Skip to main content

Mining Robotics

  • Reference work entry
Springer Handbook of Robotics

Abstract

Mining is the process of extracting mineral resources from the Earth for commercial value. It is an ancient human activity which can be traced back to Palaeolithic times (43000 years ago), where for example the mineral hematite was mined to produce the red pigment ochre. The importance of many mined minerals is reflected in the names of the major milestones in human civilizations: the stone, copper, bronze, and iron ages. Much later coal provided the energy that was critical to the industrial revolution and still underpins modern society, creating 38% of world energy generation today. Ancient mines used human and later animal labor and broke rock using stone tools, heat, and water, and later iron tools. Todayʼs mines are heavily mechanized with large diesel and electrically powered vehicles, and rock is broken with explosives or rock cutting machines (Fig. 49.1).

Evolution of mining technology

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 309.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AM:

actuators for manipulation

CSIRO:

Commonwealth Scientific and Industrial Research Organization

DARPA:

Defense Advanced Research Projects Agency

DOF:

degree of freedom

GPS:

global positioning system

NIOSH:

National Institute for Occupational Health and Safety

PLC:

programmable logic controller

RFID:

radiofrequency identification

US:

ultrasound

References

  1. P. Moore: Return of the robominers, Mining Mag. 195(3), 16–22 (2006)

    Google Scholar 

  2. Y. Potvin, P. Nedin, M. Sandy, K. Rosengren, M. Rosengren: Towards the Elimination of Rockfall Fatalities in Australian Mines (Australian Centre for Geomechanics, Crawley 2001), Tech. Rep.

    Google Scholar 

  3. H.L. Hartman (Ed.): SME Mining Engineering Handbook, Vol. 1,2, 2nd edn. (Society for Mining, Metallurgy and Exploration, Shaffer 1992)

    Google Scholar 

  4. J.T. Woodcock, J.K. Hamilton (eds.): Australasian Mining and Metallurgy: The Sir Maurice Mawby memorial, Vol. 2 (The Australasian Institute of Mining and Matallurgy, Alabama 1993)

    Google Scholar 

  5. W.A. Hustrulid, R.L. Bullock (Eds.): Underground Mining Methods (Society for Mining, Matallurgy and Exploration, Shaffer 2001)

    Google Scholar 

  6. S. Belfield: Fmg aims for a cut above the rest, Austral. Mining 99(5), 22 (2007)

    Google Scholar 

  7. J. Raimoaho: Mine-wide communication system, Proceedings of the 4th Regional Symposium on Computer Applications in the Minerals Industries (Tampere 2001) pp. 181–189

    Google Scholar 

  8. J. Cunningham, I. Gipps: Practical & strategic technology choices for advanced mining, Proceedings of the 12th International Symposium on Mine Planning and Equipment Selection (The Australasian Institute of Mining and Matallurgy, Kalgoorlie 2003) pp. 19–27

    Google Scholar 

  9. E. Villaescusa, L.B. Neindorf, J.B. Cunningham: Bench stoping of lead/zinc orebodies at mount isa mines limited, Proc. Joint Japan Australian Inst. Mining Metallurgy Symp. (The Australasian Institute of Mining and Matallurgy, Uke 1994)

    Google Scholar 

  10. G. Eriksson, A. Kitok: Automatic loading and dumping using vehicle guidance in a Swedish mine, Int. Symp. Mine Mechan. Autom. (Colorado 1991) pp. 15.33–15.40

    Google Scholar 

  11. N. Vagenas, H. Sjoberg, S. Wokstrom: Application of remote-controlled/automatic Load-Haul-Dump system in Zinkgruvan, Sweden, Int. Symp. Mine Mechan. Autom. (Colorado 1991) pp. 6.21–6.30

    Google Scholar 

  12. R. Hurteau, M. St-Amant, Y. Laperriere: Optically guided LHD: A demonstartion prototype, Int. Symp. Mine Mechan. Autom. (Colorado 1991) pp. 6.11–6.20

    Google Scholar 

  13. A. Grenier, G. Chevrette, C. Coache: Noranda automatic guidance system architecture overview, Canadian Symp. Mine Autom. (Montreal 1994) pp. 116–119

    Google Scholar 

  14. G. Brophey, D. Euler: The Opti-Trak System, a system for automating todayʼs LHDs and trucks, Int. Symp. Mine Mechan. Autom. (Sweden 1993) pp. 403–409

    Google Scholar 

  15. G. Brophey, D. Euler: The Opti-Trak System, a system for automating todayʼs LHDs and trucks, CIM Bull. 87(984), 52–57 (1994)

    Google Scholar 

  16. S. Scheding, E. Nebot, M. Stevens, H. Durrant-Whyte, J. Roberts, P. Corke, J. Cunningham, B. Cook: Experiments in autonomous underground guidance, Proc. IEEE Int. Conf. Robot. Autom. (Albuquerque 1997) pp. 1898–1903

    Google Scholar 

  17. J. Roberts, E. Duff, P. Corke: Reactive navigation and opportunistic localization for autonomous underground mining vehicles, Int. J. Inform. Sci. 145, 127–146 (2002)

    MATH  Google Scholar 

  18. D. Silver, J. Carsten, S. Thayer: Topological global localization for subterranean voids, Field and Service Robotics: Results 5th Int. Conf., Vol. 25, ed. by P. Corke, S. Sukkariah (Springer, 2006) pp. 117–128

    Google Scholar 

  19. J. Larsson, M. Broxvall, A. Saffiotti: A navigation system for automated loaders in underground mines, Field and Service Robotics: Results 5th Int. Conf., Vol. 25, ed. by P. Corke, S. Sukkariah (Springer, 2006) pp. 355–366

    Google Scholar 

  20. A. Young: The ELAP project, Engineering Dimensions 23(2), 20–21 (2002)

    Google Scholar 

  21. P. Corke, J. Roberts, G. Winstanley: 3D perception for mining robotics, Proc. Int. Conf. Field Service Robot. (Canberra 1997) pp. 41–47

    Google Scholar 

  22. J. Raimoaho, S.J. Fraser, L. Whitbourn, K. Yang, E. Ramanaidou, P. Connor, G. Poropat, P. Soole, P. Mason, D. Coward, R. Phillips: Mineralogical face-mapping using hyperspectral scanning for mine mapping and control, Proc. Sixth Int. Mining Geology Conf., Rising to the Challenge, ed. by S. Dominy (The Australasian Institute of Mining and Matallurgy, Darwin 2006) pp. 227–232

    Google Scholar 

  23. R.D. Singh: Principles and Practices of Modern Coal Mining (New Age International, New Delhi 1997)

    Google Scholar 

  24. S.L. Bessinger, M.G. Nelson: Remnant roof coal thickness measurement with passive gamma ray instruments in coal mines, IEEE Trans. Ind. Appl. 29, 562–565 (1993)

    Article  Google Scholar 

  25. G.L. Mowrey: Promising coal interface detection methods, Mining Eng. 43(1), 134–138 (1991)

    Google Scholar 

  26. R.L. Chufo, W.I. Johndon: A radar coal thickness sensor. In: New technology in mine health and safety, ed. by A.W. Khair (SME, Phoenix 1992) pp. 337–347

    Google Scholar 

  27. G. Stolarczyk, G.L. Stolarczyk, K.L. Perry: Horizon sensor for advanced coalextraction (ace), National Mining Association, MINExpo (Las Vegas 1996)

    Google Scholar 

  28. S. Singh: The state of the art in automation of earthmoving, ASCE J. Aerosp. Eng. 10(4), 179–188 (1997)

    Article  Google Scholar 

  29. M.S. Kelly, D. Hainsworth, D. Reid, P. Lever, H. Gurgenci: Longwall automation: A new approach, Third International Symposium on High-performance Mine Production Longwall, Stoping, other Mining Methods (Aachen 2003) pp. 117–132

    Google Scholar 

  30. J.J. Sammarco: Field evaluation of the modular azimuth and positioning system (maps) for a continuous mining machine, Tech. Rep. IC 9354 (Bureau of Mines, U.S. Department of the Interior 1993)

    Google Scholar 

  31. W.H. Schiffbauer: Pursuit of accurate navigation and control of continuous mining machines for coal mining, Proc. 4th Int. Symp. Mine Mech. Autom. (Brisbane 1997) pp. B6.33–B6.46

    Google Scholar 

  32. D. Reid, D.W. Hainsworth, R.J. McPhee: Lateral guidance of highwall mining machinery using inertial navigation, Int. Symp. Mine Mechan. Autom. (Brisbane 1997)

    Google Scholar 

  33. D.C. Reid, J.C. Ralston, D.W. Hainsworth, R.J. McPhee, E.K. Matejowsky: Highwall mining guidance: A major advance in highwall mining teleoperation, Int. Adv. Robot. Program Workshop (IARP 2000) (Brisbane 2000)

    Google Scholar 

  34. D.W. Hainsworth, D.C. Reid, R. McPhee, J.C. Ralston, P. Corke, G. Winstanley: Automation applied to a rapid roadway development system for underground coal mining, Proc. 4th Reg. Symp. Comp. Appl. Miner. Ind. (Tampere 2001) pp. 23–31

    Google Scholar 

  35. A.T. Stentz, J. Bares, S. Singh, P. Rowe: A robotic excavator for autonomous truck loading, Auton. Robot 7, 175–186 (1999)

    Article  Google Scholar 

  36. D.A. Bradley, D.W. Seward: The development, control and operation of an autonomous robotic excavator, J. Intell. Robot. Syst. 21(1), 73–97 (1998)

    Article  Google Scholar 

  37. L.E. Bernold: Principles of control for robotic excavation, Eng. construct. oper. in space III: Space ʼ92; Proc. 3rd Int. Conf., Vol. 2 (A93-41976 17-12) (Denver 1992) pp. 1401–1412

    Google Scholar 

  38. Q. Ha, M. Santos, Q. Nguyen, D. Rye, H. Durrant-Whyte: Robotic excavation in construction automation, Robot. Autom. Mag. 9, 20–28 (2002)

    Google Scholar 

  39. A. Hemami: A fundamental analysis of robotic excavation, J. Aerosp. Eng. 8(4), 175–179 (1995)

    Article  MathSciNet  Google Scholar 

  40. S. Sarata, W. Yossawee, T. Tsubouchi: Approach path generation to scooping position for wheel loader, Proc. Int. Conf. Robot. Autom. (2005) pp. 1809–1814

    Google Scholar 

  41. S. Tafazoli, P.D. Lawrence, S.E. Salcudean: Identification of inertial and friction parameters for excavator arms, IEEE Trans. Robot. Autom. 15, 966–971 (1999)

    Article  Google Scholar 

  42. A. Bonchis, P.I. Corke, D.C. Rye: Experimental evaluation of position control methods for hydraulic servo systems, IEEE Trans. Control Systems Technol. 10, 876–882 (2002)

    Article  Google Scholar 

  43. A. Bonchis, P. Corke, D. Rye: A pressure-based, velocity independent, friction model for asymmetric hydraulic cylinders, Proc. IEEE Int. Conf. Robot. Autom. (Detroit 1999) pp. 1746–1751

    Google Scholar 

  44. P. Ridley, P. Corke: Calculation of dragline bucket pose under gravity loading, Mech. Mach. Theory 35, 1431–1444 (2000)

    Article  MATH  Google Scholar 

  45. L. Allison: Creative engineering – a key to the future of the australian coal industry, Proc. Conf. Inst. Mining Electr. Mining Mech. Eng. (Newcastle 1992)

    Google Scholar 

  46. D.W. Hainsworth, P.I. Corke, G.J. Winstanley: Location of a dragline bucket in space using machine vision techniques, Proc. Int. Conf. Acoust. Speech Signal Process. (ICASSP-94), Vol. 6 (Adelaide 1994) pp. 161–164

    Google Scholar 

  47. J. Roberts, F. Pennerath, P. Corke, G. Winstanley: Robust sensing for a 3500 t field robot, Proc. IEEE Int. Conf. Robot. Autom. (Detroit 1999) pp. 2723–2728

    Google Scholar 

  48. J. Roberts, P. Corke, G. Winstanley: Development of a 3500 t field robot, Int. J. Robot. Res. 18, 739–752 (1999)

    Article  Google Scholar 

  49. P.I. Corke, J.M. Roberts, G.J. Winstanley: Experiments and experiences in developing a mining robot system. In: Experimental Robotics VI, Lecture Notes in Control and Information Sciences, Vol. 232, ed. by P. Corke, J. Trevelyan (Springer, Sydney 2000) pp. 183–192

    Chapter  Google Scholar 

  50. A. Ridout: Variably damped swing contro, of the overhead crane, Proc. 15th Annual Conf. IEEE Ind. Electr. Soc. (1989) pp. 263–269

    Google Scholar 

  51. P. Corke, G. Winstanley, M. Dunbabin, J. Roberts: Dragline automation: Experimental evaluation through productivity trial, Proc. Int. Conf. Field Serv. Robot. (Lake Yamanaka 2003) pp. 249–254

    Google Scholar 

  52. J. Roberts, G. Winstanley, P. Corke: 3D imaging for a very large excavator, Int. J. Robot. Res. 22, 467–478 (2003)

    Article  Google Scholar 

  53. M. Dunbabin, P. Corke: Autonomous excavation using a rope shovel, J. Field Robot. 23, 379–394 (2006)

    Article  Google Scholar 

  54. J. Chadwick: Autonomous mine truck, Mining Mag. 175(5), 287–288 (1996)

    Google Scholar 

  55. J. Roberts, P. Corke: Obstacle detection for a mining vehicle using a 2d laser, Proc. Austral. Conf. Robot. Autom. (Melbourne 2000) pp. 185–190

    Google Scholar 

  56. K. Iagnemma, M. Buehler: Special issue on the DARPA grand challenge (part 1), J. Field Robot. 23(8), 461–462 (2006)

    Article  Google Scholar 

  57. E. Nebot, J. Guivant, S. Worrall: Haul truck aligment monitoring and operator warning system, J. Field Robot. 23(2), 141–161 (2006)

    Article  MATH  Google Scholar 

  58. C.L. Jimeno, E.L. Jimeno, F.J.A. Carcedo: Drilling and Blasting of Rocks (A.A. Balkema, Rotterdam 1995)

    Google Scholar 

  59. Committee on Advanced Drilling Technologies, Drilling and Excavation Technologies for the Future. (National Research Council 1994)

    Google Scholar 

  60. C. Yeats, T. McConachy: Deep blue minerals: Towards a sustainable marine minerals industry, Tech. Rep. P2005/135 (CSIRO Exploration and Mining, 2005)

    Google Scholar 

  61. R.W. Bartlett: Solution mining: leaching and fluid recovery of materials (Gordon and Breach Science, Philadelphia 1992)

    Google Scholar 

  62. M. Wendt, G. Einicke: Development of a water-hydraulic self-propelled robotic drill for underground mining, Field and Service Robotics: Results 5th Int. Conf., Vol. 25, ed. by P. Corke, S. Sukkariah (Springer, 2006) pp. 355–366

    Google Scholar 

  63. F. Delabbio: Hardrock excavation alternatives – present status and future options?, WRBA 2003 Conference on Expanding the limits of mechanical excavation (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Peter Corke , Jonathan Roberts PhD , Jock Cunningham or David Hainsworth PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag

About this entry

Cite this entry

Corke, P., Roberts, J., Cunningham, J., Hainsworth, D. (2008). Mining Robotics. In: Siciliano, B., Khatib, O. (eds) Springer Handbook of Robotics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30301-5_50

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30301-5_50

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-23957-4

  • Online ISBN: 978-3-540-30301-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics