Skip to main content

Topological String Theory on Compact Calabi–Yau: Modularity and Boundary Conditions

  • Chapter
  • First Online:
Homological Mirror Symmetry

Part of the book series: Lecture Notes in Physics ((LNP,volume 757))

Abstract

The topological string partition function Z(λ,t,t) =exp(λ2 g-2 Fg(t, t)) is calculated on a compact Calabi–Yau M. The Fg(t, t) fulfil the holomorphic anomaly equations, which imply that ψ=Z transforms as a wave function on the symplectic space H3(M, Z). This defines it everywhere in the moduli space M(M) along with preferred local coordinates. Modular properties of the sections Fg as well as local constraints from the 4d effective action allow us to fix Z to a large extent. Currently with a newly found gap condition at the conifold, regularity at the orbifold and the most naive bounds from Castelnuovo’s theory, we can provide the boundary data, which specify Z, e.g. up to genus 51 for the quintic.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Klemm and E. Zaslow, “Local mirror symmetry at higher genus,” (1999) [arXiv:hep-th/9906046].

    Google Scholar 

  2. M. Aganagic, A. Klemm, M. Marino and C. Vafa, “The topological vertex,” Commun. Math. Phys. 254, 425 (2005) [arXiv:hep-th/0305132].

    Article  MATH  ADS  MathSciNet  Google Scholar 

  3. E. Witten, “Chern-simons gauge theory as a string theory,” Prog. Math. 133, 637 (1995) [arXiv:hep-th/9207094].

    MathSciNet  Google Scholar 

  4. R. Gopakumar and C. Vafa, “On the gauge theory/geometry correspondence,” Adv. Theor. Math. Phys. 3, 1415 (1999) [arXiv:hep-th/9811131].

    MATH  MathSciNet  Google Scholar 

  5. R. Dijkgraaf and C. Vafa, “Matrix models, topological strings, and supersymmetric gauge theories,” Nucl. Phys. B 644, 3 (2002) [arXiv:hep-th/0206255].

    Article  MATH  ADS  MathSciNet  Google Scholar 

  6. M. Aganagic, R. Dijkgraaf, A. Klemm, M. Marino and C. Vafa, “Topological strings and integrable hierarchies,” Commun. Math. Phys. 261, 451 (2006) [arXiv:hep-th/0312085].

    Article  MATH  ADS  MathSciNet  Google Scholar 

  7. C. Vafa,“Two dimensional Yang-Mills, black holes and topological strings,” (2004) arXiv:hep-th/0406058.

    Google Scholar 

  8. H. Ooguri, A. Strominger and C. Vafa, “Black hole attractors and the topological string,” Phys. Rev. D 70, 106007 (2004) [arXiv:hep-th/0405146].

    Article  ADS  MathSciNet  Google Scholar 

  9. H. Ooguri, C. Vafa and E. P. Verlinde, “Hartle-Hawking wave-function for flux compactifications,” Lett. Math. Phys. 74, 311 (2005) [arXiv:hep-th/0502211].

    Article  MATH  ADS  MathSciNet  Google Scholar 

  10. K. Costello, “Topological conformal field theories and Calabi-Yau categories,” Adv. Math. 210 (2007), no. 1, 165–214. [math.QA/0412149].

    Google Scholar 

  11. M. Kontsevich, “TQFTs and geometry of pre-Frobenius manifolds” and “A_∞ categories and their (co)homology theories,” Lecures at the “Erwin Schroedinger Institute,” Vienna 2006.

    Google Scholar 

  12. M.-x. Huang and A. Klemm, “Holomorphic anomaly in gauge theories and matrix models,” JHEP 0709:054 (2007) [arXiv:hep-th/0605195].

    Google Scholar 

  13. M.-x. Huang and A. Klemm, Modularity versus Holomarphicity in gauge theories and matrix models, to appear.

    Google Scholar 

  14. M. Aganagic, V. Bouchard and A. Klemm, “Topological strings and (almost) modular forms,” Commun. Math. Phys. 277:771–819 (2008) [arXiv:hepth/0607100].

    Google Scholar 

  15. R. Dijkgraaf, “Mirror Symmetry and elliptic curves,” in sl The moduli Space of Curves, Progr. Math. 129, 149 (1995); K. Kaneko and D. B. Zagier, “A generalized Jacobi theta functions and quasimodular forms,” Progr. Math. 129, 165 (1995).

    MathSciNet  Google Scholar 

  16. N. Seiberg and E. Witten, “Electric - magnetic duality, monopole condensation, and confinement in N=2 supersymmetric Yang-Mills theory,” Nucl. Phys. B 426, 19 (1994) [Erratum-ibid. B 430, 485 (1994)] [arXiv:hep-th/9407087].

    Article  MATH  ADS  MathSciNet  Google Scholar 

  17. M. Bershadsky, S. Cecotti, H. Ooguri and C. Vafa, “Kodaira-Spencer theory of gravity and exact results for quantum string amplitudes,” Commun. Math. Phys. 165, 311 (1994) [arXiv:hep-th/9309140].

    Article  MATH  ADS  MathSciNet  Google Scholar 

  18. D. Ghoshal and C. Vafa, “C = 1 string as the topological theory of the conifold,” Nucl. Phys. B 453, 121 (1995) [arXiv:hep-th/9506122].

    Article  MATH  ADS  MathSciNet  Google Scholar 

  19. M. Marino and G. W. Moore, “Counting higher genus curves in a Calabi-Yau manifold,” Nucl. Phys. B 543, 592 (1999) [arXiv:hep-th/9808131].

    Article  MATH  ADS  MathSciNet  Google Scholar 

  20. S. Hosono, M. H. Saito and A. Takahashi, Adv. Theor. Math. Phys. 3 (1999) 177 [arXiv:hep-th/9901151].

    MATH  MathSciNet  Google Scholar 

  21. S. Hosono, M. H. Saito and A. Takahashi, Adv. Theor. Math. Phys. 3:177–208 (1999). [arXiv:math.ag/0105148].

    Google Scholar 

  22. M. Bershadsky, S. Cecotti, H. Ooguri and C. Vafa, “Holomorphic anomalies in topological field theories,” Nucl. Phys. B 405, 279 (1993) [arXiv:hep-th/9302103].

    Article  ADS  MathSciNet  Google Scholar 

  23. K. Hori, S. Katz, A. Klemm, R. Pandharipande, R. Thomas, C. Vafa, R. Vavil and E. Zaslow, “sl Mirror Symmetry”, Am. Math. Soc. (2003).

    Google Scholar 

  24. Y.-H. Chen, Y. Yang, N. Yui, “Monodromy of Picard-Fuchs differential equations for Calabi-Yau threefolds,” J. Reine Angew. Math. 616 (2008) 167–203. [arXiv:math.AG/0605675].

    Google Scholar 

  25. S. Katz, A. Klemm and C. Vafa, “M-theory, topological strings and spinning black holes,” Adv. Theor. Math. Phys. 3, 1445 (1999) [arXiv:hep-th/9910181].

    MATH  MathSciNet  Google Scholar 

  26. E. Witten, “Two-Dimensional Gravity and intersection theory on moduli spaces,” Surv. in Diff. Geom. 1, 243 (1991).

    MathSciNet  Google Scholar 

  27. E. Witten, “Quantum background independence in string theory,” Nucl. Phys. B 372, 187 (1992), [arXiv:hep-th/9306122].

    Article  MathSciNet  ADS  Google Scholar 

  28. E. P. Verlinde, “Attractors and the holomorphic anomaly,” (2004) arXiv:hepth/0412139.

    Google Scholar 

  29. M. Gunaydin, A. Neitzke and B. Pioline, “Topological wave functions and heat equations,” JHEP 0612:070, (2006) arXiv:hep-th/0607200.

    Google Scholar 

  30. S. Hosono, A. Klemm, S. Theisen and S. T. Yau, “Mirror symmetry, mirror map and applications to complete intersection Calabi-Yau spaces,” Nucl. Phys. B 433, 501 (1995) [arXiv:hep-th/9406055].

    Article  ADS  MathSciNet  Google Scholar 

  31. A. Strominger, “Massless black holes and conifolds in string theory,” Nucl. Phys. B 451, 96 (1995) [arXiv:hep-th/9504090].

    Google Scholar 

  32. C. Vafa, “A Stringy test of the fate of the conifold,” Nucl. Phys. B 447, 252 (1995) [arXiv:hep-th/9505023].

    Article  MATH  ADS  MathSciNet  Google Scholar 

  33. R. Gopakumar and C. Vafa, “Branes and fundamental Groups,” Adv. Theor. Math. Phys. 2:399–411, (1998) [arXiv:hep-th/9712048].

    Google Scholar 

  34. A. Klemm and P. Mayr, “Strong coupling singularities and non-Abelian gauge symmetries in N = 2 string theory,” Nucl. Phys. B 469, 37 (1996) [arXiv:hep-th/9601014].

    Article  MATH  ADS  MathSciNet  Google Scholar 

  35. R. Gopakumar and C. Vafa, “M-theory and topological strings. I,” (1998) [arXiv:hep-th/9809187].

    Google Scholar 

  36. R. Gopakumar and C. Vafa, “M-theory and topological strings. II,” (1998) [hep-th/9812127].

    Google Scholar 

  37. S. Yamaguchi and S. T. Yau, “Topological string partition functions as polynomials,” J. High Energy Phys. 0407, 047 (2004) [arXiv:hep-th/0406078].

    Article  ADS  MathSciNet  Google Scholar 

  38. P. Candelas, X. C. De La Ossa, P. S. Green and L. Parkes, “A pair of Calabi-Yau manifolds as an exactly soluble superconformal theory,” Nucl. Phys. B 359, 21 (1991).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  39. A. Ceresole, R. D’Auria, S. Ferrara and A. Van Proeyen, “Duality transformations in supersymmetric Yang-Mills theories coupled to supergravity,” Nucl. Phys. B 444, 92 (1995) [arXiv:hep-th/9502072].

    Article  MATH  ADS  Google Scholar 

  40. R. Minasian and G. W. Moore, “K-theory and Ramond-Ramond charge,” J. High Energy Phys. 9711, 002 (1997) [arXiv:hep-th/9710230].

    Article  ADS  MathSciNet  Google Scholar 

  41. Y. K. Cheung and Z. Yin, “Anomalies, branes, and currents,” Nucl. Phys. B 517, 69 (1998) [arXiv:hep-th/9710206].

    Article  MathSciNet  ADS  Google Scholar 

  42. I. Brunner, M. R. Douglas, A. E. Lawrence and C. Romelsberger, “D-branes on the quintic,” J. High Energy Phys. 0008, 015 (2000) [arXiv:hep-th/9906200].

    Article  ADS  MathSciNet  Google Scholar 

  43. D. E. Diaconescu and C. Romelsberger, “D-branes and bundles on elliptic fibrations,” Nucl. Phys. B 574, 245 (2000) [arXiv:hep-th/9910172].

    Google Scholar 

  44. P. Mayr, “Phases of supersymmetric D-branes on Kaehler manifolds and the McKay correspondence,” J. High Energy Phys. 0101, 018 (2001) [arXiv:hep-th/0010223].

    Article  ADS  MathSciNet  Google Scholar 

  45. http://uw.physics.wisc.edu~ strings/aklemm/highergenusdata/

  46. C. Faber and R. Pandharipande, “Hodge Integrals and Gromov-Witten theory,” Invent. Math. 139 (2000), no. 1, 173–199. [arXiv:math.ag/9810173].

    Google Scholar 

  47. W. Chen and Y. Ruan, “Orbifold Gromow-Witten theory”, Orbifolds in mathmatics and physics Madison WI 2001, Contemp. Math., 310, Amer. Math. Soc., Providence, RI, 2002 25–85.

    Google Scholar 

  48. J. Bryan, T. Graber, R. Pandharipande, “The orbifold quantum cohomology of C2/Z3and Hurwitz-Hodge integrals,” J. Algebraic Geom. 17 (2008), no. 1, 1–28. [arXiv:math.AG/0510335].

    Google Scholar 

  49. T. Coates, A. Corti, H. Iritani and H.-H. Tseng, “Wall-Crossing in Toric Gromow-Witten Theory I: Crepant Examples”, (2006) [arXiv:math.AG/0611550].

    Google Scholar 

  50. A. B. Giventhal, “Symplectic geometry of Frobenius structures,” Frobenius manifolds, Aspects. Math., E36, Vieweg, Wiesbaden, (91–112) 2004, T. Coates, “Giventhals Lagrangian Cone and S1-Equivariant Gromow-Witten Theory,” [arXiv:math.AG.0607808].

    Google Scholar 

  51. A. Klemm and S. Theisen, “Considerations of one modulus Calabi-Yau compactifications: Picard-Fuchs equations, Kahler potentials and mirror maps,” Nucl. Phys. B 389, 153 (1993) [arXiv:hep-th/9205041].

    Article  ADS  MathSciNet  Google Scholar 

  52. V. I. Arnold, S. M. Gusein-Zade and A. N. Varchencko, “Singularities of diefferential maps I & II,” Birkhäuser, Basel (1985).

    Google Scholar 

  53. W. Schmidt, “Variaton of Hodge structure: The singularities of the period mapping,” Inventiones Math. 22 (1973) 211–319.

    Article  ADS  Google Scholar 

  54. E. Cattani, A. Kaplan and W. Schmidt “Degenerarions of Hodge structures,” Ann. of Math. 123 (1986) 457–535.

    Article  MathSciNet  Google Scholar 

  55. C. Doran and J Morgan, “Mirror Symmetry. V, 517–537, AMS/IP Stud. Adv. Math., 38, Amer. Math. Soc., Providence, RI, (2006).

    Google Scholar 

  56. A. Klemm, M. Kreuzer, E. Riegler and E. Scheidegger, “Topological string amplitudes, complete intersection Calabi-Yau spaces and threshold corrections,” J. High Energy Phys. 0505, 023 (2005) [arXiv:hep-th/0410018].

    Article  ADS  MathSciNet  Google Scholar 

  57. D. Maulik, N. Nekrasov, A. Okounkov and R. Pandharipande, “Gromov-Witten theory and Donaldson-Thomas theory I,” Compos. Math. 142 (2006), no. 5, 1263–1285 [arXiv:math.AG/0312059].

    Google Scholar 

  58. J. Harris, “Curves in Projective Space,” Sem. de Math. Sup. Les Presses de l’University de Monteral (1982).

    Google Scholar 

  59. S. Katz, S. Strømme and J-M. Økland: “Schubert: A Maple package for intersection theory and enumerative geometry,” (2001) http://www.uib.no/ People/nmasr/schubert/.

  60. D. Gaiotto, A. Strominger and X. Yin, “The M5-brane elliptic genus: Modularity and BPS states,” JHEP 0708:070 (2007) [arXiv:hep-th/0607010].

    Google Scholar 

  61. J. de Boer, M. C. N. Cheng, R. Dijkgraaf, J. Manschot and E. Verlinde, “A farey tail for attractor black holes,” J. High Energy Phys. 0611, 024 (2006) [arXiv:hep-th/0608059].

    Google Scholar 

  62. F. Denef and G. Moore, “Split states, entropy enigmas, holes and halos” hepth/0702146 88

    Google Scholar 

  63. T. Bridgeland, “Derived categories of coherent sheaves,” Survey article for ICM 2006, [arXiv:math.AG/0602129].

    Google Scholar 

  64. P. S. Aspinwall, “D-branes on Calabi-Yau manifolds,” Boulder (2003), Progress in string theory, 1–152 [arXiv:hep-th/0403166].

    Google Scholar 

  65. M. Rocek, C. Vafa and S. Vandoren, “Hypermultiplets and topological strings,” J. High Energy Phys. 0602, 062 (2006) [arXiv:hep-th/0512206].

    Article  ADS  MathSciNet  Google Scholar 

  66. T. W. Grimm, A. Klemm, M. Marino and M. Weiss, –Direct integration of the topological string”, JHEP 0708, 058 (2007).

    Google Scholar 

  67. W. Fulton, “Intersection Theory,” Springer (1998).

    Google Scholar 

  68. C. I. Lazaroiu, “Collapsing D-branes in one-parameter models and small/large radius duality,” Nucl. Phys. B 605, 159 (2001) [arXiv:hep-th/0002004].

    Article  MATH  ADS  MathSciNet  Google Scholar 

  69. A. Klemm and M. Marino, “Counting BPS states on the Enriques Calabi-Yau,” Commun. Math. Phys. 280:27–76, (2008) [arXiv:hep-th/0512227].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M.-x. Huang .

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Huang, Mx., Klemm, A., Quackenbush, S. (2008). Topological String Theory on Compact Calabi–Yau: Modularity and Boundary Conditions. In: Homological Mirror Symmetry. Lecture Notes in Physics, vol 757. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68030-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-68030-7_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-68029-1

  • Online ISBN: 978-3-540-68030-7

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics