Skip to main content

Safety-Related Risks and Opportunities of Key Design-Aspects for Industrial Human-Robot Collaboration

  • Conference paper
  • First Online:
Interactive Collaborative Robotics (ICR 2018)

Abstract

For several years, sensitive robots are used in industry and in some cases perform collaborative tasks directly with humans on shared workplaces. At first glance, this type of human-machine interaction is associated with high risks. However, additional devices, advanced functionalities and risk mitigation activities can ensure that such collaborative scenarios are safe for humans. The essential aspects are the collaborative operation methods, workspace layout, end effectors, human machine interfaces and ergonomics. In this work we shed light on these important aspects of human-robot collaboration and discuss its facets. By adequately reducing and communicate potential indiscernible risks a robot is made trustworthy for a human being.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Christoffersen, K., Woods, D.D.: How to make automated systems team players. In: Advances in Human Performance and Cognitive Engineering Research, Chap. 1, vol. 2, pp. 1–12. Emerald Group Publishing Limited (2002)

    Google Scholar 

  2. DGUV: Collaborative robot systems - Design of systems with “Power and Force Limiting Function” function. Technical report FB HM-080 Issue 08/2017, Deutsche Gesetzliche Unfallversicherung (2017)

    Google Scholar 

  3. Endsley, M.: Toward a theory of situation awareness in dynamic systems. Hum. Factors J. Hum. Factors Ergonomics Soc. 37, 32–64 (1995)

    Article  Google Scholar 

  4. Guiochet, J., Machin, M., Waeselynck, H.: Safety-critical advanced robots: a survey. Robot. Auton. Syst. 94, 43–52 (2017)

    Article  Google Scholar 

  5. Haddadin, S., Albu-Schäffer, A., Hirzinger, G.: Soft-tissue injury in robotics. In: Proceedings of the 2010 IEEE International Conference on Robotics and Automation (2010)

    Google Scholar 

  6. Hirsch-Kreinsen, H.: Digitization of industrial work: development paths and prospects. J. Labour Market Res. 49, 1–14 (2016)

    Article  Google Scholar 

  7. HVBG: Bypassing of protective devices on machinery. Technical report, Hauptverband der gewerblichen Berufsgenossenschaften (2006)

    Google Scholar 

  8. ISO: 10218–1:2011–07 Robots and robotic devices - Safety requirements for industrial robots - Part 1: Robots. Standard, International Organization for Standardization (2012)

    Google Scholar 

  9. ISO: 10218–2:2011–07 Robots and robotic devices - Safety requirements for industrial robots - Part 2: Robot systems and integration. Standard, International Organization for Standardization (2012)

    Google Scholar 

  10. ISO: 8373:2012–03 Robots and robotic devices - Vocabulary. Standard, International Organization for Standardization (2012)

    Google Scholar 

  11. ISO: 12100:2010–11 Safety of machinery - General principles for design - Risk assessment and risk reduction. Standard, International Organization for Standardization (2013)

    Google Scholar 

  12. ISO: CD 3691–4 Industrial trucks - Safety requirements and verification - Part 4: Driverless industrial trucks and their systems. Draft standard, International Organization for Standardization (2016)

    Google Scholar 

  13. ISO: TS 15066:2016 Robots and robotic devices - Collaborative robots. Technical specification, International Organization for Standardization (2016)

    Google Scholar 

  14. IVSS: Leitfaden für die Gefährdungsbeurteilung in Klein- und Mittelbetrieben - Manuelle Lastenhandhabung - Heben, Halten, Tragen, Ziehen, Schieben - Ermittlung und Bewertung von Gefährdungen; Festlegen von Manahmen. Technical report, Internationale Vereinigung für Soziale Sicherheit (2010)

    Google Scholar 

  15. Joseph, J., LaViola, J.: A discussion of cybersickness in virtual environments. ACM SIGCHI Bull. 32, 47–56 (2000)

    Article  Google Scholar 

  16. Kuehn, J., Haddadin, S.: An artificial robot nervous system to teach robots how to feel pain and reflexively react to potentially damaging contacts. IEEE Robot. Autom. Lett. 2(1), 72–79 (2017)

    Article  Google Scholar 

  17. Lacevic, B., Rocco, P.: Kinetostatic danger field - a novel safety assessment for human-robot interaction. In: 2010 IEEE/RSJ, International Conference on Intelligent Robots and Systems (IROS), Taipei, Taiwan, pp. 2169–2174 (2010)

    Google Scholar 

  18. Michalos, G., Makris, S., Tsarouchi, P., Guasch, T., Kontovrakis, D., Chryssolouris, G.: Design considerations for safe human-robot collaborative workplaces. Procedia CIRP 37, 248–253 (2015)

    Article  Google Scholar 

  19. Peissner, M., Hipp, C.: Potenziale der Mensch-Technik Interaktion für die effiziente und vernetzte Produktion von Morgen. Technical report, Fraunhofer IAO (2013)

    Google Scholar 

  20. Vogel, C., Walter, C., Elkmann, N.: Safeguarding and supporting future human-robot cooperative manufacturing processes by a projection- and camera-based technology. In: 27th International Conference on Flexible Automation and Intelligent Manufacturing. FAIM 2017, Modena, Italy, pp. 39–46 (2017)

    Google Scholar 

  21. Werner, J.K., Salimian, A.C., Bollinger, R.S., Gordon, R.P., Swenson, K.A.: Safety device for a mechanical motion device, 3 May 2015. https://patents.google.com/patent/EP3265275A1/en, US20160257005A1

  22. Wurhofer, D., Meneweger, T., Fuchsberger, V., Tscheligi, M.: Reflections on operators and maintenance engineers experiences of smart factories. In: Proceedings of the 2018 ACM Conference on Supporting Groupwork, pp. 284–296 (2018)

    Google Scholar 

Download references

Acknowledgment

The results incorporated in this paper were gained within the scope of the project “HRC-Safety for employees” commissioned by the Allgemeine Unfallversicherungsanstalt (AUVA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lukas Kaiser .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kaiser, L., Schlotzhauer, A., Brandstötter, M. (2018). Safety-Related Risks and Opportunities of Key Design-Aspects for Industrial Human-Robot Collaboration. In: Ronzhin, A., Rigoll, G., Meshcheryakov, R. (eds) Interactive Collaborative Robotics. ICR 2018. Lecture Notes in Computer Science(), vol 11097. Springer, Cham. https://doi.org/10.1007/978-3-319-99582-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-99582-3_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-99581-6

  • Online ISBN: 978-3-319-99582-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics