Skip to main content

A Historical Perspective of Actin Assembly and Its Interactions

  • Chapter
Molecular Interactions of Actin

Part of the book series: Results and Problems in Cell Differentiation ((RESULTS,volume 32))

Abstract

Actin was discovered by F. B. Straub more than 50 years ago as one of the main components of muscle proteins and as a partner of myosin for superprecipitation coupled with the hydrolysis of ATP (Straub 1942). When extracted from dried muscle powder into water, actin was in the state of dispersed monomers, named G-actin, and transformed to fibrous polymers, named F-actin, in a solution of neutral salts. With removal of salts, F-actin returned to G-actin. Later, he noticed that this G-F transformation was coupled with the hydrolysis of ATP bound to G-actin; ADP produced were kept bound to F-actin (Straub and Feuer 1950). The reverse transformation from F to G was not associated with rephosphorylation of bound ADP; G-actin released ADP and bound new ATP in solution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Asakura S, Oosawa F (1960) Dephosphorylation of ATP in actin solutions at low concentration of Mg ions. Arch Biochem Biophys 87: 273–285

    Article  PubMed  CAS  Google Scholar 

  • Asakura S, Kasai M, Oosawa F (1960) The effect of temperature on the equilibrium state of actin solutions. J Polym Sci 44: 35–49

    Article  CAS  Google Scholar 

  • Asakura S, Taniguchi M, Oosawa F (1963) Mechanochemical behavior of F-actin. J Mol Biol 7: 55–69

    Article  CAS  Google Scholar 

  • Carlier M-F (1990) Actin polymerization and ATP hydrolysis. Adv Biophys 26: 51–73

    Article  PubMed  CAS  Google Scholar 

  • Carlier M-F, Pantaloni D, Korn E (1984) Evidence for an ATP cap at the ends of actin filaments and its regulation of the F-actin steady state. J Biol Chem 259: 9983–9986

    PubMed  CAS  Google Scholar 

  • Ebashi S, Endo M (1968) Calcium ions and muscle contraction. Prog Biophys Mol Biol 18: 123–183

    Article  PubMed  CAS  Google Scholar 

  • Faucheux L, Bourdieu L, Kaplan P, Libchaber A (1995) Optical thermal ratchet. Phys Rev Lett 74: 1504–1507

    Article  PubMed  CAS  Google Scholar 

  • Finer J, Simmons R, Spudich JA (1994) Single myosin molecule mechanics; picoNewton forces and nanometer steps. Nature 369: 113–119

    Article  Google Scholar 

  • Fujime S (1970) Quasielastic light scattering from solutions of macromolecules, II Doppler broadening of light scattered from solutions of semi-flexible polymers, F-actin. J Phys Soc Jpn 29: 751–759

    Article  CAS  Google Scholar 

  • Funatsu T, Harada Y, Tokunaga M, Saito K, Yanagida T (1995) Imaging of single fluorescent molecules and individual ATP turnovers by single myosin molecules in aqueous solution. Nature 374: 555–559

    Article  PubMed  CAS  Google Scholar 

  • Hanson J, Lowy J (1963) The structure of F-actin and actin filaments isolated from muscle. J Mol Biol 6: 46–60

    Article  CAS  Google Scholar 

  • Harada Y, Sakurada K, Aoki T, Thomas DD, Yanagida T (1990) Mechanochemical coupling in actomyosin energy transduction studied by in vitro motility assay. J Mol Biol 216: 49–68

    Article  PubMed  CAS  Google Scholar 

  • Hatano S (1994) Actin-binding proteins in cell motility. Int Rev Cytol 156: 199–273

    Article  PubMed  CAS  Google Scholar 

  • Hatano S, Oosawa F (1966) Isolation and characterization of plasmodium actin. Biochim Biophys Acta 127: 488–498

    Article  PubMed  CAS  Google Scholar 

  • Hatano S, Totsuka T, Oosawa F (1967) Polymerization of plasmodium actin. Biochim Biophys Acta 140: 109–122

    Article  CAS  Google Scholar 

  • Higashi-Fujime S (1980) Active movement in vitro of bundles of microfilaments isolated from Nitella cell. J Cell Biol 87: 569–578

    Article  PubMed  CAS  Google Scholar 

  • Holmes K, Popp D, Gebhard W, Kabsch W (1990) Atomic model of the actin filament. Nature 347: 44–49

    Article  PubMed  CAS  Google Scholar 

  • Huxley AF (1998) Biological motors: Energy storage in myosin molecules. Curr Biol 8: 485–488

    Article  Google Scholar 

  • Huxley AF, Niedergerke R (1954) Structural changes in muscle during contraction. Nature 173: 971–973

    Article  PubMed  CAS  Google Scholar 

  • Huxley H, Stewart A, Sosa H, Irving T (1994) X-ray diffraction measurements of the extensibility of actin and myosin filaments in contracting muscle. Biophys J 67: 2411–2421

    Article  PubMed  CAS  Google Scholar 

  • Huxley HE (1963) Electronmicroscopic studies on the structure of natural and synthetic protein filaments from striated muscle. J Mol Biol 7: 281–308

    Article  CAS  Google Scholar 

  • Huxley HE (1973) Cold Spring Harbor Symp. Quant Biol 37: 361–376

    Article  CAS  Google Scholar 

  • Huxley HE, Hanson J (1954) Changes in the cross-striation of muscle during contraction and stretch and their structural interpretation. Nature 173: 973–975

    Article  PubMed  CAS  Google Scholar 

  • Ishijima A, Harada Y, Kojima H, Funatsu T, Higuchi H, Yanagida T (1994) Single molecule analysis of the actomyosin motor using nano-manipulation. Biochem Biophys Res Commun 199: 1057–1063

    Article  PubMed  CAS  Google Scholar 

  • Ishijima A, Kojima H, Funatsu T, Tokunaga M, Higuchi H, Tanaka H, Yanagida T (1998) Simultaneous observation of individual Atpase and mechanical events by a single myosin molecule during interaction with actin. Cell 92: 161–171

    Article  PubMed  CAS  Google Scholar 

  • Ishiwata S, Fujime S (1972) Effect of calcium ions on the flexibility of reconstituted thin filament of muscle studied by quasielastic light scattering of laser light. J Mol Biol 68: 511–522

    Article  PubMed  CAS  Google Scholar 

  • Kabsch W, Mannherz H, Suck D, Pai E, Holmes K (1990) Atomic structure of the actin-DNase Icomplex. Nature 347: 37–43

    Article  PubMed  CAS  Google Scholar 

  • Kamiya N, Kuroda K (1956) Velocity distribution of protoplasmic streaming in Nitella cells. Bot Mag 69: 544–554

    Google Scholar 

  • Kasai M, Asakura S, Oosawa F (1962) Cooperative nature of G-F transformation of actin. Biochim Biophys Acta 57: 22–31

    Article  PubMed  CAS  Google Scholar 

  • Kasai M, Nakano E, Oosawa F (1965) Polymerization of actin free from nucleotides and divalent cations. Biochim Biophys Acta 94: 494–503

    Article  PubMed  CAS  Google Scholar 

  • Kishino A, Yanagida T (1988) Force measurements by micromanipulation of a single actin filament by glass needle. Nature 334: 74–76

    Article  PubMed  CAS  Google Scholar 

  • Kitamura K, Tokunaga M, Iwane A, Yanagida T (1999) A single myosin head moves along an actin filament with regular steps of 5.3 nm. Nature 397: 129–134

    Article  PubMed  CAS  Google Scholar 

  • Kojima H, Ishijima A, Yanagida T (1994) Direct measurement of stiffness of single actin filaments with and without tropomyosin by in vitro nanomanipulation. Proc Natl Acad Sci USA 91: 12962–12966

    Article  PubMed  CAS  Google Scholar 

  • Kondo H, Ishiwata S (1976) Unidirectional growth of F-actin. J Biochem 79: 159–171

    PubMed  CAS  Google Scholar 

  • Kron S, Spudich JA (1986) Fluorescent actin filaments move on myosin fixed on a glass surface. Proc Natl Acad Sci USA 83: 6272–6276

    Article  PubMed  CAS  Google Scholar 

  • Magnesco M (1993) Forced thermal ratchet. Phys Rev Lett 71: 1477–1481

    Article  Google Scholar 

  • Nagashima H, Asakura S (1980) Dark field light microscopic study of the flexibility of F-actin complexes. J Mol Biol 136: 169–182

    Article  PubMed  CAS  Google Scholar 

  • Oosawa F, Asakura S (1975) Thermodynamics of the polymerization of protein. Academic Press New York

    Google Scholar 

  • Oosawa F, Hayashi S (1986) The loose coupling mechanism in molecular machines of living cells. Adv Biophys 22: 151–183

    Article  PubMed  CAS  Google Scholar 

  • Oosawa F, Kasai M (1962) Theory of linear and helical polymerization of macromolecules. J Mol Biol 4: 10–21

    Article  PubMed  CAS  Google Scholar 

  • Oosawa F, Asakura S, Ooi T (1961) Physical chemistry of muscle protein, actin. Prog Theor Phys suppl 17: 14–34

    Article  Google Scholar 

  • Oosawa F, Asakura S, Hotta K, Imai N, Ooi T (1959) G-F transformation of actin as a fibrous condensation. J Polym Sci 37: 323–336

    Article  CAS  Google Scholar 

  • Oosawa F, Fujime S, Ishiwata S, Mihashi K (1973) Dynamic property of F-actin and thin filament. Cold Spring Harbor Symp Quant Biol 37: 277–286

    Article  CAS  Google Scholar 

  • Oosawa F (1983) Macromolecular assembly of actin In: Stracher A (ed)., Muscle nonmuscle motility, Academic Press New York, 152–216

    Google Scholar 

  • Oosawa F (1993) Physical chemistry of actin: past, present and future. Biophys Chem 47: 101–111

    Article  PubMed  CAS  Google Scholar 

  • Oosawa F (1995) Sliding and ATPase. J Biochem 118: 863–870

    PubMed  CAS  Google Scholar 

  • Orlova A, Egelman E (1995) Structural dynamics of F-actin I. J Mol Biol 245: 582–597

    Article  PubMed  CAS  Google Scholar 

  • Orlova A, Prochniewicz E, Egelman EH (1995) Structural dynamics of F-actin II. J Mol Biol 245: 598–607

    Article  PubMed  CAS  Google Scholar 

  • Straub FB, Feuer G (1950) Adenosinetriphosphate, the functional group of actin. Biochim Biophys Acta 4: 455–470

    Article  CAS  Google Scholar 

  • Straub FB (1942) Actin. Studies Med Inst Szeged 2: 3–15

    CAS  Google Scholar 

  • Szent-Györgyi A (1951) Chemistry of muscular contraction Academic Press, New York

    Google Scholar 

  • Takebayashi T, Morita Y, Oosawa F (1977) Electronmicroscopic investigation of the flexibility of F-actin. Biochim Biophys Acta 492: 357–363

    Article  PubMed  CAS  Google Scholar 

  • Tilney L, DeRosier D, Tilney M (1992) How Listeria exploits host cell actin to form its own cytoskeleton. J Cell Biol 118: 71–81

    Article  PubMed  CAS  Google Scholar 

  • Vale R, Oosawa F (1990) Protein motors and Maxwell’s demons: Does mechanochemical transduction involve a thermal ratchet? Adv Biophys 26: 97–131

    Article  PubMed  CAS  Google Scholar 

  • Wakabayashi K, Sugimoto Y, Tanaka H, Ueno Y, Takezawa Y, Amemiya Y (1994) X-ray diffraction evidence for the extensibility of actin and myosin filaments during muscle contraction. Biophys J 67: 2422–2435

    Article  PubMed  CAS  Google Scholar 

  • Yanagida T, Nakase M, Nishiyama N, Oosawa F (1984) Direct observation of motion of single F-actin filaments in the presence of myosin. Nature 307: 58–60

    Article  PubMed  CAS  Google Scholar 

  • Yanagida T, Arata T, Oosawa F (1985) Sliding distance of actin filament induced by a myosin cross-bridge during one ATP hydrolysis cycle. Nature 316: 366–369

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Oosawa, F. (2001). A Historical Perspective of Actin Assembly and Its Interactions. In: dos Remedios, C.G., Thomas, D.D. (eds) Molecular Interactions of Actin. Results and Problems in Cell Differentiation, vol 32. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-46560-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-46560-7_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-53675-5

  • Online ISBN: 978-3-540-46560-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics