Skip to main content

A Comparison of Pruning Algorithms for Sparse Least Squares Support Vector Machines

  • Conference paper
Neural Information Processing (ICONIP 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3316))

Included in the following conference series:

Abstract

Least Squares Support Vector Machines (LS-SVM) is aproven method for classification and function approximation. In comparison to the standard Support Vector Machines (SVM) it only requires solving a linear system, but it lacks sparseness in the number of solution terms. Pruning can therefore be applied. Standard ways of pruning the LS-SVM consist of recursively solving the approximation problem and subsequently omitting data that have a small error in the previous pass and are based on support values. We suggest a slightly adapted variant that improves the performance significantly. We assess the relative regression performance of these pruning schemes in a comparison with two (for pruning adapted) subset selection schemes, -one based on the QR decomposition (supervised), one that searches the most representative feature vector span (unsupervised)-, random omission and backward selection on independent test sets in some benchmark experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Vapnik, V.N.: Statistical Learning Theory. John Wiley & Sons, Chichester (1998)

    MATH  Google Scholar 

  2. Suykens, J.A.K., Vandewalle, J.: Least squares support vector machine classifiers. Neural Processing Letters 9(3), 293–300 (1999)

    Article  MathSciNet  Google Scholar 

  3. Suykens, J.A.K., De Brabanter, J., Lukas, L., Vandewalle, J.: Weighted least squares support vector machines: Robustness and sparse approximation. Neurocomputing, Special issue on fundamental and information processing aspects of neurocomputing 48(1-4), 85–105 (2002)

    MATH  Google Scholar 

  4. de Kruif, B.J., de Vries, T.J.A.: Pruning error minimization in least squares support vector machines. IEEE Transactions on Neural Networks 14(3), 696–702 (2003)

    Article  Google Scholar 

  5. Suykens, J.A.K., Van Gestel, T., De Brabanter, J., DeMoor, B., Vandewalle, J.: Least Squares Support Vector Machines. World Scientific, Singapore (2002)

    Book  MATH  Google Scholar 

  6. Hoegaerts, L., Suykens, J.A.K., Vandewalle, J., De Moor, B.: Subset based least squares subspace regression in RKHS. Accepted for publication in Neurocomputing, Special issue (2004)

    Google Scholar 

  7. Reed, R.: Pruning algorithms – A survey. IEEE Transactions on Neural Networks 4(5), 740–747 (1993)

    Article  Google Scholar 

  8. Smola, A.J., Schölkopf, B.: Sparse greedy matrix approximation for machine learning. In: Proc. 17th International Conf. on Machine Learning, pp. 911–918. Morgan Kaufmann, San Francisco (2000)

    Google Scholar 

  9. Miller, A.J.: Subset Selection in Regression. Chapman & Hall, Boca Raton (1990)

    MATH  Google Scholar 

  10. Chen, S., Cowan, C., Grant, P.: Orthogonal least squares learning algorithm for radial basis function networks. IEEE Trans. Neural Networks 2, 302–309 (1991)

    Article  Google Scholar 

  11. Baudat, G., Anouar, F.: Kernel based methods and function approximation. In: IJCN, Washington DC, July 2001, pp. 1244–1249 (2001)

    Google Scholar 

  12. Aronszajn, N.: Theory of reproducing kernels. Transactions of the American mathematical society 686, 337–404 (1950)

    Article  MathSciNet  Google Scholar 

  13. Schölkopf, B., Smola, A.: Learning with kernels. MIT Press, Cambridge (2002)

    Google Scholar 

  14. Hassibi, B., Stork, D.G., Wolf, G.: Optimal brain surgeon and general network pruning. In: Proceedings of the 1993 IEEE International Conference on Neural Networks, San Francisco, CA, April 1993, pp. 293–300 (1993)

    Google Scholar 

  15. Blake, C., Merz, C.: UCI repository of machine learning databases (1998), Online Available, http://www.ics.uci.edu/~mlearn/MLRepository.html

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hoegaerts, L., Suykens, J.A.K., Vandewalle, J., De Moor, B. (2004). A Comparison of Pruning Algorithms for Sparse Least Squares Support Vector Machines. In: Pal, N.R., Kasabov, N., Mudi, R.K., Pal, S., Parui, S.K. (eds) Neural Information Processing. ICONIP 2004. Lecture Notes in Computer Science, vol 3316. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30499-9_194

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30499-9_194

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-23931-4

  • Online ISBN: 978-3-540-30499-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics