Skip to main content

Opioid Electrophysiology in PAG

  • Reference work entry
Encyclopedia of Pain

Synonyms

Periaqueductal grey; periaqueductal gray; central grey; Central Gray/Central Grey; opiate

Definition

The midbrain periaqueductal grey (PAG) is one of the major brain targets for the analgesic actions of opioid drugs and endogenously released opioids. The PAG contributes to a descending inhibitory neural network. When PAG output neurons are activated, nociceptive neurotransmission at the level of the dorsal horn of the spinal cord is inhibited. Opioids are thought to produce analgesia in the PAG by a disinhibitory mechanism via direct inhibition of GABAergic neurotransmission impinging on descending output neurons.

Characteristics

The PAG, as the name suggests, is a cell dense region surrounding the cerebral aqueduct extending from the third ventricle to the pontine division of the fourth ventricle. Anatomical, physiological and behavioural studies all indicate that the PAG is organized into distinct functional columns that extend along the rostrocaudal axis. The different...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,250.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bandler R, Shipley MT (1994) Columnar Organization in the Midbrain Periaqueductal Gray: Modules for Emotional Expression? Trends Neurosci 17:379–389

    Google Scholar 

  2. Behbehani MM, Jiang M, Chandler SD (1990) The Effect of [Met]enkephalin on the Periaqueductal Gray Neurons of the Rat: An In Vitro Study. Neuroscience 38:373–80

    Google Scholar 

  3. Chieng B, Christie MJ (1994) Inhibition by Opioids Acting on mu-Receptors of GABAergic and Glutamatergic Postsynaptic Potentials in Single Rat Periaqueductal Gray Neurones In Vitro. Br J Pharmacol 113:303–9

    Google Scholar 

  4. Commons KG (2003) Translocation of Presynaptic Delta Opioid Receptors in the Ventrolateral Periaqueductal Gray after Swim Stress. J Comp Neurol 464:197–2003

    Google Scholar 

  5. Fallon JH, Leslie FM (1986) Distribution of Dynorphin and Enkephalin Peptides in the Rat Brain. J Comp Neurol 249:293–336

    Google Scholar 

  6. Jensen TS, Yaksh TL (1986) Comparison of Antinociceptive Action of Morphine in the Periaqueductal Gray, Medial and Paramedial Medulla in Rat. Brain Res 36:99–113

    Google Scholar 

  7. Mansour A, Fox CA, Akil H, Watson SJ (1995) Opioid-Receptor mRNA Expression in the Rat CNS: Anatomical and Functional Implications. Trends Neurosci 18:22–9

    Google Scholar 

  8. Morgan MM, Grisel JE, Robbins CS, Grandy DK (1997) Antinociception Mediated by the Periaqueductal Gray is Attenuated by Orphanin FQ. Neuroreport 8:3431–4

    Google Scholar 

  9. Osborne PB, Vaughan CW, Wilson HI, Christie MJ (1996) Opioid Inhibition of Rat Periaqueductal Gray Neurones with Identified Projections to Rostral Ventromedial Medulla In Vitro . J Physiol 490:383–9

    Google Scholar 

  10. Ossipov MH, Kovelowski CJ, Nichols ML, Hruby VJ, Porreca F (1995) Characterization of Supraspinal Antinociceptive Actions of Opioid Delta Agonists in the Rat. Pain 62:287–93

    Google Scholar 

  11. Vaughan CW, Ingram SL, Christie MJ (1997a) Actions of the ORL1 Receptor Ligand Nociception on Membrane Properties of Rat Periaqueductal Gray Neurons In Vitro. J Neurosc 17:996–1003

    Google Scholar 

  12. Vaughan CW, Ingram SL, Connor MA, Christie MJ (1997b) How Opioids Inhibit GABA-Mediated Neurotransmission. Nature 390:611–614

    Google Scholar 

  13. Vaughan CW, Bagley EE, Drew GM, Schuller A, Pintar JE, Hack SP, Christie MJ (2003) Cellular Actions of Opioids on Periaqueductal Gray Neurons from C57B16/J Mice and Mutant Mice Lacking MOR–1. Br J Pharmacol 139:362–367

    Google Scholar 

  14. Williams JT, Christie MJ, Manzoni O (2001) Cellular and Synaptic Adaptations Mediating Opioid Dependence. Physiol Rev 81:299–343

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Christie, M., Osborne, P. (2007). Opioid Electrophysiology in PAG. In: Schmidt, R., Willis, W. (eds) Encyclopedia of Pain. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-29805-2_2947

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-29805-2_2947

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-43957-8

  • Online ISBN: 978-3-540-29805-2

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics