Skip to main content

Strategies and Tools for Sequencing of the Sesame Genome

  • Chapter
  • First Online:
The Sesame Genome

Part of the book series: Compendium of Plant Genomes ((CPG))

  • 431 Accesses

Abstract

The invention of Sanger sequencing initiated the genome era. The development and application of next-generation sequencing (NGS) technologies facilitated genome sequencing in organisms. Here we introduce the main technologies including Sanger sequencing, Roche-454 massive parallel pyrosequencing, Solexa/Illumina sequencing, ABI SOLiD platform, PacBio SMRT platform, HiC sequencing, Oxford nanopore sequencing, and Bionano sequencing platform, as mostly are applied in the Sesame Genome Project (SGP). The characteristics of each technology are briefly discussed. For the SGP, the hybrid sequencing strategies involving the first generation, NGS, and the third generation sequencing technologies are applied to assemble the fine genome map with high accuracy and completeness. Combined with the genome size estimation and genome characters of sesame, the efficient sequencing strategies are elucidated in this section.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anderson S (1981) Shotgun DNA sequencing using cloned DNase I-generated fragments. Nucl Acids Res 9(13):3015–3027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ashton PM, Nair S, Dallman T, Rubino S, Rabsch W et al (2015) MinION nanopore sequencing identifies the position and structure of a bacterial antibiotic resistance island. Nat Biotechnol 33(3):296

    Article  CAS  PubMed  Google Scholar 

  • Belton JM, McCord RP, Gibcus JH, Naumova N, Zhan Y et al (2012) Hi-C: a comprehensive technique to capture the conformation of genomes. Methods 58:268–276

    Article  CAS  PubMed  Google Scholar 

  • Berlin K, Koren S, Chin C, Dreke JP, Landolin JM et al (2015) Assembling large genomes with single-molecule sequencing and locality-sensitive hashing. Nat Biotechnol 33:623–630

    Article  CAS  PubMed  Google Scholar 

  • Bolger ME, Weisshaar B, Scholz U, Stein N, Bjorn U et al (2014) Plant genome sequencing-applications for crop improvement. Curr Opin Biotechnol 26:31–37

    Article  CAS  PubMed  Google Scholar 

  • Brown SD, Nagaraju S, Utturkar S, Tissera SD, Segovia S et al (2014) Comparison of single-molecule sequencing and hybrid approaches for finishing the genome of Clostridium autoethanogenum and analysis of CRISPR systems in industrial relevant Clostridia. Biotechnol Biofuels 7(1):40

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cheng S, Melkonian M, Smith SA, Brockington S, Archibald JM et al (2018) 10KP: a phylodiverse genome sequencing plan. GigaScience 7(3):giy013

    Google Scholar 

  • Das S, Vikato H, Hassibi A (2010) Model-based sequential base calling for Illumina sequencing. In: IEEE international workshop on genomic signal processing and statistics (GENSIPS). Cold Spring Harbor, NY, pp 1–4

    Google Scholar 

  • Das K, Tan P (2013) Molecular cytogenetics: recent developments and applications in cancer. Clin Genet 84(4):315–325

    Article  CAS  PubMed  Google Scholar 

  • Doležel J, Binarová P, Lcretti S (1989) Analysis of nuclear DNA content in plant cells by flow cytometry. Biol Plant 31(2):113–120

    Article  Google Scholar 

  • Flusberg BA, Webster DR, Lee JH, Travers KJ, Olivares EC et al (2010) Direct detection of DNA methylation during single-molecule, real-time sequencing. Nat Meth 7:461–465

    Article  CAS  Google Scholar 

  • Harris TD, Buzby PR, Babcock H, Beer E, Bowers J et al (2008) Single-molecule DNA sequencing of a viral genome. Science 320(5872):106–109

    Article  CAS  PubMed  Google Scholar 

  • Huang S, Li R, Zhang Z, Li L, Gu X et al (2009) The genome of the cucumber, Cucumis sativus L. Nat Genet 41(12):1275

    Article  CAS  PubMed  Google Scholar 

  • Heather JM, Chain B (2016) The sequence of sequencers: the history of sequencing DNA. Genomics 107(1):1–8

    Article  CAS  PubMed  Google Scholar 

  • Huse SM, Huber JA, Morrison HG, Sogin ML, Welch DM (2007) Accuracy and quality of massively parallel DNA pyrosequencing. Genome Biol 8(7):R143

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jain M, Fiddes IT, Miga KH, Olsen HE, Paten B et al (2015) Improved data analysis for the MinION nanopore sequencer. Nat Meth 12(4):351

    Article  CAS  Google Scholar 

  • Jiao WB, Schneeberger K (2017) The impact of third generation genomic technologies on plant genome assembly. Curr Opin Plant Biol 36:64–70

    Article  CAS  PubMed  Google Scholar 

  • Korlach J, Marks PJ, Cicero RL, Gray JJ, Murphy DL et al (2008) Selective aluminum passivation for targeted immobilization of single DNA polymerase molecules in zero-mode waveguide nanostructures. Proc Natl Acad Sci USA 105(4):1176–1181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leamon JH, Lee WL, Tartaro KR, Lanza JR, Sarkis GL et al (2003) A massive parallel PicoTiterPlate based platform for discrete picoliter-scale polymerase chain reactions. Electrophoresis 24:3769–3777

    Article  CAS  PubMed  Google Scholar 

  • Lieberman-Aiden E, Van Berkum NL, Williams L, Imakaev M, Ragoczy T et al (2009) Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326:289–293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Loman NJ, Quick J, Simpson JT (2015) A complete bacterial genome assembled de novo using only nanopore sequencing data. Nat Meth 12(8):733–735

    Article  CAS  Google Scholar 

  • Marçais G, Kingsford C (2011) A fast, lock-free approach for efficient parallel counting of occurrences of k-mers. Bioinformatics 27(6):764–770

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Margulies M, Egholm M, Altman WE, Attiya S, Bader JS et al (2005) Genome sequencing in microfabricated high-density picolitre reactors. Nature 437(7057):376–380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Metzker ML (2010) Sequencing technologies-the next generation. Nat Rev Genet 11(1):31–46

    Article  CAS  PubMed  Google Scholar 

  • Miao H (2014) The sesame genome project and sesame genome sequencing. plant and animal genome XXII conference. In: Plant and animal genome, 10–15th January, San Diego

    Google Scholar 

  • Miao H, Zhang H (2016) The Genome of Sesamum indicum L. In: Plant and animal genome XXIV conference, 9–13th January, San Diego

    Google Scholar 

  • Ming R, Hou S, Feng Y, Yu Q, Dionne-Laporte et al (2008) The draft genome of the transgenic tropical fruit tree 4 (Carica papaya Linnaeus). Nature 452(7190):991–996

    Google Scholar 

  • Mitchelson KR (2007) New high throughput technologies for DNA sequencing and genomics. Science press, Beijing, China

    Google Scholar 

  • Nyrén P, Lundin A (1985) Enzymatic method for continuous monitoring of inorganic pyrophosphate synthesis. Analyt Biochem 151(2):504–509

    Article  PubMed  Google Scholar 

  • Quail MA, Miriam S, Paul C, Otto TD, Harris SR et al (2012) A tale of three next generation sequencing platforms: comparison of Ion Torrent, Pacific biosciences and Illumina MiSeq sequencers. BMC Genom 13(1):341

    Article  CAS  Google Scholar 

  • Quick J, Constantinidou C, Pallen MJ, Oppenheim B, Loman NJ et al (2014) Draft genome sequence of Elizabethkingia meningoseptica isolated from a traumatic wound. Genome Announce 2(3):e00355-e414

    Article  Google Scholar 

  • Reuter JA, Spacek DV, Snyder MP (2015) High-throughput sequencing technologies. Mol Cell 58(4):586–597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rhoads A, Au KF (2015) PacBio sequencing and its applications. Genom Proteom Bioinformat 13(5):278–289

    Article  Google Scholar 

  • Shendure J, Ji H (2008) Next-generation DNA sequencing. Nat Biotechnol 26(10):1135–1145

    Article  CAS  PubMed  Google Scholar 

  • Shulaev V, Sargent DJ, Crowhurst RN, Mockler TC, Folkerts O et al (2011) The genome of woodland strawberry (Fragaria vesca). Nat Genet 43(2):109

    Article  CAS  PubMed  Google Scholar 

  • Sanger F, Air GM, Barrell BG, Brown NL, Coulson AR et al (1977) Nucleotide sequence of bacteriophage |[phi]| X174 DNA. Nature 265(5596):687–695

    Article  CAS  PubMed  Google Scholar 

  • Schmidt MHW, Vogel A, Denton AK et al (2017) De novo assembly of a new Solanum pennellii accession using nanopore sequencing. Plant Cell 29(10):2336–2348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmutz J, Cannon SB, Schlueter J, Ma J, Mitros T et al (2010) Genome sequence of the paleopolyploid soybean. Nature 463(7278):178–183

    Article  CAS  PubMed  Google Scholar 

  • Shelton JM, Coleman MC, Herndon N, Lu N, Lam ET et al (2015) Tools and pipelines for BioNano data: molecule assembly pipeline and FASTA super scaffolding tool. BMC Genom 16:734

    Article  CAS  Google Scholar 

  • Shendure J, Porreca GJ, Reppas NB, Lin X, Mccutcheon et al (2005) Massively parallel sequencing. Nature 437(7057):326–327

    Google Scholar 

  • Sulston J, Du Z, Thomas K, Wilson R, Hillier L et al (1992) The C. elegans genome sequencing project: a beginning. Nature 356(6364):37–41

    Google Scholar 

  • Servant N, Varoquaux N, Lajoie BR, Viara E, Chen C et al (2015) HiC-Pro: an optimized and flexible pipeline for Hi-C data processing. Genome Biol 16(1):259

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Topol EJ (2012) Comment on “the predictive capacity of personal genome sequencing”. Science Transl Med 4(135):135le3

    Google Scholar 

  • Travers KJ, Chen-Shan C, Rank DR, Eid JS, Turner SW (2010) A flexible and efficient template format for circular consensus sequencing and SNP detection. Nucleic Acids Res 38(15):e159

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tuskan GA, Difazio S, Jansson S, Bohimann J, Grigoriev I et al (2006) The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science 313(5793):1596–1604

    Google Scholar 

  • Utturkar SM, Klingeman DM, Land ML, Schadt CW, Doktycz MJ et al (2014) Evaluation and validation of de novo and hybrid assembly techniques to derive high-quality genome sequences. Bioinformatics 30(19):2709–2716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Valouev A, Ichikawa J, Tonthat T, Stuart J, Ranade S et al (2008) A high-resolution, nucleosome position map of C. elegans reveals a lack of universal sequence-dictated positioning. Genome Res 18(7):1051–1063

    Google Scholar 

  • VanBuren R, Bryant D, Edger PP, Tang H, Burgess D et al (2015) Single-molecule sequencing of the desiccation-tolerant grass Oropetium thomaeum. Nature 527(7579):508–511

    Article  CAS  PubMed  Google Scholar 

  • Van Dijk EL, Auger H, Jaszczyszyn Y, Thermes C (2014) Ten years of next-generation sequencing technology. Trends Genet 30(9):418–426

    Article  PubMed  CAS  Google Scholar 

  • Venter JC, Adams MD, Myers EW, Li PW, Mural RJ (2001) The sequence of the human genome. Science 291(5507):1304–1351

    Article  CAS  PubMed  Google Scholar 

  • Venkatesan BM, Bashir R (2011) Nanopore sensors for nucleic acid analysis. Nat Nanotechnol 6(10):615–624

    Article  CAS  PubMed  Google Scholar 

  • Voelkerding KV, Dames SA, Durtschi JD (2009) Next-generation sequencing: from basic research to diagnostics. Clin Chem 55(4):641–658

    Article  CAS  PubMed  Google Scholar 

  • Wang G, Liu Y, Zhu D, Klau GW, Feng W (2015) Bioinformatics methods and bilogical interpretation for next-generation sequencing data. Biomed Res Intl Atical ID:690873

    Google Scholar 

  • Xun X, Pan S, Cheng S, Bo Z, Visser RGF (2011) Genome sequence and analysis of the tuber crop potato. Nature 475(7355):189–195

    Article  CAS  Google Scholar 

  • Yaffe E, Tanay A (2011) Probabilistic modeling of Hi-C contact maps eliminates systematic biases to characterize global chromosomal architecture. Nat Genet 43:1059–1065

    Article  CAS  PubMed  Google Scholar 

  • Yura T, Mori H, Nagai H, Nagata T, Ishihama A et al (1992) Systematic sequencing of the Escherichia coli geneme: analysis of the 0–2.4 min region. Nucleic Acids Res 20(13):3305–3308

    Google Scholar 

  • Zhang H, Miao H, Li C, Wei L, Ma Q (2012) Analysis of sesame karyotype and resemblance-near coefficient. Chin Bull Bot 47(6):602–614

    CAS  Google Scholar 

  • Zhang H, Miao H, Wang L, Qu L, Liu H, Wang Q (2013) Genome sequencing of the important oilseed crop Sesamum indicum L. Genome Biol 14(1):401

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zimin AV, Puiu D, Luo MC, Zhu T, Koren S et al (2017) Hybrid assembly of the large and highly repetitive genome of Aegilops tauschii, a progenitor of bread wheat, with the MaSuRCA mega-reads algorithm. Genome Res 27(5):787–792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haiyang Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Miao, H., Sun, Y., Wang, L., Zhang, H. (2021). Strategies and Tools for Sequencing of the Sesame Genome. In: Miao, H., Zhang, H., Kole, C. (eds) The Sesame Genome. Compendium of Plant Genomes. Springer, Cham. https://doi.org/10.1007/978-3-319-98098-0_12

Download citation

Publish with us

Policies and ethics