Skip to main content

Toward a Theory of Embodied Statistical Learning

  • Conference paper
From Animals to Animats 10 (SAB 2008)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5040))

Included in the following conference series:

Abstract

The purpose of this paper is to outline a new formulation of statistical learning that will be more useful and relevant to the field of robotics. The primary motivation for this new perspective is the mismatch between the form of data assumed by current statistical learning algorithms, and the form of data that is actually generated by robotic systems. Specifically, robotic systems generate a vast unlabeled data stream, while most current algorithms are designed to handle limited numbers of discrete, labeled, independent and identically distributed samples. We argue that there is only one meaningful unsupervised learning process that can be applied to a vast data stream: adaptive compression. The compression rate can be used to compare different techniques, and statistical models obtained through adaptive compression should also be useful for other tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Vapnik, V., Golowich, S.E., Smola, A.J.: Support vector method for function approximation, regression estimation and signal processing. In: Advances in Neural Information Processing Systems, pp. 281–287 (1996)

    Google Scholar 

  2. Hinton, G., Osindero, S., Teh, Y.: A fast learning algorithm for deep belief nets. Neural Computation 18, 1527–1554 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  3. Pfeifer, R., Scheier, C.: Understanding Intelligence. MIT Press, Cambridge (1999)

    Google Scholar 

  4. Pfeifer, R., Lungarella, M., Iida, F.: Self-organization, embodiment, and biologi- cally inspired robotics. Science 318, 1088–1093 (2007)

    Article  Google Scholar 

  5. Kuniyoshi, Y., Yorozu, Y., Suzuki, S., Sangawa, S., Ohmura, Y., Terada, K., Na- gakubo, A.: Emergence and development of embodied cognition: A constructivist approach using robots. In: von Hofsten, C., Rosander, K. (eds.) From Action to Cognition, Progress in Brain Research, vol. 164, pp. 435–455. Elsevier, Amsterdam (2007)

    Chapter  Google Scholar 

  6. Vapnik, V.: The Nature of Statistical Learning Theory. Springer, Heidelberg (1998)

    Google Scholar 

  7. Rissanen, J.: Modeling by shortest data description. Automatica 14, 465–471 (1978)

    Article  MATH  Google Scholar 

  8. Brooks, R.A.: Intelligence without representation. Artificial Intelligence 47, 139–160 (1991)

    Article  Google Scholar 

  9. Brooks, R.A.: Elephants don’t play chess. Robotics and Autonomous Systems 6, 3–15 (1990)

    Article  Google Scholar 

  10. Lungarella, M., Sporns, O.: Information self-structuring: Key principle for learning and development. In: International Conference on Development and Learning (2005)

    Google Scholar 

  11. Steels, L.: The autotelic principle. In: Embodied Artificial Intelligence, pp. 231–242 (2003)

    Google Scholar 

  12. Sutton, R., Barto, A.: Reinforcement Learning: An Introduction. MIT Press, Cambridge (1997)

    Google Scholar 

  13. Hawkins, J., Blakeslee, S.: On Intelligence. Times Books, New York (2004)

    Google Scholar 

  14. Pfeifer, R., Iida, F., Gomez, G.: Morphological computation for adaptive behavior and cognition. International Congress Series 1291, 22–29 (2006)

    Article  Google Scholar 

  15. Franceschini, N., Pichon, J., Blanes, C.: From insect vision to robot vision. Philo- sophical Transactions: Biological Sciences 337(1281), 283–294 (1992)

    Article  Google Scholar 

  16. Tong, S., Koller, D.: Support vector machine active learning with applications to text classification. Journal of Machine Learning Research 2, 45–66 (2001)

    Article  Google Scholar 

  17. Atick, J.: Could information theory provide an ecological theory of sensory pro- cessing? Network 3, 213–251 (1992)

    Article  MATH  Google Scholar 

  18. Rosenfeld, R.: A maximum entropy approach to adaptive statistical language modeling. Computer, Speech and Language 10, 187–228 (1996)

    Article  Google Scholar 

  19. Mahoney, M.: Rationale for a large text compression benchmark (2006), http://www.cs.fit.edu/~mmahoney/compression/rationale.html

  20. Tani, J., Nolfi, S.: Learning to perceive the world as articulated: an approach for hierarchical learning in sensory-motor systems. Neural Networks 12(7-8), 1131–1141 (1999)

    Article  Google Scholar 

  21. Burfoot, D., Kuniyoshi, Y.: Maximum entropy statistical modeling of sensor data from robotic systems. In: Proceedings of the Symposium on Language and Robots, pp. 107–116 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Minoru Asada John C. T. Hallam Jean-Arcady Meyer Jun Tani

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Burfoot, D., Lungarella, M., Kuniyoshi, Y. (2008). Toward a Theory of Embodied Statistical Learning. In: Asada, M., Hallam, J.C.T., Meyer, JA., Tani, J. (eds) From Animals to Animats 10. SAB 2008. Lecture Notes in Computer Science(), vol 5040. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69134-1_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-69134-1_27

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-69133-4

  • Online ISBN: 978-3-540-69134-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics