Skip to main content

Sesame Genome Assembly

  • Chapter
  • First Online:
The Sesame Genome

Part of the book series: Compendium of Plant Genomes ((CPG))

Abstract

Genome assembly strategy is a crucial step for reconstructing high-quality genomes in any genome project. With the continuous innovation of new sequencing platforms, various methods of genome assembly have been developed and applied in genome assembly. In order to construct a fine genome map for sesame, the Sesame Genome Working Group (SGWG) group analyzed and optimized the assembly strategy for sesame according to the various sequencing data and genome characteristics. The comprehensive genome assembly strategy for sesame comprised the next generation sequencing (NGS), the third assembly platforms, and Hi-C assembly strategy with supplementation of high-dense single nucleotide polymorphism (SNP) genetic map and bacterial artificial chromosome—fluorescent in situ hybridization (BAC-FISH) cytogenetic map. Comparison results of the specific and high-efficient assembly techniques in sesame were discussed in this chapter. The final assembled genome of sesame (cv. Yuzhi 11) comprises of 335 megabase (Mb) sequences with high completeness. About 313 Mb sequences are assembled into the 13 chromosome molecules. High accuracy and integrity of the assembled genome indicates the suitable genome assembly for sesame. The results provide an extraordinary example of the application of high-quality genome assembly techniques in higher plants with large genomes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Chevreux B, Pfisterer T, Drescher B, Driesel AJ, Müller WEG et al (2004) Using the miraEST assembler for reliable and automated mRNA transcript assembly and SNP detection in sequenced ESTs. Genome Res 14(6):1147–1159

    Article  CAS  Google Scholar 

  • Dohm JC, Lottaz C, Borodina T, Himmelbauer H (2007) SHARCGS, a fast and highly accurate short-read assembly algorithm for de novo genomic sequencing. Genome Res 17(11):1697–1706

    Article  CAS  Google Scholar 

  • Ekblom R, Wolf JBW (2014) A field guide to whole-genome sequencing, assembly and annotation. Evol Appl 7(9):1026–1042

    Article  Google Scholar 

  • Gill BS, Appels R, Botha-Oberholster AM, Buell CR, Bennetzen JL et al (2004) A workshop report on wheat genome sequencing: international genome research on wheat consortium. Genetics 168(2):1087–1096

    Article  Google Scholar 

  • Goodwin S, Gurtowski J, Ethe-Sayers S, Deshpande P, Mccombie WR (2015) Oxford Nanopore sequencing, hybrid error correction, and de novo assembly of a eukaryotic genome. Genome Res 25(11):1750–1756

    Article  CAS  Google Scholar 

  • Hernandez D, François P, Farinelli L, OsterÃ¥s M, Schrenzel J (2008) De novo bacterial genome sequencing: millions of very short reads assembled on a desktop computer. Genome Res 18(5):802–809

    Article  CAS  Google Scholar 

  • Imelfort M, Edwards D (2009) De novo sequencing of plant genomes using second-generation technologies. Brief Bioinformat 10(6):609–618

    Article  CAS  Google Scholar 

  • Jeck WR, Reinhardt JA, Baltrus DA, Hichenbotham MT, Jones CD (2007) Extending assembly of short DNA sequences to handle error. Bioinformatics 23(21):2942–2944

    Article  CAS  Google Scholar 

  • Koren S, Schatz MC, Walenz BP, Martin J, Howard JT et al (2012) Hybrid error correction and de novo assembly of single-molecule sequencing reads. Nat Biotechnol 30(7):693–700

    Article  CAS  Google Scholar 

  • Kronenberg ZN, Hall RJ, Hiendleder S, Smith TPL, Kingan SB (2018) FALCON-phase: integrating PacBio and Hi-C data for phased diploid genomes. BioRxiv 327064

    Google Scholar 

  • Li R, Zhu H, Ruan J, Qian W, Fang X (2010) De novo assembly of human genomes with massively parallel short read sequencing. Genome Res 20:265–272

    Article  CAS  Google Scholar 

  • Li Y, Hu Y, Bolund L, Wang J (2010) State of the art de novo assembly of human genomes from massively parallel sequencing data. Hum Genom 4(4):1–7

    Article  Google Scholar 

  • Li Z, Chen Y, Mu D, Yuan J, Shi Y (2012) Comparison of the two major classes of assembly algorithms: overlap-layout-consensus and de-bruijn-graph. Brief Funct Genom 11(1):25–37

    Article  Google Scholar 

  • Luo R, Liu B, Xie Y, Li Z, Liu Y (2012) SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. GigaSci 1(1):18

    Article  Google Scholar 

  • McGrath A (2007) Genome sequencing and assembly. Persp Bioanalys 2:327–355

    Article  CAS  Google Scholar 

  • Miller JR, Koren S, Sutton G (2010) Assembly algorithms for next-generation sequencing data. Genomics 95:315–327

    Article  CAS  Google Scholar 

  • Mitchelson KR (2007) New high throughput technologies for DNA sequencing and genomics. In: Mitcheison KR (eds), Elsevier, Amsterdam, Netherlands, pp 303–326

    Google Scholar 

  • Mullins LJ, Mullins JJ (2004) Insights from the rat genome sequence. Genome Biol 5(5):221

    Article  Google Scholar 

  • Nagarajan N, Pop M (2013) Sequence assembly demystified. Nat Rev Genet 14:157–167

    Article  CAS  Google Scholar 

  • Reinhardt J, Baltrus D, Marc N, Jeck W, Jones C, Dangl J (2008) De novo assembly using low-coverage short read sequence data from the rice pathogen Pseudomonas syringae pv Oryzae. Genome Res 19:294–305

    Article  Google Scholar 

  • Simpson JT, Wong K, Jackman SD, Schein JE, Jones SIM et al (2009) ABySS: a parallel assembler for short read sequence data. Genome Res 19:1117–1123

    Article  CAS  Google Scholar 

  • Sohn J, Nam JW (2018) The present and future of de novo whole-genome assembly. Brief Bioinformat 19(1):23–40

    CAS  Google Scholar 

  • Venter JC, Adams MD, Myers EW, Li PW, Mural RJ (2001) The sequence of the human genome. Science 291(5507):1304–1351

    Article  CAS  Google Scholar 

  • Voelkerding KV, Dames SA, Durtschi JD (2009) Next-generation sequencing: from basic research to diagnostics. Clin Chem 55(4):641–658

    Article  CAS  Google Scholar 

  • Wang L, Yu S, Tong C, Zhao Y, Liu Y et al (2014) Genome sequencing of the high oil crop sesame provides insight into oil biosynthesis. Genome Biol 15(2):R39

    Article  Google Scholar 

  • Warren RL, Sutton GG, Jones SJM, Holt RA (2007) Assembling millions of short DNA sequences using SSAKE. Bioinformatics 23(4):500–501

    Article  CAS  Google Scholar 

  • Wojcieszek M, PaweÅ‚kowicz M, Nowak R, Przybecki Z (2014) Genomes correction and assembling: present methods and tools. In: Photonics applications in astronomy, communications, industry, and high-energy physics experiments. International Society for Optics and Photonics 9290:92901X

    Google Scholar 

  • Ye C, Hill CM, Wu S, Ruan J, Ma Z (2016) DBG2OLC: efficient assembly of large genomes using long erroneous reads of the third generation sequencing technologies. Sci Rep 6:31900

    Article  CAS  Google Scholar 

  • Zerbino DR, Birney E (2008) Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res 18:821–829

    Article  CAS  Google Scholar 

  • Zhang H, Miao H, Wang L, Qu L, Liu H et al (2013) Genome sequencing of the important oilseed crop Sesamum indicum L. Genome Biol 14(1):401

    Article  Google Scholar 

  • Zhao R, Miao H, Song W, Chen C, Zhang H (2018) Identification of sesame (Sesamum indicum L.) chromosomes using the BAC- FISH system. Plant Biol 20:85–92

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haiyang Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Miao, H., Sun, Y., Wang, L., Zhang, H. (2021). Sesame Genome Assembly. In: Miao, H., Zhang, H., Kole, C. (eds) The Sesame Genome. Compendium of Plant Genomes. Springer, Cham. https://doi.org/10.1007/978-3-319-98098-0_13

Download citation

Publish with us

Policies and ethics