Skip to main content

Real Recursive Functions and Real Extensions of Recursive Functions

  • Conference paper
Machines, Computations, and Universality (MCU 2004)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3354))

Included in the following conference series:

Abstract

Recently, functions over the reals that extend elementarily computable functions over the integers have been proved to correspond to the smallest class of real functions containing some basic functions and closed by composition and linear integration.

We extend this result to all computable functions: functions over the reals that extend total recursive functions over the integers are proved to correspond to the smallest class of real functions containing some basic functions and closed by composition, linear integration and a very natural unique minimization schema.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Arnold, V.I.: Ordinary Differential Equations. MIT Press, Cambridge (1978)

    Google Scholar 

  2. Asarin, E., Bouajjani, A.: Perturbed Turing machines and hybrid systems. In: Logic in Computer Science, pp. 269–278 (2001)

    Google Scholar 

  3. Asarin, E., Maler, O.: Achilles and the tortoise climbing up the arithmetical hierarchy. Journal of Computer and System Sciences 57(3), 389–398 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bournez, O.: Achilles and the Tortoise climbing up the hyper-arithmetical hierarchy. Theoretical Computer Science 210(1), 21–71 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bournez, O.: Complexité Algorithmique des Systémes Dynamiques Continus et Hybrides. PhD thesis, Ecole Normale Supérieure de Lyon, Janvier (1999)

    Google Scholar 

  6. Bournez, O., Hainry, E.: An analog characterization of elementary computable functions over the real numbers. In: Díaz, J., Karhumäki, J., Lepistö, A., Sannella, D. (eds.) ICALP 2004. LNCS, vol. 3142, pp. 269–280. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  7. Brattka, V.: Recursive characterizations of computable real-value functions and relations. Theoretical Computer Science 162(1), 45–77 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  8. Brattka, V.: Computability over topological structures. In: Cooper, S.B., Goncharov, S.S. (eds.) Computability and Models, pp. 93–136. Kluwer Academic Publishers, New York (2003)

    Google Scholar 

  9. Campagnolo, M., Moore, C., Costa, J.F.: An analog characterization of the Grzegorczyk hierarchy. Journal of Complexity 18(4), 977–1000 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  10. Campagnolo, M.L.: Computational complexity of real valued recursive functions and analog circuits. PhD thesis, Universidade Técnica de Lisboa (2001)

    Google Scholar 

  11. Etesi, G., Németi, I.: Non-Turing computations via Malament-Hogarth spacetimes. International Journal Theoretical Physics 41, 341–370 (2002)

    Article  MATH  Google Scholar 

  12. Graça, D., Costa, J.F.: Analog computers and recursive functions over the reals. Journal of Complexity 19, 644–664 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  13. Grzegorczyk, A.: Computable functionals. Fundamenta Mathematicae 42, 168–202 (1955)

    MATH  MathSciNet  Google Scholar 

  14. Henzinger, T., Raskin, J.-F.: Robust undecidability of timed and hybrid systems. In: Vaandrager, F.W., van Schuppen, J.H. (eds.) HSCC 1999. LNCS, vol. 1569. Springer, Heidelberg (1999)

    Google Scholar 

  15. Hogarth, M.L.: Does general relativity allow an observer to view an eternity in a finite time? Foundations of Physics Letters 5, 173–181 (1992)

    Article  MathSciNet  Google Scholar 

  16. Kalmár, L.: Egyszerü példa eldönthetetlen aritmetikai problémára. Mateés fizikai lapok 50, 1–23 (1943)

    MATH  Google Scholar 

  17. Lacombe, D.: Extension de la notion de fonction récursive aux fonctions d’une ou plusieurs variables réelles III. Comptes rendus de l’Académie des Sciences Paris 241, 151–153 (1955)

    Google Scholar 

  18. Lipshitz, L., Rubel, L.A.: A differentially algebraic replacement theorem, and analog computability. Proceedings of the American Mathematical Society 99(2), 367–372 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  19. Moore, C.: Recursion theory on the reals and continuous-time computation. Theoretical Computer Science 162(1), 23–44 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  20. Mycka, J.: Infinite limits and R-recursive functions. Acta Cybernetica 16, 83–91 (2003)

    MATH  MathSciNet  Google Scholar 

  21. Mycka, J.: μ-recursion and infinite limits. Theoretical Computer Science 302, 123–133 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  22. Odifreddi, P.: Classical recursion theory II. North-Holland, Amsterdam (1999)

    MATH  Google Scholar 

  23. Ord, T.: Hypercomputation: computing more than the Turing machine. Technical report, University of Melbourne, (September 2002), See, http://www.arxiv.org/abs/math.lo/0209332

  24. Orponen, P.: A survey of continuous-time computation theory. In: Du, D.-Z., Ko, K.-I. (eds.) Advances in Algorithms, Languages, and Complexity, pp. 209–224. Kluwer Academic Publishers, Dordrecht (1997)

    Google Scholar 

  25. Pour-El, M.B.: Abstract computability and its relation to the general purpose analog computer (some connections between logic, differential equations and analog computers). Transactions of the American Mathematical Society 199, 1–28 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  26. Ramis, E., Deschamp, C., Odoux, J.: Cours de mathématiques spéciales, tome 3, topologie et éléments d’analyse. Masson (February 1995)

    Google Scholar 

  27. Rose, H.: Subrecursion: functions and hierarchies. Clarendon Press (1984)

    Google Scholar 

  28. Shannon, C.E.: Mathematical theory of the differential analyser. Journal of Mathematics and Physics MIT 20, 337–354 (1941)

    MATH  MathSciNet  Google Scholar 

  29. Siegelmann, H.: Neural networks and analog computation - beyond the Turing limit, Birkauser (1998)

    Google Scholar 

  30. Turing, A.: On computable numbers, with an application to the Entscheidungsproblem. Proceedings of the London Mathematical Society 2, 230–265 (1936)

    Google Scholar 

  31. Weihrauch, K.: Computable analysis. Springer, Heidelberg (2000)

    MATH  Google Scholar 

  32. Zhou, Q.: Subclasses of computable real valued functions. In: Jiang, T., Lee, D.T. (eds.) COCOON 1997. LNCS, vol. 1276, pp. 156–165. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bournez, O., Hainry, E. (2005). Real Recursive Functions and Real Extensions of Recursive Functions. In: Margenstern, M. (eds) Machines, Computations, and Universality. MCU 2004. Lecture Notes in Computer Science, vol 3354. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-31834-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-31834-7_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-25261-0

  • Online ISBN: 978-3-540-31834-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics