Skip to main content

Adaptive Optimal Control for Redundantly Actuated Arms

  • Conference paper
From Animals to Animats 10 (SAB 2008)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5040))

Included in the following conference series:

Abstract

Optimal feedback control has been proposed as an attractive movement generation strategy in goal reaching tasks for anthropomorphic manipulator systems. Recent developments, such as the iterative Linear Quadratic Gaussian (iLQG) algorithm, have focused on the case of non-linear, but still analytically available, dynamics. For realistic control systems, however, the dynamics may often be unknown, difficult to estimate, or subject to frequent systematic changes. In this paper, we combine the iLQG framework with learning the forward dynamics for a simulated arm with two limbs and six antagonistic muscles, and we demonstrate how our approach can compensate for complex dynamic perturbations in an online fashion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Stengel, R.F.: Optimal control and estimation. Dover Publications, New York (1994)

    MATH  Google Scholar 

  2. Flash, T., Hogan, N.: The coordination of arm movements: an experimentally confirmed mathematical model. Journal of Neuroscience 5, 1688–1703 (1985)

    Google Scholar 

  3. Todorov, E., Jordan, M.: A minimal intervention principle for coordinated movement. In: Advances in Neural Information Processing Systems, vol. 15, pp. 27–34. MIT Press, Cambridge (2003)

    Google Scholar 

  4. Shadmehr, R., Wise, S.P.: The Computational Neurobiology of Reaching and Ponting. MIT Press, Cambridge (2005)

    Google Scholar 

  5. Li, W.: Optimal Control for Biological Movement Systems. PhD dissertation, University of California, San Diego (2006)

    Google Scholar 

  6. Scott, S.H.: Optimal feedback control and the neural basis of volitional motor control. Nature Reviews Neuroscience 5, 532–546 (2004)

    Article  Google Scholar 

  7. Dyer, P., McReynolds, S.: The Computational Theory of Optimal Control. Academic Press, New York (1970)

    Google Scholar 

  8. Jacobson, D.H., Mayne, D.Q.: Differential Dynamic Programming. Elsevier, New York (1970)

    MATH  Google Scholar 

  9. Li, W., Todorov, E.: Iterative linear-quadratic regulator design for nonlinear biological movement systems. In: Proc. 1st Int. Conf. Informatics in Control, Automation and Robotics (2004)

    Google Scholar 

  10. Todorov, E., Li, W.: A generalized iterative LQG method for locally-optimal feedback control of constrained nonlinear stochastic systems. In: Proc. of the American Control Conference (2005)

    Google Scholar 

  11. Atkeson, C.G., Schaal, S.: Learning tasks from a single demonstration. In: Proc. Int. Conf. on Robotics and Automation (ICRA), Albuquerque, New Mexico, vol. 2, pp. 1706–1712 (1997)

    Google Scholar 

  12. Abbeel, P., Quigley, M., Ng, A.Y.: Using inaccurate models in reinforcement learning. In: Proc. Int. Conf. on Machine Learning, pp. 1–8 (2006)

    Google Scholar 

  13. Katayama, M., Kawato, M.: Virtual trajectory and stiffness ellipse during multijoint arm movement predicted by neural inverse model. Biol. Cybern. 69, 353–362 (1993)

    MATH  Google Scholar 

  14. Corke, P.I.: A robotics toolbox for MATLAB. IEEE Robotics and Automation Magazine 3(1), 24–32 (1996)

    Article  Google Scholar 

  15. Özkaya, N., Nordin, M.: Fundamentals of biomechanics: equilibrium, motion, and deformation. Van Nostrand Reinhold, New York (1991)

    Google Scholar 

  16. Bertsekas, D.P.: Dynamic programming and optimal control. Athena Scientific, Belmont, Mass (1995)

    MATH  Google Scholar 

  17. Thrun, S.: Monte carlo POMDPs. In: Advances in Neural Information Processing Systems 12, pp. 1064–1070. MIT Press, Cambridge (2000)

    Google Scholar 

  18. Atkeson, C.G.: Randomly sampling actions in dynamic programming. In: Proc. Int. Symp. on Approximate Dynamic Programming and Reinforcement Learning, pp. 185–192 (2007)

    Google Scholar 

  19. Vijayakumar, S., D’Souza, A., Schaal, S.: Incremental online learning in high dimensions. Neural Computation 17, 2602–2634 (2005)

    Article  MathSciNet  Google Scholar 

  20. Shadmehr, R., Mussa-Ivaldi, F.A.: Adaptive representation of dynamics during learning of a motor task. The Journal of Neurosciene 14(5), 3208–3224 (1994)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Minoru Asada John C. T. Hallam Jean-Arcady Meyer Jun Tani

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Mitrovic, D., Klanke, S., Vijayakumar, S. (2008). Adaptive Optimal Control for Redundantly Actuated Arms. In: Asada, M., Hallam, J.C.T., Meyer, JA., Tani, J. (eds) From Animals to Animats 10. SAB 2008. Lecture Notes in Computer Science(), vol 5040. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69134-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-69134-1_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-69133-4

  • Online ISBN: 978-3-540-69134-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics