Skip to main content

Laser Resistant Coatings

  • Chapter
Optical Interference Coatings

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 88))

Abstract

Interest in laser resistant coatings started with Maiman’s invention of the ruby laser (Maiman 1960). It soon became apparent that the existing quality of optical coatings was insufficient to withstand the high-photon flux of a laser source (Glass and Guenther 1973). In 1965 the Office of Naval Research contracted with Baush & Lomb to study the damage thresholds of dielectric films and multilayer coatings to overcome the problems of absorption and coating defects (Turner 1972). In 1969, a symposium on Laser-Induced Damage in Optical Materials was formed and two years later, thin films became one of the four primary research topics. This symposium has been the premier repository of documented research in laser resistant optical thin films. Although the subject of laser damage in optical materials is a rather narrow field of research, there are some excellent books on the subject (Kozlowski 1995; Wood 1986).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andrew JE, Bazin NJ, McInnes HA, Morris AJ, Porter K (2002) Aperture scaling of 351 nanometre high reflectivity sol gel based mirror coatings. In: Exarhos GJ, Guenther AH, Kozlowski MR, Lewis KL, Soileau MJ and Stolz CJ (eds) Laser-Induced Damage to Optical Materials: 2001. SPIE 4679: 271–281

    Chapter  Google Scholar 

  • Apfel JH (1977) Optical coating design with reduced electric field intensity. Appl. Opt. 16: 1880–1885

    Article  ADS  Google Scholar 

  • Apel O, Mann K, Zoller A, Gotzelmann R, Eva E (2000) Nonlinear absorption of thin A12O3 films at 193 nm. Appl. Opt. 39: 3165–3169

    Article  ADS  Google Scholar 

  • Apel O, Schulz-Grosser M, Leinhos U, Kennedy M, Mann K, Schuhmann R (2001) Interfacial absorption of DUV coatings. In: Exarhos GJ, Guenther AH, Kozlowski MR, Lewis KL, and Soileau MJ (eds) Laser-Induced Damage to Optical Materials: 2000 SPIE 4347: 17–23

    Chapter  Google Scholar 

  • Bercegol H (1999) What is laser conditioning? A review focused on dielectric multilayers. In: Exarhos GJ, Guenther AH, Kozlowski MR, Lewis KL, and Soileau MJ (eds) Laser-Induced Damage to Optical Materials: 1998, SPIE 3578: 421–425

    Chapter  Google Scholar 

  • Bloembergen N (1973) Role of cracks, pores, and absorbing inclusions on laser induced damage thresholds at surfaces of transparent dielectrics. Appl. Opt. 12: 661–664

    Article  ADS  Google Scholar 

  • Bodemann A, Kaiser N, Kozlowski MR, Pierce E, Stolz CJ (1996) Comparison between 355 nm and 1064 nm damage of high grade dielectric mirror coating. In: Bennett HE, Guenther AH, Kozlowski MR, Newnam BE, Soileau MJ (eds) Laser-Induced Damage to Optical Materials: 1995. SPIE 2714: 395–404

    Chapter  Google Scholar 

  • Carniglia CK (1981) Oxide coatings for one micrometer laser fusion systems. Thin Solid Films 77, 225–238

    Article  ADS  Google Scholar 

  • Chow R, Falabella S, Loomis GE, Rainer F, Stolz CJ (1993) Reactive evaporation of lowdefect density hafnia. Appl. Opt. 32, 5567–5574

    Article  ADS  Google Scholar 

  • Commandré M, Roche P (1995) Characterization of absorption by photothermal deflection. In: Flory FR (ed) Thin films for Optical Systems. Marcel Dekker, New York, pp 329–365

    Google Scholar 

  • DeFord JF, Kozlowski MR (1993) Modeling of electric-field enhancement at nodular defects in dielectric mirror coatings. In: Bennett HE, Guenther AH, Kozlowski MR, Newnam BE, Soileau MJ (eds) Laser-Induced Damage to Optical Materials: 1992. SPIE 1848: 455–470

    Google Scholar 

  • Dijon J, Hue J, Disgecmez A, Quesnel E, Rolland B (1996) Thin films laser damage mechanisms at the YAG third harmonic. In: Bennett HE, Guenther AH, Kozlowski MR, Newnam BE, Soileau MJ (eds) Laser-Induced Damage to Optical Materials: 1995. SPIE 2714: 416–424

    Chapter  Google Scholar 

  • Dijon J, Poulingue M, Hue J (1999) Thermomechanical model of mirror laser damage at 1.06 µm. Part 1: nodule ejection. In: Exarhos GJ, Guenther AH, Kozlowski MR, Lewis KL, Soileau MJ (eds) Laser-Induced Damage to Optical Materials: 1998. SPIE 3578: 387–396

    Chapter  Google Scholar 

  • Dijon J, Ravel G, Andre B (1999) Thermomechanical model of mirror laser damage at 1.06 µm. Part 2: Flat bottom pits formation. In: Exarhos GJ, Guenther AH, Kozlowski MR, Lewis KL, Soileau MJ (eds) Laser-Induced Damage to Optical Materials: 1998. SPIE 3578: 398–407

    Chapter  Google Scholar 

  • Feit MD, Rubenchik AM, Shore BW, Stuart BC, Perry MD (1995) Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses: II. Theory. In: Bennett HE, Guenther AH, Kozlowski MR, Newnam BE, Soileau MJ (eds) Laser-Induced Damage to Optical Materials: 1994. SPIE 2428: 469–477

    Chapter  Google Scholar 

  • Foltyn SR, Jolin LJ (1984) Catastrophic versus microscopic damage: applicability of laboratory measurements to real systems In: Bennett HE, Guenther AH, Milam D, Newnam BE (eds) Laser-Induced Damage to Optical Materials: 1983. NBS SP 688: 493–500

    Google Scholar 

  • Fornier A, Cordillot C, Ausserre D, Paris F (1994) Laser conditioning of optical coatings: some issues in the characterization by atomic force microscopy. In: Bennett HE, Chase LL, Guenther AH, Newnam BE, Soileau MJ (eds) Laser-Induced Damage to Optical Materials: 1993. SPIE 2114: 355–365

    Chapter  Google Scholar 

  • Fornier A, Cordillot C, Bernardino D, Lam O, Roussel A, Amra C, Escoubas L, Albrand G, Commandré M, Roche P, Cathelinaud M, Gatto A (1997) Characterization of optical coatings: Damage threshold/local absorption correlation. In: Bennett HE, Guenther AH, Kozlowski MR, Newnam BE, Soileau MJ (eds) Laser-Induced Damage to Optical Materials: 1996. SPIE 2966: 292–305

    Chapter  Google Scholar 

  • Génin FY, Stolz CJ (1996) Morphologies of laser-induced damage in hafnia-silica multilayer mirror and polarizer coatings. In: Morin M, Giesen A (eds) Third International Workshop on Laser Beam and Optics Characterization. SPIE 2870: 439–448

    Chapter  Google Scholar 

  • Génin FY, Stolz CJ, Reitter T, Kozlowski MR, Bevis RP, Von Gunten MK (1997) Effect of electric-field distribution on the morphologies of laser-induced damage in hafnia-silica multilayer polarizers. In: Bennett HE, Guenther AH, Kozlowski MR, Newnam BE, Soileau MJ (eds) Laser-Induced Damage to Optical Materials: 1996. SPIE 2966: 342–352

    Chapter  Google Scholar 

  • Génin FY, Stolz CJ, Kozlowski MR (1997) Growth of laser-induced damage during repetitive illumination of HfO2-SiO2 multilayer mirror and polarizer coatings. In: Bennett HE, Guenther AH, Kozlowski MR, Newnam BE, Soileau MJ (eds) Laser-Induced Damage to Optical Materials: 1996. SPIE 2966: 273–282

    Chapter  Google Scholar 

  • Génin FY, Salleo A, Pistor TV, Chase LL (2001) Role of light intensification by cracks in optical breakdown on surfaces. J Opt Soc Am A. 32: 5567–5574

    Google Scholar 

  • Gill DH, Newnam BE, McLeod J (1978) Use of non-quarter-wave designs to increase the damage resistance of reflectors at 532 and 1064 nanometers. In: Glass AJ, and Guenther AH (eds) Laser-Induced Damage in Optical Materials: 1977. NBS SP 509: 260–270

    Google Scholar 

  • Glass AJ, Guenther AH (1973) Laser induced damage of optical elements — a status report. Appl. Optics 12: 637

    Article  ADS  Google Scholar 

  • Goppert-Mayer M (1931) Über Elementarakte mit zwei Quantensprüngen. Ann Phys 9: 273–294

    Article  Google Scholar 

  • Guenther KH (1981) Nodular defects in dielectric multilayers and thick single layers. Appl. Optics 20: 1034–1038

    Article  ADS  Google Scholar 

  • Guenther KH, Humpherys TW, Balmer J, Bettis JR, Casparis E, Ebert J, Eichner M, Guenther AH, Kiesel E, Kuehnel R, Milam D, Ryseck W, Seitel SC, Steward AF, Weber H, Weber HP, Wirtenson GR, Wood RM (1984) 1.06 µm laser damage of thin film optical coatings: a round robin experiment involving various pulse lengths and beam diameters. Appl. Optics 23: 3743–3752

    Article  ADS  Google Scholar 

  • Hacker E, Lauth H, Weißbrodt P (1996) Review of structural influences on the laser damage thresholds of oxide coatings. In: Bennett HE, Guenther AH, Kozlowski MR, Newnam BE, Soileau MJ (eds) Laser-Induced Damage to Optical Materials: 1995. SPIE 2714: 316–330

    Chapter  Google Scholar 

  • Hue J, Gérlin FY, Maricle SM, Kozlowski MR (1997) Towards predicting the laser damage threshold of large-area optics. In: Bennett HE, Guenther AH, Kozlowski MR, Newnam BE, Soileau MJ (eds) Laser-Induced Damage to Optical Materials: 1996. SPIE 2966: 451–462

    Chapter  Google Scholar 

  • Jasapara J, Nampoothiri AVV, Rudolph W, Ristau D, Starke K (2001) Femtosecond laser pulse induced breakdown in dielectric thin films. Phys Rev B 63: 0451171–0451175

    Article  Google Scholar 

  • Kaiser N, Uhlig H, Schallenberg UB, Anton B, Kaiser U, Mann K, Eva E (1995) High damage threshold A12O3 dielectric coatings for eximer lasers. Thin Solid Films 260: 86–92

    Article  ADS  Google Scholar 

  • Knollenberg RG, Long D, Lopez S (1995) An in-situ fiber optics sensor for monitoring particle microcontamination during an IBS optical coating process, in Optical Interference Coatings, Vol. 17, 1995 OSA Technical Digest Series (Optical Society of America, Washington DC), pp 124–126

    Google Scholar 

  • Kozlowski MR (1995) Damage-resistant laser coatings. In: Flory FR (ed) Thin Films for Optical Systems. Marcel Dekker, New York, pp 521–549

    Google Scholar 

  • Kozlowski MR, Chow R (1994) The role of defects in laser damage of multilayer coatings. In: Bennett HE, Chase LL, Guenther AH, Newnam BE, Soileau MJ (eds) Laser Induced Damage to Optical Materials: 1993. SPIE 2114: 640–648

    Chapter  Google Scholar 

  • Kozlowski MR, Tench RJ, Chow R, Sheehan L (1994) Influence of defect shape on Laser Induced damage in multilayer coatings. In: F. Abelés (ed) Optical Interference Coatings. SPIE 2253: 743–750

    Chapter  Google Scholar 

  • Libenson MN, Gruzdev VE (1998) Electrodynamic resonances and instabilities in transparent medium and their role in laser-induced damage. In: Exarhos GJ, Guenther AH, Kozlowski MR, Soileau MJ (eds) Laser-Induced Damage to Optical Materials: 1997. SPIE 3244: 11–19

    Chapter  Google Scholar 

  • Lowdermilk WH, Milam D, Rainer F (1980) Damage to coatings and surfaces by 1.06 µm pulses. In: Bennett HE, Glass AJ, Guenther AH, Newnam BE (eds) Laser-Induced Damage in Optical Materials: 1979. NIST SP 568: 391–403

    Google Scholar 

  • Maiman, TH (1960) Stimulated optical radiation in ruby. Nature 187: 493–494

    Article  ADS  Google Scholar 

  • Matteson S, Bowling RA (1988) Particulate contamination in atomic and molecular-beam deposition systems. J Vac Sci Technol A 6: 2504–2507.

    Article  ADS  Google Scholar 

  • Milam D, Bradbury RA, Bass M (1973) Laser damage threshold for dielectric coatings as determined by inclusions. Appl. Physics Letters 23: 654–657

    Article  ADS  Google Scholar 

  • Miller MD, Chow R, Loomis GE (1994) Electrostatic reduction of particulates for laser resistant hafnia coatings. In: Bennett HE, Chase LL, Guenther AH, Newnam BE, Soileau MJ (eds) Laser-Induced Damage in Optical Materials: 1993. SPIE 2114: 426-

    Google Scholar 

  • Newnam BE, Gill DH, Faulkner G (1976) Influence of standing-wave fields on the laser damage resistance of dielectric films. In: Glass AJ, and Guenther AH (eds) Laser Induced Damage in Optical Materials: 1975. NIST SP 435: 254–271

    Google Scholar 

  • Papandrew AB, Stolz CJ, Wu ZL, Loomis GE, Falabella S (2001) Laser conditioning characterization and damage threshold prediction of hafnia/silica multilayer mirrors by photothermal microscopy. In: Exarhos GJ, Guenther AH, Kozlowski MR, Lewis KL, Soileau MJ (eds) Laser-Induced Damage to Optical Materials: 2000: SPIE 4347: 53–61

    Chapter  Google Scholar 

  • Poulingue M, Leplan H, Dijon J, Rafin B, Ignat M (1999) Generation of defects with diamond and silica particles inside high reflection coatings: influence on the laser damage threshold. In: Amra C, Macleod HA (eds) Advances in Optical Interference Coatings. SPIE 3738: 325–336

    Chapter  Google Scholar 

  • Poulingue M, Dijon J, Ignat M, Leplan H, Pinot B (1999) New approach for the critical size of the nodular defects: the mechanical connection. In: Exarhos GJ, Guenther AH, Kozlowski MR, Lewis KL, Soileau MJ (eds) Laser-Induced Damage to Optical Materials: 1998. SPIE 3578: 370–380

    Chapter  Google Scholar 

  • Poulingue M, Dijon J, Garrec P, Lyan P (1999) 1.06 µm laser irradiation of high reflection coatings inside a scanning electron microscope. In: Exarhos GJ, Guenther AH, Kozlowski MR, Lewis KL, Soileau MJ (eds) Laser-Induced Damage to Optical Materials: 1998. SPIE 3578: 188–195

    Google Scholar 

  • Rainer F, DeMarco FP, Staggs MC, Kozlowski MR, Atherton LJ, Sheehan LM (1994) Historic perspective of fifteen years of laser damage thresholds at LLNL. In: Bennett HE, Chase LL, Guenther AH, Newnam BE, Soileau MJ (eds) Laser-Induced Damage to Optical Materials: 1993, SPIE 2114: 9–22

    Chapter  Google Scholar 

  • Rainer F, Atherton LJ, Campbell JH, DeMarco FP, Kozlowski MR, Morgan AJ, Staggs MC (1992) Four-harmonic database of laser-damage tesing. In: Bennett HE, Chase LL, Guenther AH, Newnam BE, Soileau MJ (eds) Laser-Induced Damage to Optical Materials: 1991. SPIE 1624: 116–127

    Chapter  Google Scholar 

  • Reichling M, Bodemann A, Kaiser N, (1998) Defect-induced laser damage in oxide multilayer coatings for 248 nm. Thin Solid Films 320: 264–279

    Article  ADS  Google Scholar 

  • Sawicki RH, Shang CC, Swatloski TL (1995) Failure characterization of nodular defects in multi-layer dielectric coatings. In: Bennett HE, Guenther AH, Kozlowski MR, Newnam BE, Soileau MJ (eds) Laser-Induced Damage to Optical Materials: 1994. SPIE 2428: 333–342

    Chapter  Google Scholar 

  • Sheehan LM, Kozlowski MR, Rainer F, Staggs MC (1994) Large-area conditioning of optics for high-power laser systems. In: Bennett HE, Chase LL, Guenther AH, Newnam BE, Soileau MJ (eds) Laser-Induced Damage to Optical Materials: 1993. SPIE 2114: 559–568

    Chapter  Google Scholar 

  • Staggs MC, Kozlowski MR, Siekhaus WJ, Balooch M (1993) Correlation of damage threshold and surface geometry of nodular defects in HR coatings as determined by insitu atomic force microscopy. In: Bennett HE, Chase LL, Guenther AH, Newnam BE, Soileau MJ (eds) Laser-Induced Damage to Optical Materials: 1992. SPIE 1884: 234–242

    Google Scholar 

  • Stolz CJ (1999) Brewster’s angle thin film plate polarizer design study from an electric field perspective. In: Amra C, Macleod HA (eds) Advances in Optical Interference Coatings. SPIE 3738: 347–353

    Chapter  Google Scholar 

  • Stolz CJ, Tench RJ, Kozlowski MR, Fornier A (1996) A comparison of nodular defect seed geometeries from different deposition techniques. In: Bennett HE, Guenther AH, Kozlowski MR, Newnam BE, Soileau MJ (eds) Laser-Induced Damage to Optical Materials: 1995. SPIE 2714: 374–382

    Chapter  Google Scholar 

  • Stolz CJ, Génin FY, Reitter TA, Molau N, Bevis RP, Von Gunten MK, Smith DJ, Anzellotti JF (1997) Effect of SiO2 overcoat thickness on laser damage morphology of HfO2/SiO2 Brewster’s angle polarizers at 1064 nm. In: Bennett HE, Guenther AH, Kozlowski MR, Newnam BE, Soileau MJ (eds) Laser-Induced Damage to Optical Materials: 1996. SPIE 2966: 265–272

    Chapter  Google Scholar 

  • Stolz CJ, Sheehan LM, Maricle SM, Schwartz S, Hue J (1999) A study of laser conditioning methods of hafnia silica multilayer mirrors. In: Exarhos GJ, Guenther AH, Kozlowski MR, Lewis KL, Soileau MJ (eds) Laser-Induced Damage to Optical Materials: 1998. SPIE 3578: 144–152

    Chapter  Google Scholar 

  • Stolz CJ, Sheehan LM, Von Gunten MK, Bevis RP, Smith D (1999) The advantages of evaporation of hafnium in a reactive environment to manufacture high damage threshold multilayer coatings by electron-beam deposition. In: Amra C, Macleod HA (eds) Advances in Optical Interference Coatings. SPIE 3738: 318–324

    Chapter  Google Scholar 

  • Stuart BC, Herman S, Perry MD (1995) Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses I. Experimental. In: Bennett HE, Guenther AH, Kozlowski MR, Newnam BE, Soileau MJ (eds) Laser-Induced Damage to Optical Materials: 1994. SPIE 2428: 568–578

    Chapter  Google Scholar 

  • Tench RJ, Chow R, Kozlowski MR (1994) Characterization of defect geometries in multilayer optical coatings. J. Vac. Sci. Technol. A 12: 2808–2813

    Article  ADS  Google Scholar 

  • Thomas IM (1994) Sol-gel coatings for high power laser optics-past, present and future. In: Bennett HE, Chase LL, Guenther AH, Newnam BE, Soileau MJ (eds) Laser-Induced Damage to Optical Materials: 1993. SPIE 2114: 232–242

    Chapter  Google Scholar 

  • Turner F (1972) Ruby laser damage threshold in evaporated thin films and multilayer coatings. In: Glass AJ, and Guenther AH (eds) Laser-Induced Damage in Optical Materials: 1971. NIST SP 356: 119–123

    Google Scholar 

  • Tuttle Hart T, Lichtenstein TL, Carniglia CK, Rainer F (1982) Effects of undercoats and overcoats on damage thresholds of 248 nm coatings. In: Bennett HE, Guenther AH, Milam D, Newnam BE (eds) Laser-Induced Damage in Optical Materials: 1981. NBS SP 638: 344–349

    Google Scholar 

  • Van Stryland EW, Sheik-bahae M, Said AA, Hagan DJ (1993) Characterization of nonlinear absorption and refraction in advanced materials. In: Etemad S (ed) Nonlinear Optical Properties of Advanced Materials: SPIE 1852: 135–150

    Chapter  Google Scholar 

  • Walker TW, Guenther AH, Nielsen P (1981) Pulsed laser-induced damage to thin-film optical coatings-Part I: Experimental & Part II: Theory, IEEE J. Q. E. QE-17: 2041–2065.

    Article  ADS  Google Scholar 

  • Walton CC, Génin FY, Chow R, Kozlowski MR, Loomis GE, Pierce E (1996) Effect of silica overlayers on laser damage of HfO2-SiO2 56° incidence high reflectors. In: Bennett HE, Guenther AH, Kozlowski MR, Newnam BE, Soileau MJ (eds) Laser-Induced Damage to Optical Materials: 1995. SPIE 2714: 550–558

    Chapter  Google Scholar 

  • Weakley SC, Stolz CJ, Wu ZL, Bevis RP, Von Gunten MK (1999) Role of starting material composition in interfacial damage morphology of hafnia silica multilayer coatings. In: Exarhos GJ, Guenther AH, Kozlowski MR, Lewis KL, Soileau MJ (eds) Laser Induced Damage to Optical Materials: 1998. SPIE 3578: 137–143

    Chapter  Google Scholar 

  • Welsch E, Walther HG, Schafer D, Wolf R, Müller H (1988) Correlation between morphology, optical loss and laser damage of MgF2-SiO2 multilayers. Thin Solid Films 156: 1–10

    Article  ADS  Google Scholar 

  • Williams FL, Petersen Jr. GA, Schmell RA, Carniglia CK (1992) Observation and control of thin-film defects using in-situ total internal reflection microscopy. In: Bennett HE, Chase LL, Guenther AH, Newnam BE, Soileau MJ (eds) Laser-Induced Damage to Optical Materials: 1991. SPIE 1624: 256–270

    Chapter  Google Scholar 

  • Wolfe R, Kozlowski MR, Campbell JH, Rainer F (1990) Laser conditioning of optical thin films. In: Bennett HE, Chase LL, Guenther AH, Newnam BE, Soileau MJ (eds) Laser Induced Damage in Optical Materials: 1989. NIST Spec. Publ. 801, 360–375

    Google Scholar 

  • Wood, RM (1986) Laser Damage in Optical Materials, Adam Hilger Series on Optics and Optoelectronics

    Google Scholar 

  • Wu ZL, Reichling M, Fan ZX, Wang ZJ (1991) An understanding of the abnormal wavelength effect of overcoats. In: Bennett HE, Chase LL, Guenther AH, Newnam BE, Soileau MJ (eds) Laser-Induced Damage to Optical Materials: 1990. SPIE 1441, 200–213

    Chapter  Google Scholar 

  • Wu ZL, Stolz CJ, Weakley SC, Hughes JD, Zhao Q (2001) Damage threshold prediction of hafnia-silica multilayer coatings by nondestructive evaluation of fluence-limiting defects. Appl. Opt. 40: 1897–1906

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Stolz, C.J., Génin, F.Y. (2003). Laser Resistant Coatings. In: Kaiser, N., Pulker, H.K. (eds) Optical Interference Coatings. Springer Series in Optical Sciences, vol 88. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-36386-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-36386-6_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-05570-6

  • Online ISBN: 978-3-540-36386-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics