Skip to main content

Invariant Manifolds for Semilinear Partial Differential Equations

  • Chapter
Dynamics Reported

Part of the book series: Dynamics Reported ((DYNAMICS,volume 2))

Abstract

When studying the behaviour of a dynamical system in the neighbourhood of an equilibrium point the first step is to construct the stable, unstable and centre manifolds. These are manifolds that are invariant under the flow relative to a neighbourhood of the equilibrium point and carry the solutions that decay or grow (or neither) at certain rates. These ideas have a long history, see for instance Poincaré [32] and Hadamard [11]. Sophisticated recent results can be found in Fenichel [7], Hirsch, Pugh and Shub [17] and Kelley [22].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 39.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Ball, Saddle point analysis for an ordinary differential equation in a Banach space, and an application to dynamic buckling of a beam, in Nonlinear Elasticity ( R. W. Dickey, ed.), Academic Press, New York, (1973), pp. 93–160.

    Google Scholar 

  2. H. Berestycki and P. L. Lions, Nonlinear scalar field equations, II. Existence of infinitely many solutions. Arch. Rat. Mech. Anal., 82 (1983), 347–76.

    MathSciNet  MATH  Google Scholar 

  3. G. Carpenter, A geometric approach to singular perturbation problems with applications to nerve impulse equations. J. Differential Equations 23 (1977), 335–67.

    Article  MathSciNet  MATH  Google Scholar 

  4. J. Carr, Applications of Centre Manifold Theory. Springer-Verlag, New York, 1981.

    Book  MATH  Google Scholar 

  5. S. N. Chow and J. K. Hale, Methods of Bifurcation Theory. Springer-Verlag, New York, 1982.

    Book  MATH  Google Scholar 

  6. J. W. Evans, Nerve axon equations, III: stability of the nerve impulse. Indiana Univ. Math. 22 (1972), 577–94.

    MATH  Google Scholar 

  7. N. Fenichel, Persistence and smoothness of invariant manifolds for flows. Indiana Univ. Math. J., 21 (1971), 193–226.

    MathSciNet  MATH  Google Scholar 

  8. R. FitzHugh, Impulses and physiological states in theoretical models of nerve membranes. Biophys. J. 1 (1961), 445–66.

    Article  Google Scholar 

  9. C. Foias, B. Nicolaenko, G. Sell and R. Temam, Varietes inertielles pour l’ equation de Kuramoto—Sivashinski. C.R. Acad. Sc. Paris, 301, Serie I (1985), 285–8.

    Google Scholar 

  10. C. Foias, G. Sell and R. Temam, Varietes inertielles des equations differentielles dissipatives, C.R. Acad. Sc. Paris, 301, Serie I (1985), 139–41.

    Google Scholar 

  11. J. Hadamard, Sur l’iteration et les solutions asymptotiques des equations differentielles. Bull. Soc. Math. France, 29 (1901), 224–8.

    MATH  Google Scholar 

  12. J. K. Hale, Ordinary Differential Equations: Wiley—Interscience, New York, 1969.

    MATH  Google Scholar 

  13. P. Hartman, Ordinary Differential Equations. Wiley, New York, 1964.

    MATH  Google Scholar 

  14. S. P. Hastings, On the existence of homoclinic and periodic orbits for the FitzHugh—Nagumo equations. Quarterly J. Math. Oxford, 27 (1976), 123–34.

    Article  MathSciNet  MATH  Google Scholar 

  15. D. Henry, Geometric theory of semilinear parabolic equations. Lecture Notes in Math., 840, Springer-Verlag, New York, 1981.

    Google Scholar 

  16. E. Hille and R. S. Phillips, Functional Analysis and Semi-groups. Amer. Math. Soc., Providence, 1957.

    Google Scholar 

  17. M. W. Hirsch, C. C. Pugh and M. Shub, Invariant manifolds. Bull. Amer. Math. Soc., 76 (1970), 1015–19. Invariant manifolds, Lecture Notes in Math. 583, Springer-Verlag, New York, 1977.

    Google Scholar 

  18. C. K. R. T. Jones, Stability of the travelling wave solution of the FitzHugh-Nagumo system. Trans. Amer. Math. Soc., 286 (1984), 431–69.

    Article  MathSciNet  MATH  Google Scholar 

  19. C. K. R. T. Jones and T. Kupper, On the infinitely many solutions of a semilinear elliptic equation, to appear SIAM J. Math. Anal.

    Google Scholar 

  20. T. Kato, Perturbation theory for linear operators. Springer-Verlag, New York, 1966.

    MATH  Google Scholar 

  21. T. Kato, A spectral mapping theorem for the exponential function, and some counterexamples. MR Report no. 2316, Univ. of Wisc., Jan. 1982.

    Google Scholar 

  22. A. Kelley, The stable, center-stable, center, center-unstable, and unstable manifolds. J. Differential Equations, 3 (1967), 546–70 or an appendix to: Transversal Mappings and Flows by R. Abraham and J. Robbin, Benjamin, New York, 1967.

    Google Scholar 

  23. C. Keller, Stable and unstable manifolds for the nonlinear wave equation with dissipation. J. Differential Equations, 50 (1983), 330–47.

    Article  MathSciNet  MATH  Google Scholar 

  24. M. A. Krasnosel’skii, Topological Methods in the Theory of Nonlinear Integral Equations. Pergamon Press, Oxford, 1964.

    Google Scholar 

  25. R. Langer, Existence of homoclinic travelling wave solutions to the FitzHughNagumo equations, PhD thesis, Northeastern Univ., 1980.

    Google Scholar 

  26. A. M. Liapunov, Probleme general de la stabilite du movement, Princeton Univ. Press, Princeton, N.J., 1947.

    Google Scholar 

  27. J. Mallet-Paret and G. Sell, On the theory of inertial manifolds for reaction diffusion equations in higher space dimension. J. Amer. Math. Soc., 1 (1988).

    Google Scholar 

  28. R. McGehee, The stable manifold theorem via an isolating block, Symposium on Ordinary Differential Equations (W. Harris and Y. Sibuya ed.), Springer-Verlag, Berlin, (1973), 135–44.

    Google Scholar 

  29. J. Nagumo, S. Arimoto and S. Yoshizawa, An active pulse transmission line simulating nerve axons. Proc. IRI, 50 (1960), 2061–70.

    Article  Google Scholar 

  30. A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, New York, 1983.

    Book  MATH  Google Scholar 

  31. O. Perron, Die Stabilitatsfrage bei Differentialgleichungssysteme, Math. Zeit., 32 (1930), 703–728.

    Article  MATH  Google Scholar 

  32. H. Poincaré, Memoire sur les courbes definie par une equation differentielle, I—IV, J. Math. Pures Appl., 3 (1881), 375–422; 3 (1882), 251–80; 4 (1885), 167–244; 4 (1886), pp. 151–217.

    Google Scholar 

  33. I. E. Segal, Non-linear semi-groups. Amer. J. of Math., 78 (1963), 339–64.

    Google Scholar 

  34. J. Shatah, Unstable Ground State of Nonlinear Klein-Gordon Equations. Trans. Amer. Math. Soc., 290 (1985), 701–710.

    Article  MathSciNet  MATH  Google Scholar 

  35. M. Slemrod, Asymptotic behaviour of Co semi-groups as determined by the spectrum of the generator. Indiana Univ. Math. J., 25 (1976), 783–92.

    MathSciNet  Google Scholar 

  36. W. A. Strauss, Existence of solitary waves in higher dimensions. Comm. Math. Phys., 55 (1977), 149–62.

    Article  MathSciNet  MATH  Google Scholar 

  37. W. A. Strauss, Stable and unstable states of nonlinear wave equations, in Nonlinear Partial Differential Equations, Contemporary Math., 17, Amer. Math. Soc., Providence (1983), pp. 429–441.

    Google Scholar 

  38. A. E. Taylor, Introduction to Functional Analysis. Wiley, New York, 1961.

    Google Scholar 

  39. I. Vidav, Spectra of perturbed semigroups with applications to transport theory. J. Math. Anal. Appl., 30 (1970), 264–79.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 John Wiley & Sons Ltd and B. G. Teubner

About this chapter

Cite this chapter

Bates, P.W., Jones, C.K.R.T. (1989). Invariant Manifolds for Semilinear Partial Differential Equations. In: Kirchgraber, U., Walther, H.O. (eds) Dynamics Reported. Dynamics Reported, vol 2. Vieweg+Teubner Verlag, Wiesbaden. https://doi.org/10.1007/978-3-322-96657-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-322-96657-5_1

  • Publisher Name: Vieweg+Teubner Verlag, Wiesbaden

  • Print ISBN: 978-3-519-02151-3

  • Online ISBN: 978-3-322-96657-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics