Skip to main content

Homoepitaxy of GaN Light-Emitting Diodes

  • Chapter
Light-Emitting Diodes

Part of the book series: Solid State Lighting Technology and Application Series ((SSLTA,volume 4))

  • 2824 Accesses

Abstract

Light-emitting diodes (LEDs) employing heterostructures of group-III nitrides are a prime contender for the realization of energy-efficient solid-state lighting (US Department of Energy, Solid-State Lighting Program, http://www.netl.doe.gov/ssl; Basic Research Needs or Solid-State Lighting, Report of the Basic Energy Sciences Workshop on Solid-State Lighting, May 22–24, 2006. www.sc.doe.gov/bes/reports/files/SSL_rpt.Pdf). As a direct bandgap material, alloys of GaxInxN can be tuned to emit light covering every portion of the visible spectrum. White light of good color-rendering quality (additive white) requires a more or less continuous spectrum and can be obtained by the combination of various such light sources. On the other hand, image information encoded in red-green-blue (RGB) colors can be reproduced by three highly monochromatic light sources of red, green, and blue. Current best practices in LED lighting employ blue or near-UV LEDs to excite a phosphor that downconverts those photons into longer wavelength light dependent on the phosphor chemistry and composition. The more efficient approach employs LEDs that emit directly at the target wavelength and thereby bypass the energy loss of downconversion. Even in the ideal case of 100% quantum efficiency, this downconversion from the blue to the green amounts to a 20% energy loss. Of particular interest therefore are high efficiency LEDs in the green (525 nm) and deep green (555 nm) spectral region.

Current technology primarily employs heteroepitaxial metalorganic vapor phase epitaxy (MOVPE) of AlGaInN alloys on dissimilar substrates like sapphire or SiC resulting in high densities of threading dislocations. In heteroepitaxial GaN, threading dislocations as high as 109–1011 cm2 are commonplace (Ponce et al., Appl Phys Lett 69:770, 1996) unless specialized multistep regrowth methods are being applied (Usui et al., Jpn J Appl Phys 36: L899, 1997; Nam et al., Appl Phys Lett 71:2638, 1997; Iwaya et al., Jpn J Appl Phys 37:L316, 1998). This typically results in high densities of threading dislocations that are extremely difficult to prevent from penetrating the active quantum well (QW) region. The considered roles of those defects range from electrically active donor centers (Leung et al., Appl Phys Lett 74:2495, 1999), highly active non-radiative recombination centers (Rosner et al., Appl Phys Lett 70:420, 1997), over mid-gap trap states assisting charge tunneling (Monemar and Sernelius, Appl Phys Lett 91:181103, 2007), and seeds for V-defects (Wu et al., Appl Phys Lett 72:692, 1998; Wetzel et al., Appl Phys Lett 85:866, 2004), to pathways of metal impurity electromigration and acceptor diffusion.

Promising therefore are freestanding GaN templates or bulk wafers that can be grown by hydride vapor phase epitaxy with a low threading-dislocation densities typically in the mid 106 cm2 (Hanser et al., Proceedings of the CS MANTECH Conference, April 24–27, Vancouver, British Columbia,Canada, 2006) or lower. Large area substrates for homoepitaxial growth of GaN layers have recently become available as a result of recent progress in production of thick freestanding GaN (FS-GaN) layers grown by hydride vapor-phase epitaxy (HVPE) (Kelly et al., Jpn J Appl Phys 38:L217–L219, 1999; Jasinski et al., Appl Phys Lett 78:2297–2299, 2001; Chao et al., Appl Phys Lett 95:051905–051905-3, 2009). Such substrates have been successfully applied to grow LED structures using metal-organic chemical vapor deposition (MOCVD) (Miskys et al., Appl Phys Lett 77:1858–1860, 2000), resulting in high-quality films, as demonstrated by their superior optical and electrical characteristics.

In this chapter, we discuss the progress in growth of bulk GaN by HVPE; the main challenges and solutions of HVPE growth method, including dislocation reduction, strain control, and doping of GaN; structural characterization, electrical characterization, and optical characterization of homoepitaxial InGaN/GaN light-emitting diodes; efficiency droop and efficiency enhancement; and light efficiency extraction of homoepitaxial InGaN/GaN light-emitting diodes. Meanwhile, nonpolar and semipolar orientations GaN LED grown on bulk GaN substrates also have been investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. T. Paskova, D.A. Hanser, K.R. Evans, Proc. IEEE 98, 1324 (2010)

    Google Scholar 

  2. H. Yamane, M. Shimada, S.J. Clarke, F.J. DiSalvo, Chem. Mater. 9, 413 (1997)

    Google Scholar 

  3. M. Bockowski, Cryst. Res. Technol. 42, 1162 (2007)

    Google Scholar 

  4. S. Lourdudoss, N. Gopalakrishnan, R. Holz, M. Deschler, R. Beccard, Value-Addition Metall. 177 (1998)

    Google Scholar 

  5. H. Murakami, J. Kikuchi, Y. Kumagai, A. Koukitu, Phys. Status Solidi C 3, 1457 (2006)

    Google Scholar 

  6. A. Koukitu, S. Hama, T. Taki, H. Seki, Jpn. J. Appl. Phys. 37, 762 (1998)

    Google Scholar 

  7. A. Koukitu, J. Kikuchi, Y. Kangawa, Y. Kumagai, J. Cryst. Growth 281, 47 (2005)

    Google Scholar 

  8. Y. Kumagai, K. Takemoto, T. Hasegawa, A. Koukitu, H. Seki, J. Cryst. Growth 231, 57 (2001)

    Google Scholar 

  9. A. Usui, H. Sunakawa, A. Sakai, A. Yamaguchi, Jpn. J. Appl. Phys. 36, L899 (1997)

    Google Scholar 

  10. K. Hiramatsu, K. Nishiyama, A. Motogaito, H. Miyake, Y. Iyechika, T. Maeda, Phys. Status Solidi A 176, 535 (1999)

    Google Scholar 

  11. Y. Kawaguchi, S. Nambu, H. Sone, M. Yamaguchi, H. Miyake, K. Hiramatsu, N. Sawaki, Y. Iyechika, T. Maeda, Mrs Internet, J. Nitride Semicond. Res. 4, G4.1 (1999)

    Google Scholar 

  12. Y. Kawaguchi, S. Nambu, M. Yamaguchi, N. Sawaki, H. Miyake, K. Hiramatsu, K. Tsukamoto, N. Kuwano, K. Oki, Phys. Status Solidi A 176, 561 (1999)

    Google Scholar 

  13. Y. Kawaguchi, Y. Honda, M. Yamaguchi, N. Sawaki, K. Hiramatsu, Phys. Status Solidi A 176, 553 (1999)

    Google Scholar 

  14. Z. Yu, H.M.A.L. Johnson, J.D. Brown, N.A. El-Masry, J.F. Muth, J.W. Cook, J.F. Schetzina, K.W. Haberern, H.S. Kong, J.S. Edmond, Mrs Internet, J. Nitride Semicond. Res. 4, G4.3 (1999)

    Google Scholar 

  15. F. Yun, Y.T. Moon, Y. Fu, K. Zhu, U. Ozgur, H. Morkoc, C.K. Inoki, T.S. Kuan, A. Sagar, R.M. Feenstra, J. Appl. Phys. 98(8), 123502 (2005)

    Google Scholar 

  16. S. Nagahama, N. Iwasa, M. Senoh, T. Matsushita, Y. Sugimoto, H. Kiyoku, T. Kozaki, M. Sano, H. Matsumura, H. Umemoto, K. Chocho, T. Mukai, Jpn. J. Appl. Phys. 39, L647 (2000)

    Google Scholar 

  17. K. Motoki, T. Okahisa, S. Nakahata, N. Matsumoto, H. Kimura, H. Kasai, K. Takemoto, K. Uematsu, M. Ueno, Y. Kumagai, A. Koukitu, H. Seki, J. Cryst. Growth 237, 912 (2002)

    Google Scholar 

  18. K. Motoki, T. Okahisa, S. Nakahata, A. Matsumoto, H. Kimura, H. Kasai, K. Takemoto, K. Uematsu, M. Ueno, Y. Kumagai, A. Koukitu, H. Seki, Mater. Sci. Eng. B-Solid State Mater. Adv. Technol. 93, 123 (2002)

    Google Scholar 

  19. K. Motoki, T. Okahisa, R. Hirota, S. Nakahata, K. Uematsu, N. Matsumoto, J. Cryst. Growth 305, 377 (2007)

    Google Scholar 

  20. Y. Oshima, T. Eri, M. Shibata, H. Sunakawa, K. Kobayashi, T. Ichihashi, A. Usui, Jpn. J. Appl. Phys. 42, L1 (2003)

    Google Scholar 

  21. J.Q. Liu, J. Huang, X.J. Gong, J.F. Wang, K. Xu, Y.X. Qiu, D.M. Cai, T.F. Zhou, G.Q. Ren, H. Yang, CrystEngComm 13, 5929 (2011)

    Google Scholar 

  22. K. Fujito, S. Kubo, H. Nagaoka, T. Mochizuki, H. Namita, S. Nagao, J. Cryst. Growth 311, 3011 (2009)

    Google Scholar 

  23. S. Nakamura, T. Mukai, M. Senoh, Jpn. J. Appl. Phys. 31, 2883 (1992)

    Google Scholar 

  24. A.V. Fomin, A.E. Nikolaev, I.P. Nikitina, A.S. Zubrilov, M.G. Mynbaeva, N.I. Kuznetsov, A.P. Kovarsky, B.J. Ber, Phys. Status Solidi A 188, 433 (2001)

    Google Scholar 

  25. E. Richter, C. Hennig, U. Zeimer, L. Wang, M. Weyers, G. Tränkle, Phys. Status Solidi (a) 203, 1658 (2006)

    Google Scholar 

  26. N.G. Weimann, L.F. Eastman, D. Doppalapudi, H.M. Ng, T.D. Moustakas, J. Appl. Phys. 83, 3656 (1998)

    Google Scholar 

  27. A.Y. Polyakov, N.B. Smirnov, A.V. Govorkov, N.Y. Pashkova, J. Kim, F. Ren, M.E. Overberg, G.T. Thaler, C.R. Abernathy, S.J. Pearton, R.G. Wilson, J. Appl. Phys. 92, 3130 (2002)

    Google Scholar 

  28. E. Malguth, A. Hoffmann, W. Gehlhoff, O. Gelhausen, M.R. Phillips, X. Xu, Phys. Rev. B 74, 165202 (2006)

    Google Scholar 

  29. B. Monemar, O. Lagerstedt, J. Appl. Phys. 50, 6480 (1979)

    Google Scholar 

  30. R.P. Vaudo, X.P. Xu, A. Salant, J. Malcarne, G.R. Brandes, Phys. Status Solidi A 200, 18 (2003)

    Google Scholar 

  31. A.Y. Polyakov, N.B. Smirnov, A.V. Govorkov, N.V. Pashkova, A.A. Shlensky, S.J. Pearton, M.E. Overberg, C.R. Abernathy, J.M. Zavada, R.G. Wilson, J. Appl. Phys. 93, 5388 (2003)

    Google Scholar 

  32. M. Kubota, T. Onuma, Y. Ishihara, A. Usui, A. Uedono, S.F. Chichibu, J. Appl. Phys. 105, 083542 (2009)

    Google Scholar 

  33. A.Y. Polyakov, N.B. Smirnov, A.V. Govorkov, S.J. Pearton, Appl. Phys. Lett. 83, 3314 (2003)

    Google Scholar 

  34. Y.M. Fan, Z.H. Liu, G.Z. Xu, H.J. Zhong, Z.L. Huang, Y.M. Zhang, J.F. Wang, K. Xu, Appl. Phys. Lett. 105, 062108 (2014)

    Google Scholar 

  35. A.Y. Polyakov, N.B. Smirnov, A.V. Govorkov, T.G. Yugova, A.V. Markov, A.M. Dabiran, A.M. Wowchak, B. Cui, J. Xie, A.V. Osinsky, P.P. Chow, S.J. Pearton, Appl. Phys. Lett. 92, 042110 (2008)

    Google Scholar 

  36. A. Bonanni, M. Kiecana, C. Simbrunner, T. Li, M. Sawicki, M. Wegscheider, M. Quast, H. Przybylinska, A. Navarro-Quezada, R. Jakiela, A. Wolos, W. Jantsch, T. Dietl, Phys. Rev. B 75, 125210 (2007)

    Google Scholar 

  37. A. Bonanni, A. Navarro-Quezada, T. Li, M. Wegscheider, Z. Matej, V. Holy, R.T. Lechner, G. Bauer, M. Rovezzi, F. D’Acapito, M. Kiecana, M. Sawicki, T. Dietl, Phys. Rev. Lett. 101, 135502 (2008)

    Google Scholar 

  38. D.O. Dumcenco, S. Levcenco, Y.S. Huang, C.L. Reynolds, J.G. Reynolds, K.K. Tiong, T. Paskova, K.R. Evans, J. Appl. Phys. 109, 123508 (2011)

    Google Scholar 

  39. J.M. Langer, H. Heinrich, Phys. Rev. Lett. 55, 1414 (1985)

    Google Scholar 

  40. R. Heitz, P. Maxim, L. Eckey, P. Thurian, A. Hoffmann, I. Broser, K. Pressel, B.K. Meyer, Phys. Rev. B 55, 4382 (1997)

    Google Scholar 

  41. M. Zhang, T.F. Zhou, Y.M. Zhang, B. Li, S.N. Zheng, J. Huang, Y.P. Sun, G.Q. Ren, J.F. Wang, K. Xu, H. Yang, Appl. Phys. Lett. 100, 041904 (2012)

    Google Scholar 

  42. L. Chernyak, A. Osinsky, A. Schulte, Solid State Electron. 45, 1687 (2001)

    Google Scholar 

  43. P. Scajev, K. Jarasiunas, S. Okur, U. Ozgur, H. Morkoc, J. Appl. Phys. 111, 023702 (2012)

    Google Scholar 

  44. M. Reshchikov, A.M. Foussekis, A.A. Baski, J. Appl. Phys. 107, 113535 (2010)

    Google Scholar 

  45. D. Wee, G. Parish, B. Nener, J. Appl. Phys. 111, 074503 (2012)

    Google Scholar 

  46. A. Cavallini, L. Polenta, A. Castaldini, Microelectron. Reliab. 50, 1398 (2010)

    Google Scholar 

  47. Z.H. Liu, K. Xu, Y.M. Fan, G.Z. Xu, Z.L. Huang, H.J. Zhong, J.F. Wang, H. Yang, Appl. Phys. Lett. 101, 252107 (2012)

    Google Scholar 

  48. F.A. Ponce, D. Cherns, W.T. Young, J.W. Steeds, Appl. Phys. Lett. 69, 770 (1996)

    Google Scholar 

  49. C. Wetzel, T. Salagaj, T. Detchprohm, P. Li, J.S. Nelson, Appl. Phys. Lett. 85, 866 (2004)

    Google Scholar 

  50. O. Nam, M. Bremser, T. Zheleva, R. Davis, Appl. Phys. Lett. 71, 2638 (1997)

    Google Scholar 

  51. C. Mion, J.F. Muth, E.A. Preble, D. Hanser, Appl. Phys. Lett. 89, 092123 (2006)

    Google Scholar 

  52. X.H. Wu, C.R. Elsass, A. Abare, M. Mack, S. Keller, P.M. Petroff, S.P. DenBaars, J.S. Speck, S.J. Rosner, Appl. Phys. Lett. 72, 692 (1998)

    Google Scholar 

  53. T. Detchprohm, Y. Xia, Y. Xi, M. Zhu, W. Zhao, Y. Li, E.F. Schubert, L. Liu, D. Tsvetkov, D. Hanser, C. Wetzel, J. Cryst. Growth 298, 272 (2007)

    Google Scholar 

  54. A.D. Hanser, L. Liu, E.A. Preble, D. Tsvetkov, M. Tutor, N.M. Williams, K. Evans, Y. Zhou, D. Wang, C. Ahyi, C.-C. Tin, J. Williams, M. Park, D.F. Storm, D.S. Katzer, S.C. Binari, J.A. Roussos, J.A. Mittereder, Proceedings of the CS MANTECH Conference, April 24–27, Vancouver, BC, Canada, (2006)

    Google Scholar 

  55. M.K. Kelly, R.P. Vaudo, V.M. Phanse, L. Görgens, O. Ambacher, M. Stutzmann, Jpn. J. Appl. Phys. 38, L217–L219 (1999)

    Google Scholar 

  56. J. Jasinski, W. Swider, Z. Liliental-Weber, P. Visconti, K.M. Jones, M.A. Reshchikov, F. Yun, H. Morkoç, S.S. Park, K.Y. Lee, Appl. Phys. Lett. 78, 2297–2299 (2001)

    Google Scholar 

  57. C.L. Chao, C.H. Chiu, Y.J. Lee, H.C. Kuo, P.-C. Liu, J.D. Tsay, S.J. Cheng, Appl. Phys. Lett. 95, 051905–051905–3 (2009)

    Google Scholar 

  58. T. Detchprohm, H. Amano, K. Hiramatsu, I. Akasaki, Appl. Phys. Lett. 61, 2688 (1992)

    Google Scholar 

  59. S.J. Rosner, E.C. Carr, M.J. Ludowise, G. Girolami, H.I. Erikson, Appl. Phys. Lett. 70, 420 (1997)

    Google Scholar 

  60. D. Hanser, L. Liu, E.A. Preble, D. Thomas, M. Williams, Mater. Res. Soc. 798, Y2.1.1 (2004)

    Google Scholar 

  61. K. Lee, K. Auh, MRS Internet, J. Nitride Semicond. Res. 6, 9 (2001)

    Google Scholar 

  62. C.R. Miskys, M.K. Kelly, O. Ambacher, G. Martínez-Criado, M. Stutzmann, Appl. Phys. Lett. 77, 1858–1860 (2000)

    Google Scholar 

  63. H. Yamada, K. Iso, M. Saito, H. Hirasawa, N. Fellows, H. Masui, K. Fujito, J.S. Speck, S.P. DenBaars, S. Nakamura, Phys. Status Solidi RRL 2(2), 89–91 (2008)

    Google Scholar 

  64. J.P. Liu, J.B. Limb, J.-H. Ryou, D. Yoo, C.A. Horne, R.D. Dupuis, Z.H. Wu, A.M. Fischer, F.A. Ponce, A.D. Hanser, L. Liu, E.A. Preble, K.R. Evans, Appl. Phys. Lett. 92(1), 011123 (2008)

    Google Scholar 

  65. M. Funato, T. Kotani, T. Kondou, Y. Kawakami, Y. Narukawa, T. Mukai, Appl. Phys. Lett. 88(26), 261920 (2006)

    Google Scholar 

  66. H. Yamada, K. Iso, M. Saito, H. Masui, K. Fujito, S.P. DenBaars, S. Nakamura, Appl. Phys. Express 1(4), 041101 (2008)

    Google Scholar 

  67. M.C. Schmidt, K.C. Kim, H. Sato, N. Fellows, H. Masui, S. Nakamura, S.P. DenBaars, J.S. Speck, Jpn. J. Appl. Phys., Part 2 46, L126 (2007)

    Google Scholar 

  68. K.-C. Kim, M.C. Schmidt, H. Sato, F. Wu, N. Fellows, Z. Jia, M. Saito, S. Nakamura, S.P. DenBaars, J.S. Speck, K. Fujito, Appl. Phys. Lett. 91(18), 181120 (2007)

    Google Scholar 

  69. K. Iso, H. Yamada, H. Hirasawa, N. Fellows, M. Saito, K. Fujito, S.P. DenBaars, J.S. Speck, S. Nakamura, Jpn. J. Appl. Phys. 46(36–40), L960–L962 (2007)

    Google Scholar 

  70. H. Sato, R.B. Chung, H. Hirasawa, N. Fellows, H. Masui, F. Wu, M. Saito, K. Fujito, J.S. Speck, S.P. DenBaars, S. Nakamura, Appl. Phys. Lett. 92(22), 221110 (2008)

    Google Scholar 

  71. A. Tyagi, H. Zhong, N.N. Fellows, M. Iza, J.S. Speck, S.P. DenBaars, S. Nakamura, Jpn. J. Appl. Phys. 46(4–7), L129–L131 (2007)

    Google Scholar 

  72. T. Detchprohm, M. Zhu, Y. Li, Y. Xia, C. Wetzel, E.A. Preble, L. Liu, T. Paskova, D. Hanser, Appl. Phys. Lett. 92, 241109 (2008)

    Google Scholar 

  73. M. Funato, M. Ueda, Y. Kawakami, Y. Narukawa, T. Kosugi, M. Takahashi, T. Mukai, Jpn. J. Appl. Phys., Part 2 45, L659 (2006)

    Google Scholar 

  74. H. Sato, A. Tyagi, H. Zhong, N. Fellows, R.B. Chung, M. Saito, K. Fujito, J.S. Speck, S.P. DenBaars, S. Nakamura, Phys. Status Solidi RRL 1(4), 162–164 (2007)

    Google Scholar 

  75. H. Masui, S. Nakamura, S.P. DenBaars, U.K. Mishra, IEEE Trans. Electron Dev. 57(1), 88–100 (2010)

    Google Scholar 

  76. M. Iwaya, T. Takeuchi, S. Yamaguchi, C. Wetzel, H. Amano, I. Akasaki, Jpn. J. Appl. Phys. 37, L316 (1998)

    Google Scholar 

  77. J. Jasinski, Z. Liliental-Weber, D. Huang, M.A. Reshchikov, F. Yun, H. Morkoc, C. Sone, S.S. Park, K.Y. Lee, Mater. Res. Soc. 722, K3.1.1 (2002)

    Google Scholar 

  78. M. Zhu, Y. Xia, W. Zhao, Y. Li, J. Senawiratne, T. Detchprohm, C. Wetzel, Journal of Elec Materi 37(5), 641–645 (2008)

    Google Scholar 

  79. Z. Liliental-Weber, J. Washburn, K. Pakula, J. Baranowski, Microsc. Microanal. 3, 436 (1997)

    Google Scholar 

  80. H.K. Cho, J.Y. Lee, G.M. Yang, Appl. Phys. Lett. 80, 1370 (2002)

    Google Scholar 

  81. T. Mukai, S. Nakamura, Jpn. J. Appl. Phys., Part 1(38), 5735 (1999)

    Google Scholar 

  82. X.A. Cao, S.F. LeBoeuf, L.B. Rowland, C.H. Yan, H. Liu, Appl. Phys. Lett. 82, 3614 (2003)

    Google Scholar 

  83. P.G. Eliseev, P. Perlin, J. Furioli, P. Sartori, J. Mu, M. Osinski, J. Electron. Mater. 26, 311 (1997)

    Google Scholar 

  84. X.A. Cao, K. Topol, F. Shahedipour, J. Teetsov, P.M. Sandvik, S.F. eBoeuf, A. Ebong, J. Kretchmer, E.B. Stokes, S. Arthur, A.E. Kaloyeros, n.D. Walker, Proc. SPIE 4776, 105 (2002)

    Google Scholar 

  85. K. Leung, A.F. Wright, E.B. Stechel, Appl. Phys. Lett. 74, 2495 (1999)

    Google Scholar 

  86. B. Monemar, B.E. Sernelius, Appl. Phys. Lett. 91, 181103 (2007)

    Google Scholar 

  87. C. Sasaoka, H. Sunakawa, A. Kimura, M. Nido, A. Usui, A. Asakai, J. Ryst. Growth 189/190, 61 (1998)

    Google Scholar 

  88. C.Y. Hsu, W.H. Lan, Y.S. Wu, Appl. Phys. Lett. 83, 2447 (2003)

    Google Scholar 

  89. X.A. Cao, P.M. Sandvik, S.F. LeBoeuf, S.D. Arthur, Microelectron. Eliab. 43, 1987 (2003)

    Google Scholar 

  90. X.A. Cao, J.M. Teetsov, M.P. D’Evelyn, D.W. Merfeld, C.H. Yan, Appl. Phys. Lett. 85(1), 7–9 (2004)

    Google Scholar 

  91. X.A. Cao, H. Lu, E.B. Kaminsky, S.D. Arthur, J.R. Grandusky, F. Shahedipour-Sandvik, J. Cryst. Growth 300(2), 382–386 (2007). ISSN 0022-0248

    Google Scholar 

  92. R.P. Vaudo, X. Xu, C. Lario, A.D. Salant, J.S. Flynn, G.R. Brandes, Phys. Status Solidi A 194, 494 (2002)

    Google Scholar 

  93. X. Xu, R.P. Vaudo, C. Loria, A. Salant, G.R. Brandes, J. Chaudhuri, J. Crystal Growth 246, 223 (2002)

    Google Scholar 

  94. X.A. Cao, E.B. Stokes, P. Sandvik, N. Taskar, J. Kretchmer, D. Walker, Solid State Electron. 46, 1235 (2002)

    Google Scholar 

  95. I. Arslan, N.D. Browning, Phys. Rev. Lett. 91, 165501 (2003)

    Google Scholar 

  96. T. Matsuoka, J. Cryst. Growth 189/190, 19–23 (1998)

    Google Scholar 

  97. A. Koukitu, Y. Kumagai, J. Phys. Condens. Matter 13(32), 6907–6934 (2001)

    Google Scholar 

  98. S.F. Chichibu, A. Uedono, T. Onuma, B.A. Haskell, A. Chakraborty, T. Koyama, P.T. Fini, S. Keller, S.P. DenBaars, J.S. Speck, U.K. Mishra, S. Nakamura, S. Yamaguchi, S. Kamiyama, H. Amano, I. Akasaki, J. Han, T. Sota, Nat. Mater. 5(10), 810–816 (2006)

    Google Scholar 

  99. I. Vurgaftman, J.R. Meyer, J. Appl. Phys. 94(6), 3675–3696 (2003)

    Google Scholar 

  100. A.E. Romanov, T.J. Baker, S. Nakamura, J.S. Speck, J. Appl. Phys. 100(2), 023522 (2006)

    Google Scholar 

  101. T. Takeuchi, H. Amano, I. Akasaki, Jpn. J. Appl. Phys. 39(2A), 413–416 (2000)

    Google Scholar 

  102. H.M. Otte, A.G. Crocker, Phys. Status Solidi B 9(2), 441–450 (1965)

    Google Scholar 

  103. F.C. Frank, Acta Crystallogr. 18, 862–866 (1965)

    Google Scholar 

  104. J.F. Nye, Physical Properties of Crystals: Their Representation by Tensors and Matrices (Oxford University Press, New York, 1985)

    MATH  Google Scholar 

  105. H. Masui, S.C. Cruz, S. Nakamura, S.P. DenBaars, J. Electron. Mater. 68(6), 756–760 (2009). https://doi.org/10.1007/s11664-009-0777-4

    Article  Google Scholar 

  106. U.K. Mishra, J. Singh, Semiconductor Device Physics and Design (Springer, Dordrecht, 2008), pp. 67–72

    Google Scholar 

  107. T. Takeuchi, S. Lester, D. Basile, G. Girolami, R. Twist, F. Mertz, M. Wong, R. Schneider, H. Amano, I. Akasaki, IPAP Conf. Ser. 1, 137 (2000)

    Google Scholar 

  108. A. Chakraborty, T.J. Baker, B.A. Haskell, F. Wu, J.S. Speck, S.P. DenBaars, S. Nakamura, U.K. Mishra, Jpn. J. Appl. Phys., Part 2 44, L945 (2005)

    Google Scholar 

  109. A. Chakraborty, B.A. Haskell, S. Keller, J.S. Speck, S.P. DenBaars, S. Nakamura, U.K. Mishra, Jpn. J. Appl. Phys., Part 2 44, L173 (2005)

    Google Scholar 

  110. K. Okamoto, H. Ohta, S.F. Chichibu, J. Ichihara, H. Takasu, Jpn. J. Appl. Phys., Part 2 46, L187 (2007)

    Google Scholar 

  111. K. Fujito, K. Kiyomi, T. Mochizuki, H. Oota, H. Namita, S. Nagao, I. Fujimura, Phys. Status Solidi A 205(5), 1056–1059 (2008)

    Google Scholar 

  112. K. Okamoto, H. Ohta, D. Nakagawa, M. Sonobe, J. Ichihara, H. Takasu, Jpn. J. Appl. Phys. 45(45–45), L1 197–L1 199 (2006)

    Google Scholar 

  113. Y.-D. Lin, A. Chakraborty, S. Brinkley, H.C. Kuo, T. Melo, K. Fujito, J.S. Speck, S.P. DenBaars, S. Nakamura, Appl. Phys. Lett. 94(26), 261108 (2009)

    Google Scholar 

  114. A. Hirai, Z. Jia, M.C. Schmidt, R.M. Farrell, S.P. DenBaars, S. Nakamura, J.S. Speck, K. Fujito, Appl. Phys. Lett. 91(19), 191906 (2007)

    Google Scholar 

  115. H. Yamada, K. Iso, H. Masui, M. Saito, K. Fujito, S.P. DenBaars, S. Nakamura, J. Cryst. Growth 310(23), 4968–4971 (2008)

    Google Scholar 

  116. Y. Tsuda, M. Ohta, P.O. Vaccaro, S. Ito, S. Hirukawa, Y. Kawaguchi, Y. Fujishiro, Y. Takahira, Y. Ueta, T. Takakura, T. Yuasa, Appl. Phys. Express 1(1), 011104 (2008)

    Google Scholar 

  117. H. Masui, S. Nakamura, Advances in Light Emitting Materials (Trans Tech, Zurich, 2008), pp. 211–231

    Google Scholar 

  118. H. Zhong, A. Tyagi, N.N. Fellows, F. Wu, R.B. Chung, M. Saito, K. Fujito, J.S. Speck, S.P. DenBaars, S. Nakamura, Appl. Phys. Lett. 90(23), 233504 (2007)

    Google Scholar 

  119. Y. Enya, Y. Yoshizumi, T. Kyono, K. Akita, M. Ueno, M. Adachi, T. Sumitomo, S. Tokuyama, T. Ikegami, K. Katayama, T. Nakamura, Appl. Phys. Express 2(8), 082101 (2009)

    Google Scholar 

  120. M.H. Kim, M.F. Schubert, Q. Dai, J.K. Kim, E.F. Schubert, J. Piprek, Y. Park, Appl. Phys. Lett. 91, 183507–183507-3 (2007)

    Google Scholar 

  121. S. Chichubu, T. Azuhata, T. Sota, S. Nakamura, Appl. Phys. Lett. 70, 2822–2824 (1997)

    Google Scholar 

  122. S.F. Chichibu, T. Azuhata, M. Sugiyama, T. Kitamura, Y. Ishida, H. Okumura, H. Nakanishi, T. Sota, T. Mukai, J. Vac. Sci. Technol. B 19, 2177–2183 (2001)

    Google Scholar 

  123. Y.C. Shen, G.O. Mueller, S. Watanabe, N.F. Gardner, A. Munkholm, M.R. Krames, Appl. Phys. Lett. 91, 141101 (2007)

    Google Scholar 

  124. X. Ni, J. Lee, S. Liu, V. Avrutin, Ü. Özgür, H. Morkoç, A. Matulionis, J. Appl. Phys. 108, 033112–033112-13 (2010)

    Google Scholar 

  125. Q. Dai, Q. Shan, J. Wang, S. Chhajed, J. Cho, E.F. Schubert, M.H. Crawford, D.D. Koleske, M.-H. Kim, Y. Park, Appl. Phys. Lett. 97, 133507–133507-3 (2010)

    Google Scholar 

  126. J.H. Son, J.L. Lee, Opt. Express 18, 5466–5471 (2010)

    Google Scholar 

  127. Y.-K. Kuo, J.-Y. Chang, M.-C. Tsai, S.-H. Yen, Appl. Phys. Lett. 95, 011116–011116-3 (2009)

    Google Scholar 

  128. K. Akita, T. Kyono, Y. Yoshizumi, H. Kitabayashi, K. Katayama, J. Appl. Phys. 101, 033104–033104–5 (2007)

    Google Scholar 

  129. M. Yamada, T. Mitani, Y. Narukawa, S. Shioji, I. Niki, S. Sonobe, D. Kouichiro, S. Masahiko, T. Mukai, Jpn. J. Appl. Phys. 41(12B), L1431 (2002)

    Google Scholar 

  130. E. Schubert, Light Emitting Diodes, 2nd edn. (Cambridge University Press, Cambridge, 2006), p. 93

    Google Scholar 

  131. Y.J. Zhao, J. Sonoda, C.-C. Pan, S. Brinkley, I. Koslow, K. Fujito, H. Ohta, S.P. DenBaars, S. Nakamura, Appl. Phys. Express 3, 102101 (2010)

    Google Scholar 

  132. Y.-K. Fu, B.-C. Chen, Y.-H. Fang, R.-H. Jiang, Y.-H. Lu, R. Xuan, K.-F. Huang, C.-F. Lin, Y.-K. Su, J.-F. Chen, C.-Y. Chang, IEEE Photon. Technol. Lett. 23(19), 1373–1375 (2011)

    Google Scholar 

  133. S.E. Brinkley, C.L. Keraly, J. Sonoda, C. Weisbuch, J.S. Speck, S. Nakamura, S.P. DenBaars, Appl. Phys. Express 5(3), 032104 (2012)

    Google Scholar 

  134. B. Sun, L.X. Zhao, T.B. Wei, X.Y. Yi, Z.Q. Liu, G.H. Wang, J.M. Li, J. Appl. Phys. 113(24), 243104 (2013)

    Google Scholar 

  135. T.B. Wei, K. Wu, Y. Chen, J. Yu, Q. Yan, Y.Y. Zhang, R. Duan, J. Wang, Y. Zeng, J.M. Li, IEEE Electron Device Lett. 33(6), 857–859 (2012)

    Google Scholar 

  136. T. Wei, Z. Huo, Y. Zhang, H. Zheng, Y. Chen, J. Yang, Q. Hu, R. Duan, J. Wang, Y. Zeng, J. Li, Opt. Express 22, A1093–A1100 (2014)

    Google Scholar 

  137. H. Zhong, A. Tyagi, N. Pfaff, M. Saito, K. Fujito, J.S. Speck, S. Nakamura, Jpn. J. Appl. Phys. 48(3R), 030201 (2009)

    Google Scholar 

  138. M.R. Krames, M. Ochiai-Holcomb, G.E. Hofler, C. Carter-Coman, E.I. Chen, I.-H. Tan, P. Grillot, N.F. Gardner, H.C. Chui, J.-W. Huang, S.A. Stockman, F.A. Kish, M.G. Craford, T.S. Tan, C.P. Kocot, M. Hueschen, J. Posselt, B. Loh, G. Sasser, D. Collins, Appl. Phys. Lett. 75, 2365 (1999)

    Google Scholar 

  139. C. Wiesmann, K. Bergenek, N. Linder, U.T. Schwarz, Laser Photon. Rev. 3(3), 262–286 (2009)

    Google Scholar 

  140. Y.-J. Kim, M.-K. Kwon, K.-S. Lee, S.-J. Park, S.H. Kim, K.-D. Lee, Appl. Phys. Lett. 91(18), 181109 (2007)

    Google Scholar 

  141. H.W. Huang, J.K. Huang, K.Y. Lee, C.F. Lin, H.C. Guo, IEEE Electron Device Lett. 31(6), 573–575 (2010)

    Google Scholar 

  142. K.H. Li, H.W. Choi, J. Appl. Phys. 110(5), 053104 (2011)

    Google Scholar 

  143. J. Jewell, D. Simeonov, S.-C. Huang, Y.-L. Hu, S. Nakamura, J. Speck, C. Weisbuch, Appl. Phys. Lett. 100(17), 171105 (2012)

    Google Scholar 

  144. A. David, B. Moran, K. McGroddy, E. Matioli, E.L. Hu, S.P. DenBaars, S. Nakamura, C. Weisbuch, Appl. Phys. Lett. 92(11), 113514 (2008)

    Google Scholar 

  145. D.S. Wuu, W.K. Wang, K.S. Wen, S.C. Huang, S.H. Lin, S.Y. Huang, C.F. Lin, R.H. Horng, Appl. Phys. Lett. 89(16), 161105 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ke Xu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Cite this chapter

Xu, K., Wang, M., Zhou, T., Wang, J. (2019). Homoepitaxy of GaN Light-Emitting Diodes. In: Li, J., Zhang, G.Q. (eds) Light-Emitting Diodes. Solid State Lighting Technology and Application Series, vol 4. Springer, Cham. https://doi.org/10.1007/978-3-319-99211-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-99211-2_3

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-99210-5

  • Online ISBN: 978-3-319-99211-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics