Skip to main content

Multiscale Methods for the Simulation of Turbulent Flows

  • Conference paper
Numerical Flow Simulation III

Summary

In this paper we apply the finite difference method on adaptive sparse grids [9] to the simulation of turbulent flows. This method combines the flexibility and efficiency of finite difference schemes with the advantages of an adaptive approximation by tensor product multiscale bases. We shortly discuss the method. Then, we present numerical results for a simple linear convection problem for a validation of our scheme. Finally, results for three-dimensional turbulent shear layers are shown.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brown G.L., Roshko A. (1974) On density effects and large structure in turbulent mixing layers. J. Fluid Mech. 64.

    Google Scholar 

  2. Cohen A., Daubechies I. et al. (1992) Biorthogonal bases of compactly supported wavelets. Comm. Pure Appl. Math. 45, 485–560

    Article  MATH  MathSciNet  Google Scholar 

  3. Dahmen W., Schneider R. et al. (1998) Nonlinear Functionals of Wavelet Expansions. IGPM, RWTH Aachen, to appear in Numerische Mathematik.

    Google Scholar 

  4. Daubechies I. (1988) Orthonormal bases of compactly supported wavelets. Comm. Pure Appl. Math. 41, 909–996

    Article  MATH  MathSciNet  Google Scholar 

  5. Deslaurier G., Dubuc S. (1989) Symmetric iterative interpolation processes. Constr. Appr. 5, 49–68

    Article  Google Scholar 

  6. DeVore R. (1999) Nonlinear Approximation. Acta Numerica 8.

    Google Scholar 

  7. Donoho D. (1992) Interpolating wavelet transform. Preprint Stanford University.

    Google Scholar 

  8. Faber G. (1909) Über stetige Funktionen. Math. Annalen 66, 81–94.

    Article  MATH  MathSciNet  Google Scholar 

  9. Griebel M. (1998) Adaptive sparse grid multilevel methods for elliptic PDEs based on finite differences. Computing 61, 151–180.

    Article  MATH  MathSciNet  Google Scholar 

  10. Griebel M., Koster F. (2000) Adaptive Wavelet Solvers for the Unsteady Incompressible Navier-Stokes Equations. in Malek J., Rokyta M. (eds.), Advanced Mathematical Theories in Fluid Mechanics.

    Google Scholar 

  11. Harten A. (1995) Multiresolution algorithms for the numerical solution of hyperbolic conservation laws. Comm. Pure Appl. Math. 48, 1305–1342.

    Article  MATH  MathSciNet  Google Scholar 

  12. Ho C.-M., Huerre P. (1984) Perturbated free shear layers. Ann. Rev. Fluid Mech. 16, 365–424.

    Article  Google Scholar 

  13. Hochmuth R. (1999) Wavelet Bases in Numerical Analysis and Restricted Nonlinear Approximation. Habilitationsschrift, Freie Universität Berlin.

    Google Scholar 

  14. Koster F. (2000) A Proof of the Consistency of the Finite Difference Technique on Sparse Grids. Computing 65, 247–261.

    Article  MATH  MathSciNet  Google Scholar 

  15. Koster F., Schneider K., Griebel M., Farge M. (2000) Adaptive Wavelet Methods for the Navier-Stokes equations. in E.H. Hirschel (ed.) Notes on Numerical Fluid Mechanics.

    Google Scholar 

  16. Koster F. (2001) Multiskalen-basierte Finite Differenzen Verfahren auf adaptiven Düinnen Gittern. PhD thesis, Universität Bonn.

    Google Scholar 

  17. Koster E (2001) Preconditioners for Sparse Grid Discretizations. Preprint SFB-256 Universität Bonn.

    Google Scholar 

  18. MaIlat S. (1989) A theory for multiresolution signal decomposition: the wavelet representation. IEEE Trans. Patt. Anal. and Mach. Intell. 7, 674–693

    Article  Google Scholar 

  19. Rogers M.M., Moser R.D. (1993) Direct simulation of a self-similar turbulent mixing layer. Phys. Fluids 6, 903–923.

    Article  Google Scholar 

  20. Schiekofer T. (1998) Die Methode der finiten Differenzen auf dünnen Gittern zur Lösung elliptischer und parabolischer PDEs. PhD thesis, Universität Bonn.

    MATH  Google Scholar 

  21. Temlyakov V. (1993) Approximation of Periodic Functions. Nova Science Publishers.

    MATH  Google Scholar 

  22. Townsend A.A. (1976) Structure of Turbulent Shear Flow. Cambridge University Press.

    MATH  Google Scholar 

  23. Triebe! H. (1992) Theory of function spaces II. Birkhäuser Verlag.

    Book  Google Scholar 

  24. Wesseling P. (2001) Principles of Computational Fluid Dynamics. Springer Verlag.

    Book  Google Scholar 

  25. Yserentant H.(1986) On the multilevel splitting of finite element spaces. Num. Math. 49, 379–412.

    Article  MATH  MathSciNet  Google Scholar 

  26. Zenger C. (1991) Sparse Grids. in Hackbusch W. (ed.) Notes on Numerical Fluid Mechanics 31.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Griebel, M., Koster, F. (2003). Multiscale Methods for the Simulation of Turbulent Flows. In: Hirschel, E.H. (eds) Numerical Flow Simulation III. Notes on Numerical Fluid Mechanics and Multidisciplinary Design (NNFM), vol 82. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-45693-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-45693-3_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-53653-3

  • Online ISBN: 978-3-540-45693-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics