Skip to main content

Local Second Gradient Models and Damage Mechanics: 1D Post-Localization Studies in Concrete Specimens

  • Chapter
Bifurcations, Instabilities, Degradation in Geomechanics

Abstract

Continuum damage mechanics is often used as a framework for describing the variations of the elastic properties of due to micro-structural degradations. Experimentally, concrete specimens exhibit a network of microscopic cracks that nucleate sub-parallel to the axis of loading. Due to the presence of heterogeneities in the material (aggregates surrounded by a cement matrix), tensile transverse strains generate a self-equilibrated stress field orthogonal to the loading direction, a pure mode I (extension) is thus considered to describe the behaviour even in compression. This rupture mode must be reproduced numerically. This is the reason why the failure criterion of the chosen constitutive law is expressed in terms of the principal extensions and that a tension test is modelled at the end of this paper. The influence of micro-cracking due to the external loads is introduced via damage variables, ranging from 0 for the undamaged material to 1 for a completely damaged material.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kachanov LM (1958) Time of rupture process under creep conditions. Izvestia akademii nauk, USSR, (in Russian), (8):26–31.

    Google Scholar 

  2. Krajcinovic D (1983) Constitutive equations for damaging material. Journal of Applied Mechanics ASME, 50:355–360.

    Article  Google Scholar 

  3. Lemaitre J, Mazars J (1982) Application de la théorie de l’endommagement au comportement non linéaire et á la rupture du béton de structures. Annales de l’ITBTP, 4010.

    Google Scholar 

  4. Ladevéze P (1983) Sur une théorie de l’endommagement anisotrope. Report n. 34, Laboratoire de Mécanique et Technologie, Cachan, France.

    Google Scholar 

  5. Lemaitre J, Chaboche JL (1985) Mécanique des matériaux solides. Dunod-Bordas Ed. Paris, France.

    Google Scholar 

  6. Lemaitre J, Chaboche JL (1994) Mechanics of Materials. Cambridge University Press, Cambridge, pp. 556.

    Google Scholar 

  7. Dragon A, Mroz Z (1979) A continuum model for plastic-brittle behaviour of rock and concrete. International Journal of Engineering Science, 17:121–137.

    Article  Google Scholar 

  8. Fichant S, Pijaudier-Cabot G, La Borderie C (1997) Continuum damage modelling: approximation of crack induced anisotropy. Mech. Res. Comm., 24:109–114.

    Article  Google Scholar 

  9. Fichant S, La Borderie C, Pijaudier-Cabot G (1999) Isotropic and anisotropic descriptions of damage in concrete structures. Mechanics Cohesive Frictional Materials, 4:339–359.

    Article  Google Scholar 

  10. Mazars J, Pijaudier-Cabot G (1989) Continuum damage theory — application to concrete. Journal of Engineering Mechanics ASCE, 115:345–365.

    Google Scholar 

  11. La Borderie CL (1991) Phénoménes unilatéraux dans un matériau endommageable: modélisation et application à l’analyse des structures en béton. Thése de doctorat, Université Paris 6.

    Google Scholar 

  12. Ragueneau F, La Borderie C, Mazars J (2000) Damage Model for Concrete Like Materials Coupling Cracking and Friction, Contribution towards Struc-tural Damping: First Uniaxial Application. Mechanics Cohesive Frictional Materials, 5:607–625.

    Article  Google Scholar 

  13. Pijaudier-Cabot G, Burlion N (1996) Damage and localisation in elastic materials with voids. Mechanics Cohesive Frictional Materials, 1:129–144.

    Article  Google Scholar 

  14. Gérard B, Pijaudier-Cabot G, La Borderie C (1998) Coupled Diffusion-Damage Modelling and the Implications on Failure due to Strain Localisation. International Journal of Solids Structures, 35:4107–4120.

    Article  Google Scholar 

  15. Pijaudier-Cabot G (2000) Continuum damage modelling. Revue Française de Génie Civil, 4(5):33–57. Numéro spécial, Ecole d’été ALERT, Constitutive Modelling of Geomaterials. Cambou, Di Prisco (eds).

    Google Scholar 

  16. Pijaudier-Cabot G, Mazars J (2001) Damage models for concrete. In Handbook of Materials Behaviour Models. Lemaitre J (ed.) Chapter 6-Damage models. Academic Press: New York, 500–513.

    Google Scholar 

  17. Jirasek M, Bažant ZP (2001) Inelastic Analysis of Structures. John Wiley and Sons (eds), 758 pages, Chichester, November.

    Google Scholar 

  18. Mazars J (1984) Application de la mécanique de l’endommagement au comportement non linéaire et á la rupture du béton de structure. Thése de Doctorat d’Etat dés Sciences Physiques, Université Pierre et Marie Curie Paris 6, France.

    Google Scholar 

  19. Mazars J (1986) A description of micro and macroscale damage of concrete structures. Engineering Fracture Mechanics, 25(5/6):729–737.

    Article  Google Scholar 

  20. Bažant ZP (1976) Instability, ductility and size effect in strain softening concrete. Journal of Engineering Mechanics ASCE, 102:331–344.

    Google Scholar 

  21. Bažant ZP (1984) Continuum theory for strain softening Journal of Engineering Mechanics ASCE, 110:1666–1692.

    Google Scholar 

  22. Pijaudier-Cabot G, Bažant ZP (1987) Nonlocal damage theory. Journal of Engineering Mechanics ASCE, 113:1512–1533.

    Article  Google Scholar 

  23. Pijaudier-Cabot G, Haidar K, Dubé JF (2004) Non-local damage model with evolving internal length. International Journal for Numerical and Analytical Methods in Geomechanics, 28:633–652.

    Article  Google Scholar 

  24. Jirásek M (2004) Non-local damage mechanics with application to concrete. Revue française de Génie Civil, 8:683–707.

    Google Scholar 

  25. Aifantis E (1984) On the mirostructural origin if certain inelastic models. Transaction of ASME, J. Mat. Engng. Tech. 106:326–330.

    Google Scholar 

  26. Vardoulakis I, Aifantis E (1991) A gradient flow theory of plasticity for granular materials. Acta Mech., 87:197–217.

    Article  Google Scholar 

  27. De Borst R, Muhlhaus H (1992) Gradient dependent plasticity: formulation and algorithmic aspects. International Journal of Numerical Methods in Engineering, 35:521–539.

    Article  Google Scholar 

  28. Peerlings RHJ, de Borst R, Brekelmans WAM, de Vree JHP (1996) Gradient enhanced damage for quasi-brittle materials. International Journal of Numerical Methods in Engineering, 39:3391–3403.

    Article  Google Scholar 

  29. Peerlings RHJ, Geers MGD, de Borst R, Brekelmans WAM (2001) A critical comparison of nonlocal and gradient-enhanced softening continua. International Journal of Solids Structures, 38:7723–7746.

    Article  Google Scholar 

  30. Fremond M, Nedjar B (1996) Damage gradient of damage and principle of virtual work. International Journal of Solids Structures, 33(8):1083–1103.

    Article  Google Scholar 

  31. Zervos A, Papanastasiou P, Vardoulakis I (2001) A finite element displacement formulation for gradient elastoplasticity. International Journal of Numerical Methods in Engineering, 50:1369–1388.

    Article  Google Scholar 

  32. Chambon R, Caillerie D, El Hassan N (1996) Etude de la localisation unidimensionnelle á l’aide d’un modéle de second gradient. C.R.A.S-Série IIb, 323:231–238.

    Google Scholar 

  33. Chambon R, Caillerie D, El Hassan N (1998) One dimensional localisation studied with a second grade model. European Journal of Mechanics A/Solids, 17(4):637–656.

    Article  Google Scholar 

  34. Chambon R, Caillerie D, Matsushima T (2001) Plastic continuum with microstructure, local second gradient theories for geomaterials: localization studies. International Journal of Solids and Structures, 38:8503–8527.

    Article  Google Scholar 

  35. Mindlin RD (1964) Micro-structure in linear elasticity. Arch. Ration. Mech. Anal, 16:51–78.

    Article  Google Scholar 

  36. Germain P (1973) The method of virtual power in continuum mechanics. Part 2: Microstructure. SIAM J. Appl. Math., 25:556–575.

    Article  Google Scholar 

  37. Chambon R (1989) Une classe de lois de comportement incrémentalement non linéaires pour les sols, résolution de quelques problémes de cohérence. C.R.A.S. Série II., 308:1571–1576.

    Google Scholar 

  38. Chambon R, Desrues J, Charlier R, Hammad W (1994) CLoE, A new rate type constitutive model for geomaterials: Theoretical basis and implementation. International Journal for Numerical and Analytical Methods in Geomechanics, 18(4):253–278.

    Article  Google Scholar 

  39. Matsushima T, Chambon R, Caillerie D (2000) Second gradient models as a particular case of microstructured models: a large strain finite element analysis. C.R.A.S-Série II b, 328:179–186.

    Google Scholar 

  40. Bésuelle P (2003) Implémentation d’un nouveau type d’élément fini dans le code LAGAMINE pour une classe de lois á longueur interne. Rapport d’activité pour le FNRS, Belgique, mai.

    Google Scholar 

  41. Chambon R, Crochepeyre S, Charlier R (2001) An algorithm and a method to search bifurcation points in nonlinear problems. International Journal of Numerical Methods in Engineering, 51:315–332.

    Article  Google Scholar 

  42. Chambon R, Moullet JC (2004) Uniqueness studies in boundary value problems involving some second gradient models. Computer methods in applied mechanics and engineering, 193:2771–2796.

    Article  Google Scholar 

  43. Kotronis P, Chambon R, Mazars J, Collin F (2005) Local second gradient models and damage mechanics: Application to concrete. 11th International Conference on Fracture, Turin, Italy, Org. ICF, cd paper no 5712, 20–25 March.

    Google Scholar 

  44. Bésuelle P, Chambon R, Collin F (2006) Switching mode of deformation in post-localization solutions with quasi brittle material. Journal of mechanics of materials and structures in print.

    Google Scholar 

  45. Rolshoven S (2003) Nonlocal plasticity models for localised fracture. Thése N0 2887, Ecole Polytechnique Fédérale de Lausanne.

    Google Scholar 

  46. Kotronis P, Collin F (2005) Implementation of following path techniques into the finite element code LAGAMINE. Rapport Interne Géomac/3S, septembre.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kotronis, P., Collin, F., Bésuelle, P., Chambon, R., Mazars, J. (2007). Local Second Gradient Models and Damage Mechanics: 1D Post-Localization Studies in Concrete Specimens. In: Exadaktylos, G.E., Vardoulakis, I.G. (eds) Bifurcations, Instabilities, Degradation in Geomechanics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-49342-6_6

Download citation

Publish with us

Policies and ethics