Skip to main content

PET and PET/CT: Basic Principles and Instrumentation

  • Chapter
PET in Oncology

Part of the book series: Recent Results in Cancer Research ((RECENTCANCER,volume 170))

Abstract

The increasing role of positron emission tomography (PET) in the diagnosis and staging of malignant disease and monitoring of therapy response can be attributed to significant improvements made in the performance of this imaging technology. Anticipated progress is frequently constrained by the physics of PET, and current designs of PET scanners aim at an ultimately high spatial resolution and sensitivity as well as improved signal-to-noise properties. Recent advances in the field of PET instrumentation include the introduction of novel scintillation crystal technology and detector electronics, as well as the widespread introduction of fast and efficient, iterative image reconstruction algorithms for fully three-dimensional (3D) PET data sets. These advances have led to a dramatic reduction in clinical imaging times while improving image quality. Finally, the combination of functional imaging and computed tomography (CT) within a combined PET/CT tomograph provides a tool to accurately localise functional abnormalities in an anatomical context.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adam LE, Zaers J, Ostertag H, Trojan H, Bellemann ME, Brix G (1997) Performance evaluation of the whole-body PET scanner ECAT EXACT HR+ following the IEC standard. IEEE Trans Nucl Sei 44:1171–2179

    Google Scholar 

  2. Anger HO (1958) Scintillation camera. Rev Sei Instr 29:21–23

    Google Scholar 

  3. Antoch G, Freudenberg LS, Egelhof T, Stattaus J, Jen-tzen W, Debatin JF, Bockisch A (2002) Focal tracer uptake: a potential artifact in contrast-enhanced dual-modality PET/CT scans. J Nucl Med 43:1331–1342

    Google Scholar 

  4. Antoch G, Jentzen W, Freudenberg LS, Stattaus J, Mueller SP, Debatin JF, Bockisch A (2003) Effect of oral contrast agents on computed tomography-based positron emission tomography attenuation correction in dual-modality positron emission tomography/computed tomography imaging. Invest Radiol 38:781–789

    Google Scholar 

  5. Bailey DL, Meikle SR (1994) A convolution-subtraction scatter correction method for 3D PET. Phys Med Biol 39:411–424

    Article  PubMed  CAS  Google Scholar 

  6. Beyer T, Townsend DW, Brun T, Kinahan PE, Charron M, Roddy R, Jerin J, Young J, Byars L, Nutt R (2000a) A combined PET/CT scanner for clinical oncology. J Nucl Med 41:1361–1379

    Google Scholar 

  7. Beyer T, Townsend DW, Nutt R, Charron M, Kinahan PE, Meltzer C (2000b) Combined PET/CT imaging using a single, dual-modality tomograph: a promising approach to clinical oncology of the future. In: Wieler H, Coleman R (eds) PET in clinical oncology. Steinkopff Verlag, Darmstadt, pp 101–223

    Google Scholar 

  8. Beyer T, Antoch G, Blodgett T, Freudenberg LF, Akhurst T, Mueller S (2003) Dual-modality PET/CT imaging: the effect of respiratory motion on combined image quality in clinical oncology. Eur J Nucl Med Mol Imaging 30:581–596

    Google Scholar 

  9. Beyer T, Antoch G, Bockisch A, Stattaus J (2005) Optimized intravenous contrast administration for diagnostic whole-body 18F-FDG PET/CT. J Nucl Med 46:421–435

    Google Scholar 

  10. Beyer T, Bockisch A, Kuhl H, Martinez MJ (2006) Whole-Body 18F-FDG PET/CT in the presence of truncation artifacts. J Nucl Med 47:91–99

    PubMed  Google Scholar 

  11. Browne J, dePierro AB (1996) A row-action alternative to the EM algorithm for maximizing likelihood in emission tomography. IEEE Trans Med Imag, 15:681–699

    Google Scholar 

  12. Bujenovic S, Mannting F, Chakrabarti R, Ladnier D (2003) Artifactual 2-deoxy-2-[(18)F]fluoro-D-glu-cose localization surrounding metallic objects in a PET/CT scanner using CT-based attenuation correction. Mol Imaging Biol 5:21–22

    Google Scholar 

  13. Burger C, Goerres G, Schoenes S, Buck A, Lonn AH, Von Schulthess GK (2002) PET attenuation coefficients from CT images: experimental evaluation of the transformation of CT into PET 511-keV attenuation coefficients. Eur J Nucl Med Mol Imaging 29:921–927

    Google Scholar 

  14. Carson RE, Daube-Witherspoon ME, Green MV (1988) A method for postinjection PET transmission measurements with a rotating source. J Nucl Med 29:1551–1567

    Google Scholar 

  15. Casey ME, Nutt R (1986) Multicrystal two dimensional BGO detector system for positron emission tomography. IEEE Trans Nucl Sei 33:461–463

    Google Scholar 

  16. Cherry SR, Dahlbom M, Hoffman EJ (1992) High sensitivity, total body PET scanning using 3D data acquisition and reconstruction. IEEE Trans Nucl Sei 39:1081–1092

    Google Scholar 

  17. Cho ZH, Farukhi MR (1977) Bismuth germanate as a potential scintillation detector in positron cameras. J Nucl Med 18:841–844

    Google Scholar 

  18. Comtat C, Kinahan PE, Fessier JA, Beyer T, Townsend DW, Defrise M, Michel C (2002) Clinically feasible reconstruction of 3D whole-body PET/CT data using blurred anatomical labels. Phys Med Biol 47:1–20

    Article  PubMed  Google Scholar 

  19. Cooke BE, Evans AC, Fanthome EO, Alarie Ras AM (1984) Performance figure and images from the Therascan 3128 positron emission tomograph. IEEE Trans Nucl Sei 31:641–644

    Google Scholar 

  20. Daube-Witherspoon ME, Karp JS, Casey ME, DiFilippo FP, Hines H, Muehllehner G, Simcic V, Stearns CW, Adam LE, Kohlmyer S, Sossi V (2002) PET performance measurements using the NEMA NU 1-2001 standard. J Nucl Med 43:1391–1409

    Google Scholar 

  21. De Man B, Nuyts J, Dupont P, Marchai G, Suetens P (1999) Metal streak artifacts in X-ray computed tomography: a simulation study. IEEE Trans Nucl Sei 46:691–696

    Article  Google Scholar 

  22. Defrise M, Kinahan PE, Townsend DW, Michel C, Sibomana M, Newport DF (1997) Exact and approximate rebinning algorithms for 3-D PET data. IEEE Trans Med Imaging 16:141–158

    Article  Google Scholar 

  23. Dizendorf E, Hany TF, Buck A, von Schulthess GK, Burger C (2003) Cause and magnitude of the error induced by oral CT contrast agent in CT-based attenuation correction of PET emission studies. J Nucl Med 44:731–738

    Google Scholar 

  24. Duerinckx AJ, Macovski A (1978) Polychromatic streak artifacts in computed tomography images. J Comput Assist Tomogr 2:481–487

    Article  PubMed  CAS  Google Scholar 

  25. Fleming JS (1989) A technique for using CT images in attenuation correction and quantification in SPECT. Nucl Med Commun 10:81–87

    Article  Google Scholar 

  26. Goerres GW, Kamel E, Heidelberg TN, Schwitter MR, Burger C, von Schulthess GK (2002) PET-CT image co-registration in the thorax: influence of respiration. Eur J Nucl Med Mol Imaging 29:351–360

    Article  PubMed  CAS  Google Scholar 

  27. Hasegawa BH, Lang, TH, Brown EL et al (1993) Object specific attenuation correction of SPECT with correlated dual-energy x-ray CT. IEEE Trans Nucl Sei 40:1241–1252

    Google Scholar 

  28. Herman GT (1980) Image reconstruction from projections: the fundamental of. computerized tomography. Academic Press, New York

    Google Scholar 

  29. Hoffman EJ, Guerrero TM, Germano G, Digby WM, Dahlbom M (1989) PET system calibrations and corrections for quantitative and spatially accurate images. Nucl Sei IEEE Trans 36:1101–1112

    Google Scholar 

  30. Hudson HM, Larkin RS (1994) Accelerated image reconstruction using ordered subsets of projection data. IEEE Trans Med Imaging 13:601–609

    Article  PubMed  CAS  Google Scholar 

  31. Kalender WA, Vock P, Polacin A, Soucek M (1990) Spiral-CT: a new technique for volumetric scans. I. Basic principles and methodology. Rontgenpraxis 43:321–330

    Google Scholar 

  32. Kamel EM, Burger C, Buck A, von Schulthess GK, Goerres GW (2003) Impact of metallic dental implants on CT-based attenuation correction in a combined PET/CT scanner. Eur Radiol 13:721–728

    Google Scholar 

  33. Karp JS, Muehllehner G, Mankoff DA, Ordonez CE, Ollinger JM, Daube-Witherspoon ME, Haigh AT, Beerbohm DJ (1990) Continuous-slice PENN-PET: a positron tomograph with volume imaging capability. J Nucl Med 31:611–627

    Google Scholar 

  34. Kinahan PE, Townsend DW, Beyer T, Sashin D (1998) Attenuation correction for a combined 3D PET/CT scanner. Med Phys 25:2041–2053

    Article  Google Scholar 

  35. Kluetz PG, Meltzer CC, Villemagne VL, Kinahan PE, Chander S, Martinelli MA, Townsend DW (2000) Combined PET/CT imaging in oncology, impact on patient management. Clin Positron Imaging 3:221–230

    Article  Google Scholar 

  36. LaCroix KJ, Tsui BMW, Hasegawa BH, Brown JK (1994) Investigation of the use of x-ray CT images for attenuation compensation in SPECT. IEEE Trans Nucl Sei 41:2791–2799

    Google Scholar 

  37. Leschka S, Alkadhi H, Plass A, Desbiolles L, Grunen-felder J, Marincek B, Wildermuth S (2005) Accuracy of MSCT coronary angiography with 64-slice technology: first experience. Eur Heart J 26:1481–1487

    Google Scholar 

  38. Melcher CL, Schweitzer JS (1992) Cerium-doped lute-tium oxyorthosilicate: a fast, efficient new scintillator. IEEE Trans Nucl Sei 39:501–505

    Google Scholar 

  39. Nehmen SA, Erdi YE, Ling CC, Rosenzweig KE, Schoder H, Larson SM, Macapinlac HA, Squire OD, Humm JL (2002) Effect of respiratory gating on quantifying PET images of lung cancer. J Nucl Med 43:871–881

    Google Scholar 

  40. Nehmeh SA, Erdi YE, Rosenzweig KE, Schoder H, Larson SM, Squire OD, Humm JL (2003) Reduction of respiratory motion artifacts in PET imaging of lung cancer by respiratory correlated dynamic PET: methodology and comparison with respiratory gated PET. J Nucl Med 44:1641–1648

    Google Scholar 

  41. Ohnesorge B, Flohr T, Schwarz K, Heiken JP, Bae KT (2000) Efficient correction for CT image artifacts caused by objects extending outside the scan field of view. Med Phys 27:31–36

    Article  Google Scholar 

  42. Ollinger JM (1996) Model-based scatter correction for fully 3D PET. Phys Med Biol 41:151–176

    Article  Google Scholar 

  43. Osman MM, Cohade C, Nakamoto Y, Wahl RL (2003) Respiratory motion artifacts on PET emission images obtained using CT attenuation correction on PET-CT. Eur J Nucl Med Mol Imaging 30:601–606

    Google Scholar 

  44. Phelps M, Hoffman E, Mullani N, Ter-Pogossian M (1975) Application of annihilation coincidence detection to transaxial reconstruction tomography. J Nucl Med 16:211–224

    Google Scholar 

  45. Puterbaugh KC, Breeding JE, Musrock MS, Seaver C, Casey ME, Young JW (2003) Performance comparison of a current LSO PET scanner versus the same scanner with upgraded electronics. IEEE Nucl Sei Symp 1931–1935.

    Google Scholar 

  46. Schulthess GKV (2000) Cost considerations regarding an integrated CT-PET system. Eur Radiol 10: S377–S380

    Article  Google Scholar 

  47. Shao L, Freifelder R, Karp JS (1994) Triple energy window scatter correction technique in PET. IEEE Trans Med Imaging 13:641–648

    Article  PubMed  CAS  Google Scholar 

  48. Slomka PJ, Dey D, Przetak C, Aladl UE, Baum RP (2003) Automated 3-dimensional registration of stand-alone (18)F-FDG whole-body PET with CT. J Nucl Med 44:1151–1167

    Google Scholar 

  49. Sourbelle K, Kachelriess M, Kalender WA (2005) Reconstruction from truncated projections in CT using adaptive detruncation. Eur Radiol 15:1001–1014

    Article  Google Scholar 

  50. Spinks TJ, Guzzardi R, Bellina CR (1988) Performance characteristics of a whole-body positron tomograph. J Nucl Med 29:1831–1841

    Google Scholar 

  51. Surti S, Karp JS, Freifelder R, Liu F (2000) Optimizing the performance of a PET detector using discrete GSO crystals on a continuous lightguide. IEEE Trans Nucl Sei 47:1031–1036

    Google Scholar 

  52. Takagi K, Fukazawa T (1983) Cerium-activated Gd[sub 2]SiO[sub 5] single crystal scintillator. Appl Phys Lett 42:41–45

    Article  Google Scholar 

  53. Townsend DW, Beyer T (2002) A combined PET/CT scanner: the path to true image fusion. Br J Radiol 75:S21–S20

    Google Scholar 

  54. Wahl RL, Quint LE, Cieslak RD, Aisen AM, Koeppe RA, Meyer CR (1993) “Anatometabolic” tumor imaging: fusion of FDG PET with CT or MRI to localize foci of increased activity. J Nucl Med 34:1191–1197

    Google Scholar 

  55. Watson CC (2000) New, faster, image-based scatter correction for 3D PET. IEEE Trans Nucl Sei 47:1581–1594

    Article  Google Scholar 

  56. Xu M, Cutler PD, Luk WK ( 1996) Adaptive, segmented attenuation correction for whole-body PET imaging. IEEE Trans Nucl Sei 43:331–336

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Martínez, MJ., Ziegler, S.I., Beyer, T. (2008). PET and PET/CT: Basic Principles and Instrumentation. In: Dresel, S. (eds) PET in Oncology. Recent Results in Cancer Research, vol 170. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-31203-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-31203-1_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-31202-4

  • Online ISBN: 978-3-540-31203-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics