin for primary prevention of cardiovascular events in people with diabetes. J Am Coll Cardiol. 2010;55(25):2878–86.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

AJJ was supported by a NHMRC Practitioner Fellowship and grants from the University of Sydney, the Sydney Medical School Foundation, and the NHMRC Clinical Trials Centre. ES was supported by grants from the Australian Research Council, the University of Sydney, the Juvenile Diabetes Research Foundation Australia, and the Royal Australasian College of Physicians.

This book chapter is dedicated to the memory of our friend and colleague, Dr. Kevin Rowley, PhD (1964–2016), a multitalented, community-minded biomedical scientist, biostatistician, epidemiologist, and health advocate who helped us understand and contribute to improving equitable health access and health outcomes for people at high CVD risk, including people with diabetes and Indigenous Australians.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alicia J. Jenkins .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jenkins, A.J., Scott, E., Fulcher, J., Kilov, G., Januszewski, A.S. (2019). Management of Diabetes Mellitus. In: Toth, P., Cannon, C. (eds) Comprehensive Cardiovascular Medicine in the Primary Care Setting. Contemporary Cardiology. Humana Press, Cham. https://doi.org/10.1007/978-3-319-97622-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-97622-8_7

  • Published:

  • Publisher Name: Humana Press, Cham

  • Print ISBN: 978-3-319-97621-1

  • Online ISBN: 978-3-319-97622-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics