Skip to main content

Thermal and Mechanical Characteristics of Dual Cure Self-etching, Self-adhesive Resin Based Cement

  • Conference paper
  • First Online:
Experimental and Numerical Investigations in Materials Science and Engineering (CNNTech 2018, CNNTech 2018)

Abstract

One of the main objectives in research and development of resin based cements (RBCs) is to enhance their clinical longevity and ease of use. In spite of the undeniable technological advances introduced in the last few decades, the polymerization shrinkage i.e. strain that accompanies the chain-growth polymerization of dimethacrylate monomers remains one of the major concerns for the clinical performance of composite restorations. Also, RBCs can produce a considerable amount of heat, due to the light energy from the curing lights and exothermic reaction of polymerization.

The purpose of this study was to determine the temperature changes during the photo-polymerization using thermocouples and to measure strain field of the self-etching, self-adhesive RBC, Maxcem Elite (Kerr, Orange, CA, USA) (ø5 × 1 mm - Group I and ø5 × 2 mm - Group II) using experimental technique, 3D Digital Image Correlation (DIC) method. Digital images were recorded immediately after photo-polymerization of the samples with a LED-curing unit for 20 s, according to manufacturer’s recommendation. Vickers microhardness was determined after photo-polymerization and after 24 h. Temperature curves for both groups indicated similar patterns but the peak temperature of Group II was significantly higher compared to peak temperature of Group I. DIC showed that peripheral zone of the samples had the highest strain values in both groups. Group I indicated significantly higher values of hardness. All the results were material-dependent and probably correlated to the composition of each material, which is not fully disclosed by the manufacturers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kitzmüller, K., Graf, A., Watts, D., Schedle, A.: Setting kinetics and shrinkage of self-adhesive resin cements depend on cure-mode and temperature. Dent. Mater. 27, 544–551 (2011). https://doi.org/10.1016/j.dental.2011.02.004

    Article  Google Scholar 

  2. Vrochari, A.D., Eliades, G., Hellwig, E., Wrbas, K.T.: Curing efficiency of four self-etching, self-adhesive resin cements. Dent. Mater. 25, 1104–1108 (2009). https://doi.org/10.1016/j.dental.2009.02.015

    Article  Google Scholar 

  3. Van Ende, A., Van de Casteele, E., Depypere, M., De Munck, J., Li, X., Maesc, F., Wevers, M., Van Meerbeek, B.: 3D volumetric displacement and strain analysis of composite polymerization. Dent. Mater. 31, 453–461 (2015). https://doi.org/10.1016/j.dental.2015.01.018

    Article  Google Scholar 

  4. Zorzina, J., Maiera, E., Harrea, S., Feyb, T., Belli, R., Lohbauer, U., Petschelt, A., Taschner, A.: Bulk-fill resin composites: polymerization properties and extended light curing. Dent. Mater. 31, 293–301 (2015). https://doi.org/10.1016/j.dental.2014.12.010

    Article  Google Scholar 

  5. Li, J., Fok, A.S., Satterthwaite, J., Watts, D.C.: Measurement of the full-field polymerization shrinkage and depth of cure of dental composites using digital image correlation. Dent. Mater. 25, 582–588 (2009). https://doi.org/10.1016/j.dental.2008.11.001

    Article  Google Scholar 

  6. Miletic, V., Manojlovic, D., Milosevic, M., Mitrovic, N., Stankovic, T.S., Maneski, T.: Analysis of local shrinkage patterns of self-adhering and flowable composites using 3D digital image correlation. Quintessence Int. J. Pract. Dentist. Engl. Ed. 42, 797–804 (2011)

    Google Scholar 

  7. Fang Chen, T.Y., Sheng Huang, P., Fen, C.S.: Modeling dental composite shrinkage by digital image correlation and finite element methods. Opt. Lasers Eng. 61, 23–30 (2014). https://doi.org/10.1016/j.optlaseng.2014.04.006

    Article  Google Scholar 

  8. Cadenaro, M., Navarra, C.O., Antoniolli, F., Mazzoni, A., Di Lenarda, R., Rueggeberg, F.A., Breschi, L.: The effect of curing mode on extent of polymerization and microhardness of dual-cured, self-adhesive resin cements. Am. J. Dent. 23, 14–18 (2010)

    Google Scholar 

  9. Giráldez, I., Ceballos, L., Garrido, M.A., Rodríguez, J.: Early hardness of self-adhesive resin cements cured under indirect resin composite restorations. Jo. Esthet. Restor. Dent. 23, 116–124 (2011). https://doi.org/10.1111/j.1708-8240.2011.00408.x

    Article  Google Scholar 

  10. Kim, R.J., Son, S.A., Hwang, J.Y., Lee, I.B., Seo, D.G.: Comparison of photopolymerization temperature increases in internal and external positions of composite and tooth cavities in real time: incremental fillings of microhybrid composite vs. bulk filling of bulk fill composite. J. Dent. 43, 1093–1098 (2015). https://doi.org/10.1016/j.jdent.2015.07.003

    Article  Google Scholar 

  11. da Silva, E.M., Penelas, A.G., Simão, M.S., Filho, J.D., Posku, L.T., Guimarães, J.G.: Influence of the degree of dentine mineralization on pulp chamber temperature increase during resin-based composite (RBC) light-activation. J. Dent. 38, 336–342 (2010). https://doi.org/10.1016/j.jdent.2009.12.007

    Article  Google Scholar 

  12. Michalakis, K., Pissiotis, A., Hirayama, H., Kang, K., Kafantaris, N.: Comparison of temperature increase in the pulp chamber during the polymerization of materials used for the direct fabrication of provisional restorations. J. Prosthet. Dent. 96, 418–423 (2006). https://doi.org/10.1016/j.prosdent.2006.10.005

    Article  Google Scholar 

  13. Ramoglu, S.I., Karamehmetoglu, H., Sari, T., Usumez, S.: Temperature rise caused in the pulp chamber under simulated intrapulpal microcirculation with different light-curing modes. Angle Orthod. 85, 381–385 (2015). https://doi.org/10.2319/030814-164.1

    Article  Google Scholar 

  14. Hannig, M., Bott, B.: In-vitro pulp chamber temperature rise during composite resin polymerization with various light-curing sources. Dent. Mater. 15, 275–281 (1999). https://doi.org/10.1016/S0109-5641(99)00047-0

    Article  Google Scholar 

  15. McCabe, J.F.: Cure performance of light-activated composites by differential thermal analysis (DTA). Dent. Mater. 1, 231–234 (1985). https://doi.org/10.1016/S0109-5641(85)80048-8

    Article  Google Scholar 

  16. Vaidyanathan, J., Vaidyanathan, T.K., Wang, Y., Viswanadhan, T.: Thermoanalytical characterization of visible light cure dental composites. J. Oral Rehabil. 19, 49–64 (1992). https://doi.org/10.1111/j.1365-2842.1992.tb01590.x

    Article  Google Scholar 

  17. Vaidyanathan, J., Vaidyanathan, T.K.: Computer-controlled differential scanning calorimetry of dental composites. IEEE Trans. Biomed. Eng. 38, 319–325 (1991). https://doi.org/10.1109/10.133224

    Article  Google Scholar 

  18. Al-Qudah, A.A., Mitchell, C.A., Biagioni, P.A., Hussey, D.L.: Thermographic investigation of contemporary resin-containing dental materials. J. Dent. 33, 593–602 (2005). https://doi.org/10.1016/j.jdent.2005.01.010

    Article  Google Scholar 

  19. Al-Qudah, A.A., Mitchell, C.A., Biagioni, P.A., Hussey, D.L.: Effect of composite shade, increment thickness and curing light on temperature rise during photocuring. J. Dent. 35, 238–245 (2007). https://doi.org/10.1016/j.jdent.2006.07.012

    Article  Google Scholar 

  20. Stewardson, D.A., Shortall, A.C., Harrington, E., Lumley, P.J.: Thermal changes and cure depths associated with a high intensity light activation unit. J. Dent. 32, 643–651 (2004). https://doi.org/10.1016/j.jdent.2004.06.007

    Article  Google Scholar 

  21. Shortall, A., El-Mahy, W., Stewardson, D., Addison, O., Palin, W.: Initial fracture resistance and curing temperature rise of ten contemporary resin-based composites with increasing radiant exposure. J. Dent. 41, 455–463 (2013). https://doi.org/10.1016/j.jdent.2013.02.002

    Article  Google Scholar 

  22. Hofmann, N., Hugo, B., Klaiber, B.: Effect of irradiation type (LED or QTH) on photo-activated composite shrinkage strain kinetics, temperature rise, and hardness. Eur. J. Oral Sci. 11, 471–479 (2002). https://doi.org/10.1034/j.1600-0722.2002.21359.x

    Article  Google Scholar 

  23. Leprince, J., Devaux, J., Mullier, T., Vreven, J., Leloup, G.: Pulpal-temperature rise and polymerization efficiency of LED curing lights. Oper. Dent. 35, 220–230 (2010). https://doi.org/10.2341/09-203-l

    Article  Google Scholar 

  24. Alnazzawi, A., Watts, D.C.: Simultaneous determination of polymerization shrinkage, exotherm and thermal expansion coefficient for dental resin-composites. Dent. Mater. 28, 1240–1249 (2012). https://doi.org/10.1016/j.dental.2012.09.004

    Article  Google Scholar 

  25. Mamourian, M., Esfahani, A.J., Ayani, B.M.: Experimental and scale up study of the flame spread over the PMMA sheets. Therm. Sci. 13, 79–88 (2009). https://doi.org/10.2298/TSCI0901079M

    Article  Google Scholar 

  26. Zhao, Z., Huang, H.M., Wang, Q., Ji, S.: Effects of pressure and temperature on thermal contact resistance between different materials. Therm. Sci. 19, 1369–1372 (2015). https://doi.org/10.2298/tsci1504369z

    Article  Google Scholar 

  27. Asmussen, E., Peutzfeldt, A.: Temperature rise induced by some light emitting diode and quartz-tungsten-halogen curing units. Eur. J. Oral Sci. 113, 96–98 (2005). https://doi.org/10.1111/j.1600-0722.2004.00181.x

    Article  Google Scholar 

  28. Hofmann, N., Markert, T., Hugo, B., Klaiber, B.: Effect of high intensity vs. soft-start halogen irradiation on light-cured resin-based composites. Part I. Temperature rise and polymerization shrinkage. Am. J. Dent. 16, 421–430 (2003)

    Google Scholar 

  29. Daronch, M., Rueggeberg, F.A., Hall, G., De Goes, M.F.: Effect of composite temperature on in vitro intrapulpal temperature rise. Dent. Mater. 23, 1283–1288 (2007). https://doi.org/10.1016/j.dental.2006.11.024

    Article  Google Scholar 

  30. Knežević, A., Tarle, Z., Meniga, A., Sutalo, J., Pichler, G.: Influence of light intensity from different curing units upon composite temperature rise. J. Oral Rehabil. 32, 362–367 (2005). https://doi.org/10.1111/j.1365-2842.2004.01418.x

    Article  Google Scholar 

  31. Armellin, E., Bovesecchi, G., Coppa, P., Pasquantonio, G., Cerroni, L.: LED curing lights and temperature changes in different tooth sites. Biomed. Res. Int. 2016, 1–10 (2016). https://doi.org/10.1155/2016/1894672

    Article  Google Scholar 

  32. Vallittu, P.K.: Peak temperatures of some prosthetic acrylates on polymerization. J. Oral Rehabil. 23, 776–781 (1996). https://doi.org/10.1046/j.1365-2842.1996.00430.x

    Article  Google Scholar 

  33. Kim, S.H., Watts, D.C.: Exotherm behavior of the polymer-based provisional crown and fixed partial denture materials. Dent. Mater. 20, 383–387 (2004). https://doi.org/10.1016/j.dental.2003.11.001

    Article  Google Scholar 

  34. Braga, R.R., Ballester, R.Y., Ferracane, J.L.: Factors involved in the development of polymerization shrinkage stress in resin-composites: a systematic review. Dent. Mater. 21, 962–970 (2005). https://doi.org/10.1016/j.dental.2005.04.018

    Article  Google Scholar 

  35. Labella, R., Lambrechts, P., Van Meerbeek, B., Vanherle, G.: Polymerization shrinkage and elasticity of flowable composites and filled adhesives. Dent. Mater. 15, 128–137 (1999). https://doi.org/10.1016/S0109-5641(99)00022-6

    Article  Google Scholar 

  36. Miletic, V., Peric, D., Milosevic, M., Manojlovic, D., Mitrovic, N.: Local deformation fields and marginal integrity of sculptable bulk-fill, low-shrinkage and conventional composites. Dent. Mater. 32, 1441–1451 (2016). https://doi.org/10.1016/j.dental.2016.09.011

    Article  Google Scholar 

  37. Manojlovic, D., Dramićanin, M.D., Milosevic, M., Zeković, I., Cvijović-Alagić, I., Mitrovic, N., Miletic, V.: Effects of a low-shrinkage methacrylate monomer and monoacylphosphine oxide photoinitiator on curing efficiency and mechanical properties of experimental resin-based composites. Mater. Sci. Eng. C 58, 487–494 (2016). https://doi.org/10.1016/j.msec.2015.08.054

    Article  Google Scholar 

  38. Milosevic, M., Miletic, V., Mitrovic, N., Manojlovic, D., Savic Stankovic, T., Maneski, T.: Measurement of local deformation fields in dental composites using 3D optical system. Chem. Listy 105, s751–s753 (2011)

    Google Scholar 

  39. Mitrović, A., Tanasić, V.I., Mitrović, N., Milošević, M., Tihaček-Šojić, L., Antonović, D.: Strain determination of self-adhesive resin cement using 3D Digital Image Correlation method. Arh. Celok. Lek, Srp (2018). https://doi.org/10.2298/sarh170530176m

    Book  Google Scholar 

  40. Kaisarly, D., Gezawi, M.E.: Polymerization shrinkage assessment of dental resin composites: a literature review. Odontology 104, 257–270 (2016). https://doi.org/10.1007/s10266-016-0264-3

    Article  Google Scholar 

  41. Arrais, C.A., Rueggeberg, F.A., Waller, J.L., de Goes, M.F., Giannini, M.: Effect of curing mode on the polymerization characteristics of dual-cured resin cement systems. J. Dent. 36, 418–426 (2008). https://doi.org/10.1016/j.jdent.2008.02.014

    Article  Google Scholar 

  42. Kleverlaan, C.J., Feilzer, A.J.: Polymerization shrinkage and contraction stress of dental resin composites. Dent. Mater. 21, 1150–1157 (2005). https://doi.org/10.1016/j.dental.2005.02.004

    Article  Google Scholar 

  43. Spinell, T., Schedle, A., Watts, D.C.: Polymerization shrinkage kinetics of dimethacrylate resin-cements. Dent. Mater. 25, 1058–1066 (2009). https://doi.org/10.1016/j.dental.2009.04.008

    Article  Google Scholar 

  44. Martinsen, M., El-Hajjar, R.F., Berzins, D.W.: 3D full field strain analysis of polymerization shrinkage in a dental composite. Dent. Mater. 29, e161–e167 (2013). https://doi.org/10.1016/j.dental.2013.04.019

    Article  Google Scholar 

  45. Frassetto, A., Navarra, C.O., Marchesi, G., Turco, G., Di Lenarda, R., Breschi, L., Ferracane, J.L., Cadenaro, M.: Kinetics of polymerization and contraction stress development in self-adhesive resin cements. Dent. Mater. 28, 1032–1039 (2012). https://doi.org/10.1016/j.dental.2012.06.003

    Article  Google Scholar 

  46. Truffier-Boutry, D., Demoustier-Champagne, S., Devaux, J., Biebuyck, J.J., Mestdagh, M., Larbanois, P., Leloup, G.: A physico-chemical explanation of the post-polymerization shrinkage in dental resins. Dent. Mater. 22, 405–412 (2006). https://doi.org/10.1016/j.dental.2005.04.030

    Article  Google Scholar 

  47. Li, J., Li, H., Fok, A.S.L., Watts, D.C.: Multiple correlations of material parameters of light-cured dental composites. Dent. Mater. 25, 829–836 (2009). https://doi.org/10.1016/j.dental.2009.03.011

    Article  Google Scholar 

  48. Meira, J.B.C., Braga, R.R., Ballester, R.Y., Tanaka, C.B., Versluis, A.: Understanding contradictory data in contraction stress tests. J. Dent. Res. 90, 365–370 (2011). https://doi.org/10.1177/0022034510388039

    Article  Google Scholar 

Download references

Acknowledgement

The authors are grateful to Neodent (Belgrade, Serbia) for providing the material used in this study. This research was supported by Ministry of Education, Science and Technological Development of Republic of Serbia under Project TR35031.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aleksandra Mitrovic .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mitrovic, A. et al. (2019). Thermal and Mechanical Characteristics of Dual Cure Self-etching, Self-adhesive Resin Based Cement. In: Mitrovic, N., Milosevic, M., Mladenovic, G. (eds) Experimental and Numerical Investigations in Materials Science and Engineering. CNNTech CNNTech 2018 2018. Lecture Notes in Networks and Systems, vol 54. Springer, Cham. https://doi.org/10.1007/978-3-319-99620-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-99620-2_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-99619-6

  • Online ISBN: 978-3-319-99620-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics