Skip to main content

Welding and Joining of Shape Memory Alloys

  • Chapter
  • First Online:
Fabrication and Processing of Shape Memory Alloys

Part of the book series: SpringerBriefs in Applied Sciences and Technology ((BRIEFSMANUFACT))

  • 1174 Accesses

Abstract

Shape memory alloys are difficult to weld due to their own special properties , which lead to the problems of joints such as low strength, formation of intermetallic compounds , variations in phase transformation effects and its temperature, and changes of shape memory effect . However, different welding and joining processes are attempted to solve these problems. In this chapter, various welding processes such as tungsten inert gas welding , plasma welding , laser beam welding , electron beam welding , resistance welding , friction stir welding, friction welding, explosive welding, ultrasonic welding, diffusion bonding, adhesive bonding, brazing, and soldering are discussed on process capabilities and challenges to obtain shape memory welds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. K. Mehta, Advanced joining and welding techniques: an overview, in Advanced Manufacturing Technologies (Springer International Publishing, 2017), pp. 101–136. https://link.springer.com/chapter/10.1007/978-3-319-56099-1_5

  2. J.P. Oliveira, R.M. Miranda, F.B. Fernandes, Welding and joining of NiTi shape memory alloys: a review. Prog. Mater Sci. 88, 412–466 (2017)

    Article  CAS  Google Scholar 

  3. O. Akselsen, Joining of shape memory alloys, in Shape Memory Alloys (InTech, 2010), pp. 183–210

    Google Scholar 

  4. A. Ikai, K. Kimura, H. Tobushi, TIG welding and shape memory effect of TiNi shape memory alloy. J. Intell. Mater. Syst. Struct. 7(6), 646–655 (1996)

    Article  CAS  Google Scholar 

  5. J.P. Oliveira, D. Barbosa, F.B. Fernandes, R.M. Miranda, Tungsten inert gas (TIG) welding of Ni-rich NiTi plates: functional behavior. Smart Mater. Struct. 25(3), 03LT01 (2016)

    Google Scholar 

  6. G. Fox, R. Hahnlen, M.J. Dapino, Fusion welding of nickel–titanium and 304 stainless steel tubes: Part II: tungsten inert gas welding. J. Intell. Mater. Syst. Struct. 24(8), 962–972 (2013)

    Article  CAS  Google Scholar 

  7. S.X. Lue, Z.L. Yang, H.G. Dong, Welding of shape memory alloy to stainless steel for medical occluder. Trans. Nonferrous Met. Soc. China 23(1), 156–160 (2013)

    Article  CAS  Google Scholar 

  8. J. Norrish, Advanced Welding Processes (Institute of Physics, 1992)

    Google Scholar 

  9. C. van der Eijk, H. Fostervoll, Z.K. Sallom, O.M. Akselsen, Plasma welding of NiTi to NiTi, stainless steel and hastelloy C276, in Proceedings of the ASM Materials Solutions Conference (2003), pp. 125–129

    Google Scholar 

  10. G.J. Julien, A. Sickinger, G.A. Hislop, U.S. Patent No. 6,043,451. (U.S. Patent and Trademark Office, Washington, DC, 2000)

    Google Scholar 

  11. S. Ozel, B. Kurt, I. Somunkiran, N. Orhan, Microstructural characteristic of NiTi coating on stainless steel by plasma transferred arc process. Surf. Coat. Technol. 202(15), 3633–3637 (2008)

    Article  CAS  Google Scholar 

  12. J.P.D.S. Oliveira, Laser welding of shape memory alloys, Doctoral thesis (2016), pp. 1–187

    Google Scholar 

  13. J.P. Oliveira, B. Panton, Z. Zeng, T. Omori, Y. Zhou, R.M. Miranda, F.B. Fernandes, Laser welded superelastic Cu–Al–Mn shape memory alloy wires. Mater. Des. 90, 122–128 (2016)

    Article  CAS  Google Scholar 

  14. A. Falvo, F.M. Furgiuele, C. Maletta, Laser welding of a NiTi alloy: mechanical and shape memory behaviour. Mater. Sci. Eng., A 412(1), 235–240 (2005)

    Article  CAS  Google Scholar 

  15. C.W. Chan, H.C. Man, Laser welding of thin foil nickel–titanium shape memory alloy. Opt. Lasers Eng. 49(1), 121–126 (2011)

    Article  Google Scholar 

  16. C.W. Chan, H.C. Man, T.M. Yue, Effect of postweld heat treatment on the microstructure and cyclic deformation behavior of laser-welded NiTi-shape memory wires. Metall. Mater. Trans. A 43(6), 1956–1965 (2012)

    Article  CAS  Google Scholar 

  17. C.W. Chan, H.C. Man, F.T. Cheng, Fatigue behavior of laser-welded NiTi wires in small-strain cyclic bending. Mater. Sci. Eng., A 559, 407–415 (2013)

    Article  CAS  Google Scholar 

  18. J.P. Oliveira, F.B. Fernandes, N. Schell, R.M. Miranda, Shape memory effect of laser welded NiTi plates. Funct. Mater. Lett. 8(06), 1550069 (2015)

    Article  CAS  Google Scholar 

  19. G.R. Mirshekari, A. Kermanpur, A. Saatchi, S.K. Sadrnezhaad, A.P. Soleymani, Microstructure, cyclic deformation and corrosion behavior of laser welded NiTi shape memory wires. J. Mater. Eng. Perform. 24(9), 3356–3364 (2015)

    Article  CAS  Google Scholar 

  20. C.W. Chan, H.C. Man, T.M. Yue, Parameter optimization for laser welding of NiTi wires by the taguchi method. Lasers Eng. (Old City Publishing) 30 (2015)

    Google Scholar 

  21. A. Bahador, S.N. Saud, E. Hamzah, T. Abubakar, F. Yusof, M.K. Ibrahim, Nd: YAG laser welding of Ti-27 at.% Nb shape memory alloys. Weld. World 60(6), 1133–1139 (2016)

    Article  CAS  Google Scholar 

  22. P. Sathiya, T. Ramesh, Experimental investigation and characterization of laser welded NiTinol shape memory alloys. J. Manuf. Processes 25, 253–261 (2017)

    Article  Google Scholar 

  23. C.W. Chan, H.C. Man, T.M. Yue, Susceptibility to environmentally induced cracking of laser-welded NiTi wires in Hanks’ solution at open-circuit potential. Mater. Sci. Eng., A 544, 38–47 (2012)

    Article  CAS  Google Scholar 

  24. M. Mehrpouya, A. Gisario, M. Elahinia, Laser welding of NiTi shape memory alloy: a review. J. Manuf. Processes 31, 162–186 (2018)

    Article  Google Scholar 

  25. Z. Zeng, J.P. Oliveira, M. Yang, D. Song, B. Peng, Functional fatigue behavior of NiTi-Cu dissimilar laser welds. Mater. Des. 114, 282–287 (2017)

    Article  CAS  Google Scholar 

  26. J.P. Oliveira, Z. Zeng, C. Andrei, F.B. Fernandes, R.M. Miranda, A.J. Ramirez, T. Omori, N. Zhou, Dissimilar laser welding of superelastic NiTi and CuAlMn shape memory alloys. Mater. Des. 128, 166–175 (2017)

    Article  CAS  Google Scholar 

  27. P. Schlossmacher, T. Haas, A. Schüssler, Laser-welding of a Ni-rich TiNi shape memory alloy: mechanical behavior. J. Phys. IV 7(C5), C5–251 (1997)

    Google Scholar 

  28. Y.G. Song, W.S. Li, L. Li, Y.F. Zheng, The influence of laser welding parameters on the microstructure and mechanical property of the as-jointed NiTi alloy wires. Mater. Lett. 62(15), 2325–2328 (2008)

    Article  CAS  Google Scholar 

  29. A. Falvo, F.M. Furgiuele, C. Maletta, Functional behaviour of a NiTi-welded joint: two-way shape memory effect. Mater. Sci. Eng., A 481, 647–650 (2008)

    Article  CAS  Google Scholar 

  30. L.A. Vieira, F.B. Fernandes, R.M. Miranda, R.J.C. Silva, L. Quintino, A. Cuesta, J.L. Ocaña, Mechanical behaviour of Nd: YAG laser welded superelastic NiTi. Mater. Sci. Eng., A 528(16), 5560–5565 (2011)

    Article  CAS  Google Scholar 

  31. B. Panton, A. Pequegnat, Y.N. Zhou, Dissimilar laser joining of NiTi SMA and MP35N wires. Metall. Mater. Trans. A 45(8), 3533–3544 (2014)

    Article  CAS  Google Scholar 

  32. D. Yang, H.C. Jiang, M.J. Zhao, L.J. Rong, Microstructure and mechanical behaviors of electron beam welded NiTi shape memory alloys. Mater. Des. 57, 21–25 (2014)

    Article  CAS  Google Scholar 

  33. D. Yang, H.C. Jiang, M.J. Zhao, L.J. Rong, Effect of post-weld annealing on microstructure and properties of NiTi welding joints. Mater. Res. Innovations 18(sup4), S4–588 (2014)

    Google Scholar 

  34. B. Tam, A. Pequegnat, M.I. Khan, Y. Zhou, Resistance microwelding of Ti-55.8 wt pct Ni nitinol wires and the effects of pseudoelasticity. Metall. Mater. Trans. A 43(8), 2969–2978 (2012)

    Article  CAS  Google Scholar 

  35. K. Mehta, M. Gupta, P. Sharma, Nano-machining, nano-joining, and nano-welding, in Micro and Precision Manufacturing (Springer, Cham, 2018), pp. 71–86. https://link.springer.com/chapter/10.1007/978-3-319-68801-5_4

  36. V. Delobelle, P. Delobelle, Y. Liu, D. Favier, H. Louche, Resistance welding of NiTi shape memory alloy tubes. J. Mater. Process. Technol. 213(7), 1139–1145 (2013)

    Article  CAS  Google Scholar 

  37. T. Shinoda, T. Tsuchiya, H. Takahashi, Friction welding of shape memory alloy. Weld. Int. 6(1), 20–25 (1992)

    Article  Google Scholar 

  38. T. Shinoda, T. Owa, V. Magula, Microstructural analysis of friction welded joints in TiNi alloy. Weld. Int. 13(3), 180–185 (1999)

    Article  Google Scholar 

  39. S. Fukumoto, T. Inoue, S. Mizuno, K. Okita, T. Tomita, A. Yamamoto, Friction welding of TiNi alloy to stainless steel using Ni interlayer. Sci. Technol. Weld. Joining 15(2), 124–130 (2010)

    Article  CAS  Google Scholar 

  40. K.P. Mehta, V.J. Badheka, A review on dissimilar friction stir welding of copper to aluminum: process, properties, and variants. Mater. Manuf. Processes 31(3), 233–254 (2016)

    Article  CAS  Google Scholar 

  41. K.P. Mehta, V.J. Badheka, Influence of tool design and process parameters on dissimilar friction stir welding of copper to AA6061-T651 joints. Int. J. Adv. Manuf. Technol. 80(9–12), 2073–2082 (2015)

    Article  Google Scholar 

  42. K.P. Mehta, V.J. Badheka, Hybrid approaches of assisted heating and cooling for friction stir welding of copper to aluminum joints. J. Mater. Process. Technol. 239, 336–345 (2017)

    Article  CAS  Google Scholar 

  43. S.M. Prabu, H.C. Madhu, C.S. Perugu, K. Akash, P.A. Kumar, S.V. Kailas, M. Anbarasu, I.A. Palani, Microstructure, mechanical properties and shape memory behaviour of friction stir welded nitinol. Mater. Sci. Eng., A 693, 233–236 (2017)

    Article  CAS  Google Scholar 

  44. J.P. Oliveira, J.F. Duarte, P. Inácio, N. Schell, R.M. Miranda, T.G. Santos, Production of Al/NiTi composites by friction stir welding assisted by electrical current. Mater. Des. 113, 311–318 (2017)

    Article  CAS  Google Scholar 

  45. C.Y. Kong, R.C. Soar, P.M. Dickens, Ultrasonic consolidation for embedding SMA fibres within aluminium matrices. Compos. Struct. 66(1), 421–427 (2004)

    Article  Google Scholar 

  46. C.A. Zimmerly, O.T. Inal, R.H. Richman, Explosive welding of a near-equiatomic nickel-titanium alloy to low-carbon steel. Mater. Sci. Eng., A 188(1–2), 251–254 (1994)

    Article  Google Scholar 

  47. R.H. Richman, A.S. Rao, D. Kung, Cavitation erosion of NiTi explosively welded to steel. Wear 181, 80–85 (1995)

    Article  Google Scholar 

  48. T. Xing, Y. Zheng, L. Cui, Transformation and damping characteristics of NiTi/NiTi alloys synthesized by explosive welding. Mater. Trans. 47(3), 658–660 (2006)

    Article  CAS  Google Scholar 

  49. J. Li, Y. Zheng, L. Cui, Transformation characteristics of TiNi/TiNi alloys synthesized by explosive welding. Front. Mater. Sci. Chin. 1(4), 351–355 (2007)

    Article  Google Scholar 

  50. L. Juntao, Z. Yanjun, C. Lishan, Effects of severe plastic deformation and heat treatment on transformation behavior of explosively welded duplex TiNi–TiNi. Pet. Sci. 4(4), 107–112 (2007)

    Article  Google Scholar 

  51. Z. Yan, L.S. Cui, Y.J. Zheng, Microstructure and martensitic transformation behaviors of explosively welded NiTi/NiTi laminates. Chin. J. Aeronaut. 20(2), 168–171 (2007)

    Article  Google Scholar 

  52. T.Y. Xing, Y.J. Zheng, L.S. Cui, X.J. Mi, Influence of aging on damping behavior of TiNi/TiNi alloys synthesized by explosive welding. Trans. Nonferrous Met. Soc. China 19(6), 1470–1473 (2009)

    Article  CAS  Google Scholar 

  53. H.C. Man, N.Q. Zhao, Enhancing the adhesive bonding strength of NiTi shape memory alloys by laser gas nitriding and selective etching. Appl. Surf. Sci. 253(3), 1595–1600 (2006)

    Article  CAS  Google Scholar 

  54. F. Niccoli, M. Alfano, L. Bruno, F. Furgiuele, C. Maletta, Mechanical and functional properties of nickel titanium adhesively bonded joints. J. Mater. Eng. Perform. 23(7), 2385–2390 (2014)

    Article  CAS  Google Scholar 

  55. T.Y. Yang, R.K. Shiue, S.K. Wu, Infrared brazing of Ti 50 Ni 50 shape memory alloy using pure Cu and Ti–15Cu–15Ni foils. Intermetallics 12(12), 1285–1292 (2004)

    Article  CAS  Google Scholar 

  56. D.S. Grummon, J.A. Shaw, J. Foltz, Fabrication of cellular shape memory alloy materials by reactive eutectic brazing using niobium. Mater. Sci. Eng., A 438, 1113–1118 (2006)

    Article  CAS  Google Scholar 

  57. D. Grummon, K.B. Low, J. Foltz, J. Shaw, A new method for brazing nitinol based on the quasibinary TiNi-Nb system, in 48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference (American Institute of Aeronautics and Astonautics, 2007), p. 1741

    Google Scholar 

  58. J.A. Shaw, D.S. Grummon, J. Foltz, Superelastic NiTi honeycombs: fabrication and experiments. Smart Mater. Struct. 16(1), S170 (2007)

    Article  CAS  Google Scholar 

  59. J.A. Shaw, C. Churchill, N. Triantafyllidis, P. Michailidis, D. Grummon, J. Foltz, Shape memory alloy honeycombs: experiments and simulation, in Proceedings of the AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, vol. 1 (2007), pp. 428–436

    Google Scholar 

  60. L. Wang, C. Wang, D.C. Dunand, Microstructure and strength of NiTi-Nb eutectic braze joining NiTi wires. Metall. Mater. Trans. A 46(4), 1433–1436 (2015)

    Article  CAS  Google Scholar 

  61. R.H. Shiue, S.K. Wu, Infrared brazing of Ti 50 Ni 50 shape memory alloy using two Ag–Cu–Ti active braze alloys. Intermetallics 14(6), 630–638 (2006)

    Article  CAS  Google Scholar 

  62. C. van der Eijk, Z.K. Sallom, O.M. Akselsen, Microwave brazing of NiTi shape memory alloy with Ag–Ti and Ag–Cu–Ti alloys. Scripta Mater. 58(9), 779–781 (2008)

    Article  CAS  Google Scholar 

  63. W.F. Gale, Y. Guan, Microstructural development in copper-interlayer transient liquid phase bonds between martensitic NiAl and NiTi. J. Mater. Sci. 32(2), 357–364 (1997)

    Article  CAS  Google Scholar 

  64. M.G. Li, D.Q. Sun, X.M. Qiu, D.X. Sun, S.Q. Yin, Effects of laser brazing parameters on microstructure and properties of TiNi shape memory alloy and stainless steel joint. Mater. Sci. Eng., A 424(1), 17–22 (2006)

    Article  CAS  Google Scholar 

  65. M.G. Li, D.Q. Sun, X.M. Qiu, S.Q. Yin, Corrosion behavior of the laser-brazed joint of TiNi shape memory alloy and stainless steel in artificial saliva. Mater. Sci. Eng., A 441(1), 271–277 (2006)

    Article  CAS  Google Scholar 

  66. X.K. Zhao, L. Lan, H.B. Sun, J.H. Huang, H. Zhang, Preparation of NiTi/NiTiNb laminated alloys by vacuum brazing, in Advanced Materials Research, vol. 97 (Trans Tech Publications, 2010), pp. 1653–1656

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kush Mehta .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 The Author(s), under exclusive licence to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mehta, K., Gupta, K. (2019). Welding and Joining of Shape Memory Alloys. In: Fabrication and Processing of Shape Memory Alloys. SpringerBriefs in Applied Sciences and Technology(). Springer, Cham. https://doi.org/10.1007/978-3-319-99307-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-99307-2_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-99306-5

  • Online ISBN: 978-3-319-99307-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics