Skip to main content

Molecular Mechanisms of Apoptosis: An Overview

  • Chapter

Part of the book series: Results and Problems in Cell Differentiation ((RESULTS,volume 23))

Abstract

Apoptosis (physiological cell death) has a central role in the normal development and homeostastis of all multicellular organisms. It is also used by the body’s defence system to eliminate dangerous cells, such as those that are mutated or are harbouring viruses. Deregulation of this process, resulting in either too much or too little cell death, can cause both developmental defects and a wide variety of disease states. Much of our understanding of apoptosis has come from genetic studies in the nematode Caenorhabditis elegans. Although the mechanisms of apoptosis are highly conserved, regulation of apoptosis in higher species is more complicated and involves several large families of proteins. In this chapter we will provide an overview of the molecular mechanisms of physiological cell death.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adachi M, Suematsu S, Suda T, Watanabe D, Fukuyama H, Ogasawara J, Tanaka T, Yoshida N, Nagata S (1996) Enhanced and accelerated lymphoproliferation in Fas-null mice. Proc Natl Acad Sci USA 93: 2131–2136

    Article  PubMed  CAS  Google Scholar 

  • Alnemri ES, Fernandes TF, Haldar S, Croce CM, Litwack G (1992) Involvement of bd-2 in glucocorticoid-induced apoptosis of human pre-B-leukemias. Cancer Res 52: 491–495

    PubMed  CAS  Google Scholar 

  • Boehm U, Klamp T, Groot M, Howard JC (1997) Cellular responses to interferon gamma ( Review ). Annu Rev Immunol 15: 749–795

    Article  PubMed  CAS  Google Scholar 

  • Boldin MP, Mett IL, Varfolomeev EE, Chumakov I, Shemeravni Y, Camonis JH, Wallach D (1995) Self-association of the death domains of the p55 tumor necrosis factor (TNF) receptor and Fas/Apo-1 prompts signaling for TNF and Fas/Apo-1 effects. J Biol Chem 270: 387–391

    Article  PubMed  CAS  Google Scholar 

  • Boldin MP, Goncharov TM, Goltsev YV, Wallach D (1996) Involvement of MACH, a novel MORT1/FADD-interacting protease, in Fas/Apo-1- and TNF receptor-induced cell death. Cell 85: 803–815

    Article  PubMed  CAS  Google Scholar 

  • Bromme HJ, Holtz J (1996) Apoptosis in the heart–when and why? Mol Cell Biochem 164: 261–275

    Article  Google Scholar 

  • Casciolarosen L, Nicholson DW, Chong T, Rowan KR, Thornberry NA, Miller DK, Rosen A (1996) Apopain/CPP32 cleaves proteins that are essential for cellular repair–a fundamental principle of apoptotic death. J Exp Med 183: 1957–1964

    Article  CAS  Google Scholar 

  • Cerretti DP, Kozlosky CJ, Mosley B, Nelson N, Van NK, Greenstreet TA, March CJ, Kronheim SR, Druck T, Cannizzaro LA, et al. (1992) Molecular cloning of the interleukin-1 beta converting enzyme. Science 256: 97–100

    Article  PubMed  CAS  Google Scholar 

  • Chinnaiyan AM, O’Rourke K, Tewari M, Dixit VM (1995) FADD, a novel death domain-containing protein, interacts with the death domain of Fas and initiates apoptosis. Cell 81: 505–512

    Article  PubMed  CAS  Google Scholar 

  • Chinnaiyan AM, O’Rourke K, Lane BR, Dixit VM (1997) Interaction of ced-4 with ced-3 and ced9 – a molecular framework for cell death. Science 275: 1122–1126

    Article  PubMed  CAS  Google Scholar 

  • Chiou SK, Rao L, White E (1994) Bcl-2 blocks p53 dependent apoptosis. Mol Cell Biol 14: 2556–2563

    Google Scholar 

  • Choi DW (1996) Ischemia-induced neuronal apoptosis. Curr Opin Neurobiol 6: 667–672

    Article  PubMed  CAS  Google Scholar 

  • Cifone MG, De MR, Roncaioli P, Rippo MR, Azuma M, Lanier LL, Santoni A, Testi R (1994) Apoptotic signaling through CD95 (Fas/Apo-1) activates an acidic sphingomyelinase. J Exp Med 180: 1547–1552

    Article  PubMed  CAS  Google Scholar 

  • Clem RJ, Fechheimer M, Miller LK (1991) Prevention of apoptosis by a baculovirus gene during infection of insect cells. Science 254: 1388–1390

    Article  PubMed  CAS  Google Scholar 

  • Crook NE, Clem RJ, Miller LK (1993) An apoptosis inhibiting baculovirus gene with a zinc finger like motif. J Virol 67: 2168–2174

    PubMed  CAS  Google Scholar 

  • Deiss LP, Galinka H, Berissi H, Cohen O, Kimchi A (1996) Cathepsin D protease mediates programmed cell death induced by interferon-gamma, Fas/Apo-1 and TNF-alpha. EMBO J 15: 3861–3870

    PubMed  CAS  Google Scholar 

  • Donehower LA, Harvey M, Slagle BL, McArthur MJ, Montgomery CJ, Butel JS, Bradley A (1992) Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature 356: 215–221

    Article  PubMed  CAS  Google Scholar 

  • Duan H, Dixit VM (1997) RAIDD is a new death adaptor molecule. Nature 385: 86–89

    Article  PubMed  CAS  Google Scholar 

  • Ellis HM, Horvitz HR (1986) Genetic control of programmed cell death in the nematode C. elegans. Cell 44: 817–829

    Article  PubMed  CAS  Google Scholar 

  • Ellis RE, Jacobson DM, Horvitz HR (1991) Genes required for the engulfment of cell corpses during programmed cell death in Caenorhabditis elegans. Genetics 129: 79–94

    PubMed  CAS  Google Scholar 

  • Emoto Y, Manome Y, Meinhardt G, Kisaki H, Kharbanda S, Robertson M, Ghayur T, Wong WW, Kamen R, Weichselbaum R, Kufe D (1995) Proteolytic activation of protein kinase C delta by an ICE-like protease in apoptotic cells. EMBO J 14: 6148–6156

    PubMed  CAS  Google Scholar 

  • Erickson SL, Desauvage FJ, Kikly K, Carvermoore K, Pittsmeek S, Gillett N, Sheehan K, Schreiber RD, Goeddel DV, Moore MW (1994) Decreased sensitivity to tumour-necrosis factor but normal T-cell development in TNF receptor-2-deficient mice. Nature 372: 560–563

    Article  PubMed  CAS  Google Scholar 

  • Fernandesalnemri T, Armstrong RC, Krebs J, Srinivasula SM, Wang L, Bullrich F, Fritz LC, Trapani JA, Tomaselli KJ, Litwack G, Alnemri ES (1996) In vitro activation of CPP32 and Mch3 by Mch4, a novel human apoptotic cysteine protease containing two FADD-like domains. Proc Natl Acad Sci USA 93: 7464–7469

    Article  CAS  Google Scholar 

  • Fisher GH, Rosenberg FJ, Straus SE, Dale JK, Middleton LA, Lin AY, Strober W, Lenardo MJ, Puck JM (1995) Dominant interfering Fas gene mutations impair apoptosis in a human autoimmune lymphoproliferative syndrome. Cell 81: 935–946

    Article  PubMed  CAS  Google Scholar 

  • Gagliardini V, Fernandez PA, Lee RKK, Drexler HCA, Rotello RJ, Fishman MC, Yuan J (1994) Prevention of vertebrate neuronal death by the Crm A gene. Science 263: 826–828

    Article  PubMed  CAS  Google Scholar 

  • Goldberg YP, Nicholson DW, Rasper DM, Kalchman MA, Koide NA, Vaillancourt JP, Hayden MR (1996) Cleavage of huntington by apopain, a proapoptotic cysteine protease, is modulated by the polyglutamine tract. Nat Genet 13: 442–449

    Article  PubMed  CAS  Google Scholar 

  • Grimm LM, Goldberg AL, Poirier GG, Schwartz LM, Osborne BA (1996) Proteasomes play an essential role in thymocyte apoptosis. EMBO J 15: 3835–3844

    PubMed  CAS  Google Scholar 

  • Gschwind M, Huber G (1995) Apoptotic cell death induced by beta-amyloid(1–42) peptide is cell type dependent. J Neurochem 65: 292–300

    Article  PubMed  CAS  Google Scholar 

  • Haldar S, Beatty C, Tsujimoto Y, Croce CM (1989) The bd-2 gene encodes a novel G protein. Nature 342: 195–198

    Article  PubMed  CAS  Google Scholar 

  • Hawkins CJ, Uren AG, Hacker G, Medcalf RL, Vaux DL (1996) Inhibition of interleukin 1-betaconverting enzyme-mediated apoptosis of mammalian cells by baculovirus IAP. Proc Natl Acad Sci USA 93: 13786–13790

    Article  PubMed  CAS  Google Scholar 

  • Hedgecock EM, Sulston JE, Thomson JN (1983) Mutations affecting programmed cell deaths in the nematode Caenorhabditis elegans. Science 220: 1277–1279

    Article  PubMed  CAS  Google Scholar 

  • Henderson S, Huen D, Rowe M, Dawson C, Johnson G, Rickinson A (1993) Epstein-Barr virus coded BHRF1 protein, a viral homolog of bd-2, protects human B cells from programmed cell death. Proc Natl Acad Sci USA 90: 8479–8483

    Article  PubMed  CAS  Google Scholar 

  • Hengartner MO, Horvitz HR (1994) C. elegans cell survival gene ced-9 encodes a functional homolog of the mammalian proto-oncogene bc1–2. Cell 76: 665–676

    Article  PubMed  CAS  Google Scholar 

  • Hengartner MO, Ellis RE, Horvitz HR (1992) Caenorhabditis elegans gene ced-9 protects cells from programmed cell death. Nature 356: 494–499

    Article  PubMed  CAS  Google Scholar 

  • Henkart P (1996) ICE family proteases: mediators of all apoptotic cell death? Immunity 4: 195–201

    Article  PubMed  CAS  Google Scholar 

  • Heusel JW, Wesselschmidt RL, Shresta S, Russell JH, Ley TJ (1994) Cytotoxic lymphocytes require granzyme B for the rapid induction of DNA fragmentation and apoptosis in allogeneic target cells. Cell 76: 977–987

    Article  PubMed  CAS  Google Scholar 

  • Hockenbery DM, Oltvai ZN, Yin XM, Milliman CL, Korsmeyer SJ (1993) Bd-2 functions in an antioxidant pathway to prevent apoptosis. Cell 75: 241–251

    Article  PubMed  CAS  Google Scholar 

  • Hofmann K, Bucher P, Tschopp J (1997) The CARD domain–a new apoptotic signalling motif. Trends Biochem 22: 155–156

    Article  CAS  Google Scholar 

  • Irmler M, Hofmann K, Vaux D, Tschopp J (1997) Direct physical interaction between the Caenorhabditis elegans death proteins ced-3 and ced-4. FEBS Lett 406: 189–190

    Article  PubMed  CAS  Google Scholar 

  • Kamada S, Shimono A, Shinto Y, Tsujimura T, Takahashi T, Noda T, Kitamura Y, Kondoh H, Tsujimoto Y (1995) Bd-2 deficiency in mice leads to pleiotropic abnormalities–accelerated lymphoid cell death in thymus and spleen, polycystic kidney, hair hypopigmentation, and distorted small intestine. Cancer Res 55: 354–359

    PubMed  CAS  Google Scholar 

  • Kischkel FC, Hellbardt S, Behrmann I, Germer M, Pawlita M, Krammer PH, Peter ME (1995) Cytotoxicity-dependent APO-1 (Fas/CD95)-associated proteins form a death-inducing signaling complex ( DISC) with the receptor. EMBO J 14: 5579–5588

    PubMed  CAS  Google Scholar 

  • Kluck RM, Bossywetzel E, Green DR, Newmeyer DD (1997) The release of cytochrome c from mitochondria — a primary site for bd-2 regulation of apoptosis. Science 275: 1132–1136

    Article  PubMed  CAS  Google Scholar 

  • Kuida K, Lippke JA, Ku G, Harding MW, Livingston DJ, Su MS, Flavell RA (1995) Altered cytokine export and apoptosis in mice deficient in interleukin-1 beta converting enzyme. Science 267: 2000–2003

    Article  PubMed  CAS  Google Scholar 

  • Kuida K, Zheng TS, Na SQ, Kuan CY, Yang D, Karasuyama H, Rakic P, Flavell RA (1996) Decreased apoptosis in the brain and premature lethality in CPP32-deficient mice. Nature 384: 368–372

    Article  PubMed  CAS  Google Scholar 

  • Lazebnik YA, Kaufmann SH, Desnoyers S, Poirier GG, Earnshaw WC (1994) Cleavage of poly(ADP-ribose) polymerase by a proteinase with properties like ICE. Nature 371: 346–347

    Article  PubMed  CAS  Google Scholar 

  • Lazebnik YA, Takahashi A, Moir RD, Goldman RD, Poirier GG, Kaufmann SH, Earnshaw WC (1995) Studies of the lamin proteinase reveal multiple parallel biochemical pathways during apoptotic execution. Proc Natl Acad Sci USA 92: 9042–9046

    Article  PubMed  CAS  Google Scholar 

  • Li P, Allen H, Banerjee S, Franklin S, Herzog L, Johnston C, Mcdowell J, Paskind M, Rodman L, Salfeld J, Towne E, Tracey D, Wardwell S, Wei FY, Wong W, Kamen R, Seshadri T (1995) Mice deficient in IL-1-beta-converting enzyme are defective in production of mature IL-I-beta and resistant to endotoxic shock. Cell 80: 401–411

    Article  PubMed  CAS  Google Scholar 

  • Liu XS, Zou H, Slaughter C, Wang XD (1997) DFF, a heterodimeric protein that functions downstream of caspase-3 to trigger DNA fragmentation during apoptosis. Cell 89: 175–184

    Article  PubMed  CAS  Google Scholar 

  • Liu ZG, Hsu HL, Goeddel DV, Karin M (1996) Dissection of TNF receptor 1 effector functions — INK activation is not linked to apoptosis while NF-kappa-B activation prevents cell death. Cell 87: 565–576

    Article  PubMed  CAS  Google Scholar 

  • Lowin B, Hahne M, Mattmann C, Tschopp J (1994) Cytolytic T-cell cytotoxicity is mediated through perforin and Fas lytic pathways. Nature 370: 650–652

    Article  PubMed  CAS  Google Scholar 

  • Malkin D, Li FP, Strong LC, Fraumeni J Jr, Nelson CE, Kim DH, Kassel J, Gryka MA, Bischoff FZ, Tainsky MA, et al. (1990) Germ line p53 mutations in a familial syndrome of breast cancer, sarcomas, and other neoplasms. Science 250: 1233–1238

    Article  PubMed  CAS  Google Scholar 

  • Martin SJ, Amarantemendes GP, Shi LF, Chuang TH, Casiano CA, Obrien GA, Fitzgerald P, Tan EM, Bokoch GM, Greenberg AH, Green DR (1996) The cytotoxic cell protease granzyme B initiates apoptosis in a cell-free system by proteolytic processing and activation of the ICE/ ced-3 family protease, CPP32, via a novel two-step mechanism. EMBO J 15: 2407–2416

    PubMed  CAS  Google Scholar 

  • McDonnell TJ, Deane N, Platt FM, Nunez G, Jaeger U, McKearn JP, Korsmeyer SJ (1989) Bc1–2immunoglobulin transgenic mice demonstrate extended B cell survival and follicular lymphoproliferation. Cell 57: 79–88

    Article  PubMed  CAS  Google Scholar 

  • Medema JP, Scaffidi C, Kischkel FC, Shevchenko A, Mann M, Krammer PH, Peter ME (1997) FLICE is activated by association with the CD95 death-inducing signalling complex ( DISC ). EMBO J 16: 2794–2804

    Article  PubMed  CAS  Google Scholar 

  • Minn AJ, Velez P, Schendel SL, Liang H, Muchmore SW, Fesik SW, Fill M, Thompson CB (1997) Bcl-x(L) forms an ion channel in synthetic lipid membranes. Nature 385: 353–357

    Article  PubMed  CAS  Google Scholar 

  • Molineaux SM, Casano FJ, Rolando AM, Peterson EP, Limjuco G, Chin J, Griffin PR, Calaycay JR, Ding GJF, Yamin T-T, Palyha OC, Luell S, Fletcher D, Miller DK, Howard AD, Thornberry NA, Kostura MJ (1993) Interleukin 1β (IL-1(3) processing in murine macrophages requires a structurally conserved homologue of human IL-113 converting enzyme. Proc Natl Acad Sci USA 90: 1809–1813

    Article  PubMed  CAS  Google Scholar 

  • Motoyama N, Wang FP, Roth KA, Sawa H, Nakayama K, Nakayama K, Negishi I, Senju S, Zhang Q, Fujii S, Loh DY (1995) Massive cell death of immature hematopoietic cells and neurons in bcl-x-deficient mice. Science 267: 1506–1510

    Article  PubMed  CAS  Google Scholar 

  • Muzio M, Chinnaiyan AM, Kischkel FC, Orourke K, Shevchenko A, Ni J, Scaffidi C, Bretz JD, Zhang M, Gentz R, Mann M, Krammer PH, Peter ME, Dixit VM (1996) FLICE, a novel FADDhomologous ICE/ced-3-like protease, is recruited to the CD95 (Fas/Apo-1) death-inducing signaling complex. Cell 85: 817–827

    Article  PubMed  CAS  Google Scholar 

  • Muzio M, Salvesen GS, Dixit VM (1997) FLICE induced apoptosis in a cell-free system–cleavage of caspase zymogens. J Biol Chem 272: 2952–2956

    Article  PubMed  CAS  Google Scholar 

  • Nakayama K, Nakayama K, Nagashi I, Kulda K, Shinkai Y, Louie MC, Fields LE, Lucas PJ, Stewart V, Alt FW, Loh DY (1993) Disappearance of the lymphoid system in bd-2 homozygous mutant chimeric mice. Science 261: 1534–1538

    Article  Google Scholar 

  • Neilan JG, Lu Z, Afonso CL, Kutish GF, Sussman MD, Rock DL (1993) An African swine fever virus gene with similarity to the proto-oncogene bd-2 and the Epstein-Barr virus gene BHRF1. J Virol 67: 4391–4394

    PubMed  CAS  Google Scholar 

  • Rieux LF, Le DF, Hivroz C, Roberts IA, Debatin KM, Fischer A, de VJ (1995) Mutations in Fas associated with human lymphoproliferative syndrome and autoimmunity. Science 268: 1347–1349

    Article  Google Scholar 

  • Rothe M, Pan MG, Henzel WJ, Ayres TM, Goeddel DV (1995) The TNFR2-TRAF signaling complex contains two novel proteins related to baculoviral-inhibitor of apoptosis proteins. Cell 83: 1243–1252

    Article  PubMed  CAS  Google Scholar 

  • Roy N, Mahadevan MS, Mclean M, Shutler G, Yaraghi Z, Farahani R, Baird S, Besnerjohnston A, Lefebvre C, Kang XL, Salih M, Aubry H, Tamai K, Guan XP, Ioannou P, Crawford TO, Dejong PJ, Surh L, Ikeda JE, Korneluk RG, Mackenzie A (1995) The gene for neuronal apoptosis inhibitory protein is partially deleted in individuals with spinal muscular atrophy. Cell 80: 167–178

    Article  PubMed  CAS  Google Scholar 

  • Sarid R, Sato T, Bohenzky RA, Russo JJ, Chang Y (1997) Kaposis sarcoma-associated herpesvirus encodes a functional bd-2 homologue. Nat Med 3: 293–298

    Article  PubMed  CAS  Google Scholar 

  • Shaham S, Horvitz HR (1996) Developing Caenorhabditis elegans neurons may contain both cell-death protective and killer activities. Genes Dev 10: 578–91

    Article  PubMed  CAS  Google Scholar 

  • Shi L, Kam CM, Powers JC, Aebersold R, Greenberg AH (1992) Purification of three cytotoxic lymphocyte granule serine proteases that induce apoptosis through distinct substrate and target cell interactions. J Exp Med 176: 1521–1529

    Article  PubMed  CAS  Google Scholar 

  • Spector MS, Desnoyers S, Hoeppner DJ, Hengartner MO (1997) Interaction between the C. elegans cell-death regulators ced-9 and ced-4. Nature 385: 653–656

    Article  PubMed  CAS  Google Scholar 

  • Srinivasula SM, Ahmad M, Fernandesalnemri T, Litwack G, Alnemri ES (1996) Molecular ordering of the Fas-apoptotic pathway–the Fas/Apo-1 protease Mch5 is a CrmA-inhibitable protease that activates multiple ced-3/ICE-like cysteine proteases. Proc Natl Acad Sci USA 93: 14486–14491

    Article  PubMed  CAS  Google Scholar 

  • Srivastava S, Zou ZQ, Pirollo K, Blattner W, Chang EH (1990) Germ-line transmission of a mutated p53 gene in a cancer-prone family with Li-Fraumeni syndrome. Nature 348: 747–749

    Article  PubMed  CAS  Google Scholar 

  • Strasser A, Whittingham S, Vaux DL, Bath ML, Adams JM, Cory S, Harris AW (1991) Enforced bd-2 expression in B-lymphoid cells prolongs antibody responses and elicits autoimmune disease. Proc Natl Acad Sci USA 88: 8661–8665

    Article  PubMed  CAS  Google Scholar 

  • Strasser A, Harris AW, Cory S (1993) E mu-bd-2 transgene facilitates spontaneous transformation of early pre-B and immunoglobulin-secreting cells but not T cells. Oncogene 8: 1–9

    CAS  Google Scholar 

  • Strasser A, Harris AW, Jacks T, Cory S (1994) DNA damage can induce apoptosis in proliferating lymphoid cells via p53-independent mechanisms inhibitable by Bd-2. Cell 79: 329–339

    Article  PubMed  CAS  Google Scholar 

  • Strasser A, Harris AW, Huang D, Krammer PH, Cory S (1995) Bd-2 and Fas/Apo-1 regulate distinct pathways to lymphocyte apoptosis. EMBO J 14: 6136–6147

    PubMed  CAS  Google Scholar 

  • Thome M, Schneider P, Hofmann K, Fickenscher H, Meinl E, Neipel F, Mattmann C, Burns K, Bodmer JL, Schroter M, Scaffidi C, Krammer PH, Peter ME, Tschopp J (1997) Viral FLICEinhibitory proteins ( FLIPs) prevent apoptosis induced by death receptors. Nature 386: 517–521

    Article  PubMed  CAS  Google Scholar 

  • Tsujimoto Y, Cossman J, Jaffe E, Croce CM (1985) Involvement of the bd-2 gene in human follicular lymphoma. Science 228: 1440–1443

    Article  PubMed  CAS  Google Scholar 

  • Uren AG, Pakusch M, Hawkins CJ, Puls KL, Vaux DL (1996) Cloning and expression of apoptosis inhibitory protein homologs that function to inhibit apoptosis and/or bind tumor necrosis factor receptor-associated factors. Proc Natl Acad Sci USA 93: 4974–4978

    Article  PubMed  CAS  Google Scholar 

  • Vaux DL, Hacker G (1995) Hypothesis — apoptosis caused by cytotoxins represents a defensive response that evolved to combat intracellular pathogens. Clin Exp Pharm Physiol 22: 861–863

    Article  CAS  Google Scholar 

  • Vaux DL, Cory S, Adams JM (1988) Bd-2 gene promotes haemopoietic cell survival and cooperates with c-myc to immortalize pre-B cells. Nature 335: 440–442

    Article  PubMed  CAS  Google Scholar 

  • Vaux DL, Weissman IL, Kim SK (1992) Prevention of programmed cell death in Caenorhabditis elegans by human bd-2. Science 258: 1955–1957

    Article  PubMed  CAS  Google Scholar 

  • Veis DJ, Sorenson CM, Shutter JR, Korsmeyer SJ (1993) Bcl-2-deficient mice demonstrate fulminant lymphoid apoptosis, polycystic kidneys, and hypopigmented hair. Cell 75: 229–240

    Article  PubMed  CAS  Google Scholar 

  • Walker NPC, Talanian RV, Brady KD, Dang LC, N.J. B, Ferenz CR, Franklin S, Ghayur T, Hackett MC, Hamill LD, Herzog L, Hugunin M, Houy W, Mankovich JA, McGuiness L, Orlewicz E, Paskind M, Pratt CA, Reis P, Summani A, Terranova M, Welch JP, Xiong L, Möller A, Tracey DE, Kamen R, Wong WW (1994) Crystal structure of the cysteine protease interleukin-1-β converting enzyme: a (p20/p10)2 homodimer. Cell 78: 343–352

    Article  PubMed  CAS  Google Scholar 

  • Wang ZQ, Auer B, Stingl L, Berghammer H, Haidacher D, Schweiger M, Wagner EF (1995) Mice lacking ADPRT and poly(ADP-ribosyl)ation develop normally but are susceptible to skin disease. Genes Dev 9: 509–520

    Article  PubMed  CAS  Google Scholar 

  • Watanabe FR, Brannan CI, Itoh N, Yonehara S, Copeland NG, Jenkins NA, Nagata S (1992) The cDNA structure, expression, and chromosomal assignment of the mouse Fas antigen. J Immunol 148: 1274–1279

    Google Scholar 

  • Wilson KP, Black J, Thomson JA, Kim EE, Griffith JP, Navia MA, Murcko MA, Chambers SP, Aldape RA, Raybuck SA, Livingston DJ (1994) Structure and mechanism of interleukin-1-beta converting enzyme. Nature 370: 270–275

    Article  PubMed  CAS  Google Scholar 

  • Wu DY, Wallen HD, Nunez G (1997) Interaction and regulation of subcellular localization of ced4 by ced-9. Science 275: 1126–1129

    Article  PubMed  CAS  Google Scholar 

  • Xue D, Shaham S, Horvitz HR (1996) The Caenorhabditis elegans cell-death protein ced-3 is a cysteine protease with substrate specificities similar to those of the human CPP32 protease. Genes Dev 10: 1073–1083

    Article  PubMed  CAS  Google Scholar 

  • Yang J, Liu XS, Bhalla K, Kim CN, Ibrado AM, Cai JY, Peng TI, Jones DP, Wang XD (1997) Prevention of apoptosis by bd-2–release of cytochrome c from mitochondria blocked. Science 275: 1129–1132

    Article  PubMed  CAS  Google Scholar 

  • Yonish RE, Resnitzky D, Lotem J, Sachs L, Kimchi A, Oren M (1991) Wild-type p53 induces apoptosis of myeloid leukaemic cells that is inhibited by interleukin-6. Nature 353: 345–347

    Article  Google Scholar 

  • Yuan JY, Shaham S, Ledoux S, Ellis HM, Horvitz HR (1993) The C. elegans cell death gene ced 3 encodes a protein similar to mammalian interleukin 1 beta converting enzyme. Cell 75: 641652

    Google Scholar 

  • Zou H, Henzel WJ, Liu X, Lutschg A, Wang X (1997) Apaf-1, a human protein homologous to C. elegans CED-4, participates in cytochrome c-dependent activation of caspase-3. Cell 90: 405–413

    Article  PubMed  CAS  Google Scholar 

  • Zumbansen M, Stoffel W (1997) Tumor necrosis factor alpha activates NF-kappa-B in acid sphingomyelinase-deficient mouse embryonic fibroblasts. J Biol Chem 272: 10904–10909

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Verhagen, A.M., Vaux, D.L. (1999). Molecular Mechanisms of Apoptosis: An Overview. In: Kumar, S. (eds) Apoptosis: Biology and Mechanisms. Results and Problems in Cell Differentiation, vol 23. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69184-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-69184-6_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-21623-1

  • Online ISBN: 978-3-540-69184-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics