Skip to main content

Computing Refined Buneman Trees in Cubic Time

  • Conference paper
Algorithms in Bioinformatics (WABI 2003)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 2812))

Included in the following conference series:

Abstract

Reconstructing the evolutionary tree for a set of n species based on pairwise distances between the species is a fundamental problem in bioinformatics. Neighbor joining is a popular distance based tree reconstruction method. It always proposes fully resolved binary trees despite missing evidence in the underlying distance data. Distance based methods based on the theory of Buneman trees and refined Buneman trees avoid this problem by only proposing evolutionary trees whose edges satisfy a number of constraints. These trees might not be fully resolved but there is strong combinatorial evidence for each proposed edge. The currently best algorithm for computing the refined Buneman tree from a given distance measure has a running time of O(n 5) and a space consumption of O(n 4). In this paper, we present an algorithm with running time O(n 3) and space consumption O(n 2). The improved complexity of our algorithm makes the method of refined Buneman trees computational competitive to methods based on neighbor joining.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bandelt, H.-J., Dress, A.W.: Reconstructing the shape of a tree from observed dissimilarity data. Advances in Applied Mathematics 7, 309–343 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  2. Barthélémy, J.-P., Guénoche, A.: Trees and Proximity Representations. John Wiley & Sons, Chichester (1991)

    MATH  Google Scholar 

  3. Berry, V., Bryant, D.: Faster reliable phylogenetic analysis. In: Proc. 3rd International Conference on Computational Molecular Biology (RECOMB), pp. 69–69 (1999)

    Google Scholar 

  4. Berry, V., Gascuel, O.: Inferring evolutionary trees with strong combinatorial evidence. Theoretical Computer Science 240, 271–298 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bryant, D., Berry, V.: A structured family of clustering and tree construction methods. Advances in Applied Mathematics 27(4), 705–732 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  6. Bryant, D., Moulton, V.: A polynomial time algorithm for constructing the refined buneman tree. Applied Mathematics Letters 12, 51–56 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  7. Buneman, P.: The recovery of trees from measures of dissimilarity. In: Hodson, F., Kendall, D., Tautu, P. (eds.) Mathematics in Archaeological and Historical Sciences, pp. 387–395. Edinburgh University Press, Edinburgh (1971)

    Google Scholar 

  8. Gower, J.C., Ross, J.G.S.: Minimum spanning trees and single-linkage cluster analysis. Applied Statistics 18, 54–64 (1969)

    Article  MathSciNet  Google Scholar 

  9. Gusfield, D.: Efficient algorithms for inferring evolutionary trees. Networks 21, 19–28 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  10. Huson, D.: Splitstree: a program for analyzing and visualizing evolutionary data. Bioinformatics 14(1), 68–73 (1998), http://www-ab.informatik.uni-tuebingen.de/software/splits/welcome_en.html

    Article  Google Scholar 

  11. Leclerc, B.: Description combinatoire des altramétriqueès. Math. Sci. Hum. 73, 5–37 (1981)

    MathSciNet  Google Scholar 

  12. Moulton, V., Steel, M.: Retractions of finite distance functions onto tree metrics. Discrete Applied Mathematics 91, 215–233 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  13. Nei, M., Kumar, S.: Molecular Evolution and Phylogenetics. Oxford University Press, Oxford (2000)

    Google Scholar 

  14. Saitou, N., Nei, M.: The neighbor-joining method: A new method for reconstructing phylogenetic trees. Molecular Biology Evolution 4, 406–425 (1987)

    Google Scholar 

  15. Schönhage, A., Paterson, M.S., Pippenger, N.: Finding the median. Journal of Computer and System Sciences 13, 184–199 (1976)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Brodal, G.S., Fagerberg, R., Östlin, A., Pedersen, C.N.S., Rao, S.S. (2003). Computing Refined Buneman Trees in Cubic Time. In: Benson, G., Page, R.D.M. (eds) Algorithms in Bioinformatics. WABI 2003. Lecture Notes in Computer Science(), vol 2812. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-39763-2_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-39763-2_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-20076-5

  • Online ISBN: 978-3-540-39763-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics