Skip to main content

Hierarchical Secret Sharing Schemes Secure Against Rushing Adversary: Cheater Identification and Robustness

  • Conference paper
  • First Online:
Book cover Information Security Practice and Experience (ISPEC 2018)

Abstract

Threshold access structures of secret sharing schemes capture a scenario in which all the participants have the same weight (or power) and their contributions are equal. However, in some situations such as gradation among officials in an organization, the participants have different weights. Hierarchical access structures capture those natural scenarios, where different levels of hierarchy are present and a participant belongs precisely to one of them. Although an extensive research addressing the issues of cheater identifiability and robustness have been done for threshold secret sharing, no such research has been carried out for hierarchical secret sharing (HSS). This paper resolves this long-standing open issue by presenting definitions and constructions of both cheater identifiable and robust HSS schemes secure against rushing adversary, in the information-theoretic setting.

The second author is grateful to the NICT, Japan for granting a financial support under the NICT International Exchange Program.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Family of hash function is adopted from [22]. But, the proof has been done independently to make compatible with the argument of the security proof of the proposed constructions.

References

  1. Adhikari, A., Morozov, K., Obana, S., Roy, P.S., Sakurai, K., Xu, R.: Efficient threshold secret sharing schemes secure against rushing cheaters. IACR Cryptology ePrint Archive 2015/23 (2015)

    Google Scholar 

  2. Adhikari, A., Morozov, K., Obana, S., Roy, P.S., Sakurai, K., Xu, R.: Efficient threshold secret sharing schemes secure against rushing cheaters. In: Nascimento, A.C.A., Barreto, P. (eds.) ICITS 2016. LNCS, vol. 10015, pp. 3–23. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49175-2_1

    Chapter  Google Scholar 

  3. Belenkiy, M.: Disjunctive multi-level secret sharing. IACR Cryptology ePrint Archive 2008/18 (2008)

    Google Scholar 

  4. Brickell, E.F.: Some ideal secret sharing schemes. In: Quisquater, J.-J., Vandewalle, J. (eds.) EUROCRYPT 1989. LNCS, vol. 434, pp. 468–475. Springer, Heidelberg (1990). https://doi.org/10.1007/3-540-46885-4_45

    Chapter  Google Scholar 

  5. Carter, J.L., Wegman, M.N.: Universal classes of hash functions. J. Comput. Syst. Sci. 18(2), 143–154 (1979)

    Article  MathSciNet  Google Scholar 

  6. Cevallos, A., Fehr, S., Ostrovsky, R., Rabani, Y.: Unconditionally-secure robust secret sharing with compact shares. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 195–208. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4_13

    Chapter  Google Scholar 

  7. Choudhury, A.: Brief announcement: optimal amortized secret sharing with cheater identification. In: Proceedings of the 2012 ACM Symposium on Principles of Distributed Computing, pp. 101–102. ACM (2012)

    Google Scholar 

  8. Cramer, R., Damgård, I., Fehr, S.: On the cost of reconstructing a secret, or VSS with optimal reconstruction phase. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 503–523. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44647-8_30

    Chapter  Google Scholar 

  9. Ghodosi, H., Pieprzyk, J., Safavi-Naini, R.: Secret sharing in multilevel and compartmented groups. In: Boyd, C., Dawson, E. (eds.) ACISP 1998. LNCS, vol. 1438, pp. 367–378. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0053748

    Chapter  MATH  Google Scholar 

  10. Kothari, S.C.: Generalized linear threshold scheme. In: Blakley, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 231–241. Springer, Heidelberg (1985). https://doi.org/10.1007/3-540-39568-7_19

    Chapter  Google Scholar 

  11. Kurosawa, K., Obana, S., Ogata, W.: t-Cheater identifiable (k, n) threshold secret sharing schemes. In: Coppersmith, D. (ed.) CRYPTO 1995. LNCS, vol. 963, pp. 410–423. Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-44750-4_33

    Chapter  Google Scholar 

  12. McEliece, R.J., Sarwate, D.V.: On sharing secrets and reed-solomon codes. Commun. ACM 24(9), 583–584 (1981)

    Article  MathSciNet  Google Scholar 

  13. Rabin, T., Ben-Or, M.: Verifiable secret sharing and multiparty protocols with honest majority. In: Proceedings of the Twenty-First Annual ACM Symposium on Theory of Computing, pp. 73–85. ACM (1989)

    Google Scholar 

  14. Roy, P.S., Adhikari, A., Xu, R., Morozov, K., Sakurai, K.: An efficient robust secret sharing scheme with optimal cheater resiliency. In: Chakraborty, R.S., Matyas, V., Schaumont, P. (eds.) SPACE 2014. LNCS, vol. 8804, pp. 47–58. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-12060-7_4

    Chapter  Google Scholar 

  15. Roy, P.S., Adhikari, A., Xu, R., Morozov, K., Sakurai, K.: An efficient t-cheater identifiable secret sharing scheme with optimal cheater resiliency. IACR Cryptology ePrint Archive 2014/628 (2014)

    Google Scholar 

  16. Safavi-Naini, R., Wang, H.: New results on multi-receiver authentication codes. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 527–541. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0054151

    Chapter  Google Scholar 

  17. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)

    Article  MathSciNet  Google Scholar 

  18. Simmons, G.J.: How to (really) share a secret. In: Goldwasser, S. (ed.) CRYPTO 1988. LNCS, vol. 403, pp. 390–448. Springer, New York (1990). https://doi.org/10.1007/0-387-34799-2_30

    Chapter  Google Scholar 

  19. Tassa, T.: Hierarchical threshold secret sharing. J. Cryptol. 20(2), 237–264 (2007)

    Article  MathSciNet  Google Scholar 

  20. Tentu, A.N., Paul, P., Vadlamudi, C.V.: Conjunctive hierarchical secret sharing scheme based on MDS codes. In: Lecroq, T., Mouchard, L. (eds.) IWOCA 2013. LNCS, vol. 8288, pp. 463–467. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-45278-9_44

    Chapter  Google Scholar 

  21. Traverso, G., Demirel, D., Buchmann, J.: Dynamic and verifiable hierarchical secret sharing. In: Nascimento, A.C.A., Barreto, P. (eds.) ICITS 2016. LNCS, vol. 10015, pp. 24–43. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49175-2_2

    Chapter  Google Scholar 

  22. Wegman, M.N., Carter, J.L.: New classes and applications of hash functions. In: 20th Annual Symposium on Foundations of Computer Science, pp. 175–182. IEEE (1979)

    Google Scholar 

  23. Xu, R., Morozov, K., Takagi, T.: Cheater identifiable secret sharing schemes via multi-receiver authentication. In: Yoshida, M., Mouri, K. (eds.) IWSEC 2014. LNCS, vol. 8639, pp. 72–87. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-09843-2_6

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Partha Sarathi Roy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Roy, P.S. et al. (2018). Hierarchical Secret Sharing Schemes Secure Against Rushing Adversary: Cheater Identification and Robustness. In: Su, C., Kikuchi, H. (eds) Information Security Practice and Experience. ISPEC 2018. Lecture Notes in Computer Science(), vol 11125. Springer, Cham. https://doi.org/10.1007/978-3-319-99807-7_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-99807-7_37

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-99806-0

  • Online ISBN: 978-3-319-99807-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics