Skip to main content

Lymphocyte-Mediated Cytolysis: Dual Apoptotic Mechanisms with Overlapping Cytoplasmic and Nuclear Signalling Pathways

  • Chapter
  • 156 Accesses

Part of the book series: Results and Problems in Cell Differentiation ((RESULTS,volume 23))

Abstract

Cytotoxic T lymphocytes (CTL) and natural killer (NK) cells together comprise cytotoxic lymphocytes (CL), which are the principal basis for the immune system’s detection and destruction of virus-infected or transformed cells. Although CTL and NK cells recognize foreign antigens and become activated in very different ways, both cell types employ the same two contact-dependent cytolytic mechanisms. In the first, the synergy of two granule-bound factors, a calcium-dependent pore-forming protein, perforin, and a collection of proteases (“granzymes”), results in the entry of effector proteases into the target cell cytoplasm and nucleus. The second mechanism involves trimerization of Fas (CD95/APO-1) molecules on susceptible target cells by binding to Fas ligand (FasL/CD95L) expressed on effector lymphocytes, but has no requirement for calcium. Both cytolytic mechanisms can activate a ubiquitous signalling pathway that involves sequential proteolytic events (the caspase cascade) that lead to apoptosis, with the cleavage of structural and enzymatic targets in both the cytoplasm and nucleus.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allbritton NL, Verret CR, Wolley RC, Eisen HN (1988) Calcium ion concentrations and DNA fragmentation in target cell destruction by murine cloned cytotoxic T lymphocytes. J Exp Med 167: 514–527

    Article  PubMed  CAS  Google Scholar 

  • Alnemri ES, Livingston DJ, Nicholson DW, Salvesan G, Thornberry NA, Wong WW, Yuan J (1996) Human ICE/CED-3 protease nomenclature. Cell 87: 171–174

    Article  PubMed  CAS  Google Scholar 

  • Banner D, D’arcy A, James W, Gentz R, Shoenfeld H-J, Broger C, Loetscher H, Lesslauer W (1993) Crystal structure of the soluble human 55 kD TNF receptor-human TNF beta complex: implications for TNF receptor activation. Cell 73: 431–445

    Article  PubMed  CAS  Google Scholar 

  • Berke G (1989) The cytolytic T lymphocyte and its mode of action. Immunol Lett 20: 169–178

    Article  PubMed  CAS  Google Scholar 

  • Berke G (1991) Debate: the mechanism of lymphocyte-mediated killing. Lymphocyte-triggered internal target disintegration. Immunol Today 12: 396–399

    Article  PubMed  CAS  Google Scholar 

  • Berke G, Rosen D (1988) Highly lytic in vivo primed cytolytic T lymphocytes devoid of lytic granules and BLT esterase activity acquire these constituents in the presence of T cell growth factors upon blast transformation in vitro. J Immunol 141: 1429–1436

    PubMed  CAS  Google Scholar 

  • Boldin MP, Varfoloeev EE, Pancer Z, Mett IL, Camonis JH, Wallach D (1995) A novel protein that interacts with the death domain of Fas/APO-1 contains a sequence motif related to the death domain. J Biol Chem 270: 7795–7798

    Article  PubMed  CAS  Google Scholar 

  • Boldin MP, Goncharov TM, Golstev YV, Wallach D (1996) Involvement of MACH, a novel MORTI/FADD-interacting protease, in Fas/APO-1- and TNF receptor-induced cell death. Cell 85: 803–815

    Article  PubMed  CAS  Google Scholar 

  • Bykovskaja SN, Rytenko AN, Rauschenbach MO, Bykovsky AF (1978) Ultrastructural alteration of cytolytic T lymphocytes following their interaction with target cells. Cell Immunol 40: 175–185

    Article  PubMed  CAS  Google Scholar 

  • Casciola-Rosen L, Nicholson DW, Chong T, Rowan KR, Thornberry NA, Miller DK, Rosen A (1996) Apopain/cpp32 cleaves proteins that are essential for cellular repair: a fundamental principle of apoptotic death. J Exp Med 183: 1957–1964

    Article  PubMed  CAS  Google Scholar 

  • Chang TW, Eisen HN (1980) Effects of N-tosyl-L-lysyl-chloromethylketone on the activity of cytotoxic T lymphocytes. J Immunol 124: 1028–1033

    PubMed  CAS  Google Scholar 

  • Chinnaiyan AM, O’Rourke Tewari M, Dixit VM (1995a) FADD, a novel death domain-containing protein, interacts with the death domain of Fas and initiates apoptosis. Cell 81: 505–512

    Article  PubMed  CAS  Google Scholar 

  • Chinnaiyan AM, Tepper CG, Seldin MF, O’Rourke K, Kischkel FC, Hellbardt S, Krammer PH, Peter ME, Dixit VM (1995b) FADD/MORTI is a common mediator of CD95 (Fas/APO-1) and tumor necrosis factor-induced apoptosis. J Biol Chem 271: 4961–4965

    Google Scholar 

  • Chinnaiyan AM, O’Rourke K, Lane BR, Dixit VM (1997) Interaction of CED-4 with CED-3 and CED-9: a molecular framework for cell death. Science 275: 1122–1126

    Article  PubMed  CAS  Google Scholar 

  • Cleveland JL, Ihle JN (1995) Contenders in FasL/TNF death signaling. Cell 81: 479–482

    Article  PubMed  CAS  Google Scholar 

  • Darmon AJ, Ehrman N, Caputo A, Fujinaga J, Bleackley RC (1994) The cytotoxic T cell proteinase granzyme B does not activate interleukin-1(3-converting enzyme. J Biol Chem 269: 32043–32046

    PubMed  CAS  Google Scholar 

  • Darmon AJ, Nicholson DW, Bleackley RC (1995) Activation of the apoptotic protease CPP32 by cytotoxic T cell-derived granzyme B Nature 377: 446–448

    CAS  Google Scholar 

  • Dennert G, Podack ER (1983) Cytolysis by H-2-specific T killer cells: assembly of tubular complexes on target membranes. J Exp Med 157: 1483–1495

    Article  PubMed  CAS  Google Scholar 

  • Dennert G, Anderson CG, Prochazka G (1987) High activity of N-benzyloxycarbonyl-L-lysin thiobenzylester serine esterase and cytolytic perforin in cloned cell lines is not demonstrable in in vivo-induced cytotoxic effector cells. Proc Natl Acad Sci USA 84: 5004–5008

    Article  PubMed  CAS  Google Scholar 

  • Dourmashkin P, Deteix P, Simone CB, Henkary P (1980) Electron microscopic demonstration of lesions on target cell membranes associated with antibody dependent cellular cytotoxicity. Clin Exp Immunol 43: 554–560

    Google Scholar 

  • Drappa J, Vaishnaw AK, Sullivan KE, Chu J, Elkon KB (1996) Fas gene mutations in the Canale-Smith syndrome, an inherited lymphoproliferative disorder associated with autoimmunity. N Engl J Med 335: 1643–1649

    Article  PubMed  CAS  Google Scholar 

  • Duke RC, Persechini PM, Chang S, Liu CC, Cohen JJ, Young JD (1989) Purified perforin induces target cell lysis but not DNA fragmentation. J Exp Med 170: 1451–1456

    Article  PubMed  CAS  Google Scholar 

  • Ebnet K, Hausmann M, Lehman-Grubbe F, Mullbacher A, Kopf M, Lamers M, Simon MM (1995) Granzyme A-deficient mice retain potent cell-mediated cytotoxicity. EMBO J 14: 4230–4239

    PubMed  CAS  Google Scholar 

  • Efthymiadis A, Shao H, Hübner S, Jans DA (1998) Kinetic characterization of the human retinoblastoma protein bipartite nuclear localization sequence in vivo and in vitro: a comparison with the SV40 large T-antigen NLS. J Biol Chem (in press)

    Google Scholar 

  • Fernandes-Alnemri T, Takahashi A, Armstrong R, Krebs J, Friz L, Tomaselli KJ, Wang L, Yu Z, Croce CM, Earnshaw WC, Litwack G, Alnemri ES (1995a) Mch3, a novel apoptotic human cysteine protease highly related to CPP32. Cancer Res 55: 6045–6052

    PubMed  CAS  Google Scholar 

  • Fernandes-Alnemri T, Litwack G, Alnemri ES (1995b) Mch2, a new member of the apoptotic Ced3/ICE cysteine protease gene family. Cancer Res 55: 2737–2742

    PubMed  CAS  Google Scholar 

  • Fernandes-Alnemri T, Armstron RC, Krebs J, Srivasula SM, Wang L, Bullrich F, Fritz LC, Trapani JA, Croce C, Tomaselli KJ, Litwack G, Alnemri ES (1996) In vitro activation of CPP32 and Mch3 by Mch4 a novel human apoptotic cysteine protease and a substrate for granzyme B. Proc Natl Acad Sci USA 93: 7464–7469

    Article  PubMed  CAS  Google Scholar 

  • Froelich CJ, Hanna WL, Poirier GG, Duriez PJ, D’Amours D, Salvesan GS, Alnemri ES, Earnshaw WC, Shah GM (1996a) Granzyme B/perforin mediated apoptosis of Jurkat cells results in cleavage of poly(ADP-ribose) polymerase to the 89-kDa apoptotic fragment and less abundant 64-kDa fragment. Biochem Biophys Res Commun 227: 658–667

    Article  PubMed  CAS  Google Scholar 

  • Froelich CJ, Orth K, Turbov J, Seth P, Gottlieb R, Babior B, Shah G, Bleackley RC, Dixit V, Hanna W (1996b) New paradigm for lymphocyte granule-mediated cytotoxicity. Target cells bind and internalize granzyme B, but an endosmolytic agent is necessary for cytosolic delivery and subsequent apoptosis. J Biol Chem 271: 29073–29079

    Article  PubMed  CAS  Google Scholar 

  • Gagliardini V, Fernandez P-A, Lee R, Drexler HC, Rotello R, Fishman MC, Yuan J (1994) Prevention of vertebrate neuronal death by the crmA gene. Science 263: 826–828

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Sanz JA, MacDonald HR, Jenne DE, Tschopp J, Nabholz M (1990) Cell specificity of granzyme gene expression. J Immunol 145: 3111–3118

    PubMed  CAS  Google Scholar 

  • Goillot E, Raingeaud J, Ranger A, Tepper RI, Davis RJ, Harlow E, Sanchez I (1997) Mitogenactivated protein kinase-mediated Fas apoptotic signaling pathway. Proc Natl Acad Sci USA 94: 3302–3307

    Article  PubMed  CAS  Google Scholar 

  • Gu Y, Sarnecki C, Fleming MA, Lippke JA, Bleackley RC, Su M (1995) Processing and activation of CMH-1 by granzyme B. J Biol Chem 271: 10816–10820

    Google Scholar 

  • Harvey NL, Trapani JA, Fernandes-Alnemri T, Litwack G, Alnemri E, Kumar S (1996) Processing of the Nedd-2 precursor by ICE-like proteases and granzyme B. Genes Cells 1: 673–685

    Article  PubMed  CAS  Google Scholar 

  • Hayes MP, Berrebi GA, Henkart PA (1989) Induction of target cell DNA release by the cytotoxic T lymphocyte granule protease granzyme A. J Exp Med 170: 933–946

    Article  PubMed  CAS  Google Scholar 

  • Henkart, PA (1994) Lymphocyte-mediated cytotoxicity: two pathways and multiple effector molecules. Immunity 1: 343–346

    Article  PubMed  CAS  Google Scholar 

  • Heusel JW, Wesselschmidt RL, Shestra S, Russell JH, Ley TJ (1994) Cytotoxic lymphocytes require granzyme B for the rapid induction of DNA fragmentation and apoptosis in allogeneic target cells. Cell 76: 977–987

    Article  PubMed  CAS  Google Scholar 

  • Hsu H, Xiong J, Goedell DV (1995) The TNF receptor 1-associated protein TRADD signals cell death and NFx-B activation. Cell 81: 495–504

    Article  PubMed  CAS  Google Scholar 

  • Hsu H, Shu H-B, Pan M-P, Goedell DV (1996) TRADD-TRAF2 and TRADD-FADD interactions define two distinct TNF receptor-1 signal transduction pathways. Cell 84: 299–308

    Article  PubMed  CAS  Google Scholar 

  • Hudig D, Allison NJ, Pickett TM, Winkler U, Kam CM, Powers JC (1991) The function of lymphocyte proteases. Inhibition and restoration of granule-mediated lysis with isocoumarin serine protease inhibitors. J Immunol 147: 1360–1368

    PubMed  CAS  Google Scholar 

  • Illum N, Ralfkiger E, Palleson G, Geisler C (1991) Phenotypical and functional characterization of double negative (CD4–CD8-) alpha beta T-cell receptor positive cells from an imunodeficient patient. Scand J Immunol 34: 635–640

    Article  PubMed  CAS  Google Scholar 

  • Irmler M, Hertig S, MacDonald HR, Sadoul R, Becherer JD, Proudfoot A, Solari R, Tschopp J (1995) Granzyme A is an interleukin-1(3-converting enzyme. J Exp Med 181: 1917–1922

    Article  PubMed  CAS  Google Scholar 

  • Itoh N, Nagata S (1993) A novel protein domain required for apoptosis. Mutational analysis of human Fas antigen. J Biol Chem 268: 10932–10937

    PubMed  CAS  Google Scholar 

  • Jacobson MD, Burne JF, Raff MC (1994) Programmed cell death and Bd-2 protection in the absence of a nucleus. EMBO J 13: 1899–1908

    PubMed  CAS  Google Scholar 

  • Janicke RU, Walker PA, Lin XY, Porter AG (1996) Specific cleavage of the retinoblastoma protein by an ICE-like protease in apoptosis. EMBO J 15: 6969–6978

    PubMed  CAS  Google Scholar 

  • Jans DA (1995) Regulation of protein transport to the nucleus by phosphorylation. Biochem J 311: 705–716

    PubMed  CAS  Google Scholar 

  • Jans DA, Hübner S (1996) Regulation of protein transport to the nucleus — the central role of phosphorylation. Physiol Rev 76: 651–685

    PubMed  CAS  Google Scholar 

  • Jans DA, Ackerman M, Bischoff JR, Beach DH, Peters RJ (1991) P34cdc2-mediated phosphorylation at T124 inhibits nuclear import of SV-40 T antigen proteins. J Cell Biol 115: 1203–1212

    Article  PubMed  CAS  Google Scholar 

  • Jans DA, Jans P, Briggs LJ, Sutton V, Trapani JA (1996) Reconstitution of nuclear and nucleolar transport of the natural killer cell serine protease granzyme B — dependence on perforin in vivo and cytosolic factors in vitro. J Biol Chem 271: 30781–30789

    Article  PubMed  CAS  Google Scholar 

  • Jans DA, Briggs LJ, Jans P, Froelich CJ, Parasivam G, Williams EA, Kumar S, Sutton VR, Trapani JA (1997) Nuclear targeting of granzyme A (fragmentin-1): dependence on perforin in intact cells and cytosolic factors in vitro. (submitted)

    Google Scholar 

  • Ju ST, Cui H, Panka DJ, Ettinger R, Marshak-Rothstein A (1994) Participation of target Fas protein in apoptosis pathway induced by CD4+ Thl and CD8+ cytotoxic T cells. Proc Natl Acad Sci USA 91: 4185–4189

    Article  PubMed  CAS  Google Scholar 

  • Kagi D, Ledermann B, Burki K, Seiler P, Odermatt B, Olsen KJ, Podack ER, Zinkernagel RM, Hengartner H (1994) Cytotoxicity mediated by T cells and natural killer cells is greatly impaired in perforin-deficient mice. Nature 369: 31–37

    Article  PubMed  CAS  Google Scholar 

  • Kaufmann SH (1989) Induction of endonucleolytic DNA cleavage in human acute myelogenous leukemia cells by etoposide, camptothesin, and other cytotoxic anti cancer drugs: a cautionary note. Cancer Res 52: 3976–3985

    Google Scholar 

  • Kaufmann SH, Desnoyers SM, Ottaviano Y, Davidson NE, Poirier GG (1993) Specific proteolytic cleavage of poly(ADP-ribose) polymerase: an early marker of chemotherapy induced apoptosis. Cancer Res 49: 5870–5878

    Google Scholar 

  • Kayalar C, Ord T, Testa MP, Zhong LT, Bredesen DE (1996) Cleavage of actin by interleukin-113- converting enzyme to reverse DNase 1 inhibition. Proc Natl Acad Sci USA 93: 2234–2238

    Article  PubMed  CAS  Google Scholar 

  • Kischkel FC, Peter ME, Medema JP, Scaffidi C, Scheuerpflug C, Debatin K, Krammer PH (1997) FLICE is involved in regulation of activation induced cell death (AICD) in peripheral T cells. Proc 6th EMBO Worksh on Cell-mediated cytotoxicity, Kerkrade, The Netherlands, p36 (Abstr)

    Google Scholar 

  • Kojima H, Shinohara N, Hanaoka S, Someya-Shirota Y, Takagaki Y, Ohno H, Saito T, Katayama T, Yagita H, Okumura K, Shinkai Y, Alt FW, Matsuzawa A, Yonehara A, Takayama H (1994) Two distinct pathways of specific killing revealed by perforin mutant cytotoxic T lymphocytes. Immunity 1: 357–364, 1994

    Google Scholar 

  • Kostura MJ, Tocci MJ, Limjuco G, Chin J, Cameron AG, Hillman NA, Chartrain NA, Schmidt JA (1989) Identification of a monocyte-specific pre-interlerukin-1(3 convertase activity. Proc Natl Acad Sci USA 86: 5527–5531

    Article  Google Scholar 

  • Krahenbuhl O, Tschopp J (1991) Debate: the mechanism of lymphocyte-mediated killing. Perforin-induced pore formation. Immunol Today 12: 399–402

    Google Scholar 

  • Krajewski S, Gasgoyne RD, Zapata JM, Krajewski M, Kitada S, Chhanabhal M, Horsman D, Berean K, Piro LD, Fugier-Vivier I, Liu YJ, Wang H-C, Reed JC (1997a) Immunolocalization of the ICE/Ced-3-family protease CPP32 (caspase-3), in non-Hodgkin’s lymphomas, chronic lymphocytic leukemias, and reactive lymph nodes. Blood 89: 3817–3825

    PubMed  CAS  Google Scholar 

  • Krajewski M, Wang H-C, Krajewski S, Zapata JM, Shabaik A, Gasgoyne R, Reed JC (1997b) Immunohistochemical analysis of in vivo patterns of expression of CPP32 (caspase-3), a cell death protease. Cancer Res 57: 1605–1613

    PubMed  Google Scholar 

  • Kumar S (1995) Inhibition of apoptosis by the expression of antisense Nedd2. FEBS Lett 368: 69–72

    Article  PubMed  CAS  Google Scholar 

  • Kumar S, Lavin MF (1996) The ICE family of cysteine proteases as effectors of cell death. Cell Death Differ 3: 155–267

    Google Scholar 

  • Lazebnik YA, Kaufmann SH, Desnoyers S, Poirier GG, Earnshaw WC (1994) Cleavage of poly(ADP-ribose) polymerase by a proteinase with properties like ICE. Nature 371: 346–347

    Article  PubMed  CAS  Google Scholar 

  • Lazebnik YA, Takahashi A, Moir RD, Goldman RD, Poirier GG, Kaufmann SH, Earnshaw WC (1995) Studies of the lamin proteinase reveal multiple parallel biochemical pathways during apoptotic execution. Proc Natl Acad Sci USA 92: 9042–9046

    Article  PubMed  CAS  Google Scholar 

  • Li P, Allen H, Bannerjee S, Franklin S, Herzog L, Johnston C, McDowell J, Paskind M, Rodman L, Salfeld J, Towne E, Tracey D, Wardwell S, Wei F-Y, Wong W, Kamen R, Seshadri T (1995) Mice deficient in IL-1ß converting enzyme are defective in production of mature IL-1(3 and resistant to endotoxin shock. Cell 80: 401–411

    Article  PubMed  CAS  Google Scholar 

  • Lindahl LT, Satoh MS, Poirier GG, Klungland A (1995) Post-translational modification of poly(ADP-ribose) polymerase induced by DNA strand breaks. Trends Biochem Sci 20: 405411

    Google Scholar 

  • Liu X, Zou H, Slaughter C, Wang X (1997) DFF, a heterodimeric protein that functions downstream of caspase-3 to trigger DNA fragmentation during apoptosis. Cell 89: 175–184

    Article  PubMed  CAS  Google Scholar 

  • Lowin B, Beermann F, Schmidt A, Tschopp J (1994) A null mutation in the perforin gene impairs cytolytic T lymphocyte-and natural killer cell-mediated cytotoxicity. Proc Natl Acad Sci USA 91: 11571–11575

    Article  PubMed  CAS  Google Scholar 

  • Martin SJ, Amarante-Mendes GP, Shi L, Chuang TH, Casiano CA, O’Brien GA, Fitzgerald P, Tan EM, Bokoch GM, Greenberg AH, Green DR (1996) The cytotoxic cell protease granzyme B initiates apoptosis in a cell-free system by proteolytic processing and activation of the ICE/CED-3 family protease, CPP32, via a novel two-step mechanism. Embo J 15: 24072416

    Google Scholar 

  • Masson D, Tschopp J (1987) A family of serine esterases in lytic granules of cytolytic T lymphocytes. Cell 49: 679–685

    Article  PubMed  CAS  Google Scholar 

  • Miura M, Zho H, Rotello R, Hartwieg EA, Yuan J (1993) Induction of apoptosis in fibroblasts by Il-1(3-converting enzyme, a mammalian homolog of the C. elegans cell death gene ced-3. Cell 75: 653–660

    Article  PubMed  CAS  Google Scholar 

  • Miura M, Friedlander RM, Yuan J (1995) Tumor necrosis factor induced apoptosis is mediated by a crmA-sensitive cell death pathway. Proc Natl Acad Sci USA 92: 8318–8322

    Article  PubMed  CAS  Google Scholar 

  • Mullbacher A, Ebnet K, Blanden RV, Hla RT, Stehle T, Museteanu C, Simon MM (1996) Granzyme A is critical for recovery for mice from infection with the natural cytopathic viral pathogen, Ectromelia. Proc Natl Acad Sci USA 93: 5783–5787

    Article  PubMed  CAS  Google Scholar 

  • Munday NA, Vaillancourt JP, Ali A, Casano FJ, Miller DJ, Milineaux SM, Yamin T-T, Yu VL, Nicholson DW (1995) Molecular cloning and pro-apoptotic activity of ICE,QiII and ICE,QìIII, members of the ICE/CED-3 family of cysteine proteases. J Biol Chem 270: 15870–15876

    Article  PubMed  CAS  Google Scholar 

  • Muzio M, Chinnaiyan AM, Kischkel FC, O’Rourke K, Shevchenko A, Ni J, Scaffidi C, Bretz JD, Zhang M, Gentz R, Mann M, Krammer PH, Dixit VM (1996) FLICE, a novel FADD-homologous ICE-CED-3-like protease, is recruited to the CD95 (Fas/APO-1) death-inducing signaling complex. Cell 85: 817–827

    Article  PubMed  CAS  Google Scholar 

  • Nagata S, Golstein P (1995) The Fas death factor. Science 267: 1449–1456

    Article  PubMed  CAS  Google Scholar 

  • Nakajima H, Henkart PA (1994) Cytotoxic lymphocyte granzymes trigger a target cell internal disintegration pathway leading to cytolysis and DNA breakdown. J Immunol 152: 1057–1063

    PubMed  CAS  Google Scholar 

  • Nakajima H, Golstein P, Henkart PA (1995) The target cell nucleus is not required for cell mediated granzyme-or Fas-based cytotoxicity. J Exp Med 181: 1905–1913

    Article  PubMed  CAS  Google Scholar 

  • Nicholson DW, Ali A, Thornberry NA, Vaillancourt JP, Ding CK, Gallant M, Garaeau Y, Griffin PR, Labelle M, Lazebnik YA, Munday NA, Raju SM, Smulson ME, Yamin T-T, Yu VL, Miller DK (1995) Identification and inhibition of the ICE/CED-3 protease necessary for mammalian apoptosis. Nature 376: 37–43

    Article  PubMed  CAS  Google Scholar 

  • Ostergaard HL, Clark WR (1989) Evidence for multiple lytic pathways used by cytotoxic T lymphocytes. J Immunol 143: 2120–2126

    PubMed  CAS  Google Scholar 

  • Ostergaard HL, Kane KP, Mescher MF, Clark WR (1987) Cytotoxic T lymphocyte mediated lysis without release of serine esterase. Nature 330: 71–72

    Article  PubMed  CAS  Google Scholar 

  • Pasternack MS, Bleier KJ, McInerney TN (1991) Granzyme A binding to target cell proteins. Granzyme A binds to and cleaves nucleolin in vitro. J Biol Chem 266: 14703–14708

    PubMed  CAS  Google Scholar 

  • Pinkoski MJ, Winkler U, Hudig D, Bleackley RC (1996) Binding of granzyme B in the target cell nucleus: recognition of an 80-kilodalton protein. J Biol Chem 271: 10225–10229

    Article  PubMed  CAS  Google Scholar 

  • Podack ER (1995) Functional significance of two cytolytic pathways of cytotoxic T lymphocytes. J Leukoc Biol 57: 548–552

    PubMed  CAS  Google Scholar 

  • Podack ER, Dennert G (1983) Assembly of two types of tubules with putative cytolytic function by cloned natural killer cells. Nature 302: 442–445

    Article  PubMed  CAS  Google Scholar 

  • Poe M, Blake JT, Boulton DA, Gammon M, Sigal NH, Wu JK, Zweerink HJ (1991) Human cytotoxic lymphocyte granzyme B. Its purification from granules and the characterization of substrate and inhibitor specificity. J Biol Chem 266: 98–103

    PubMed  CAS  Google Scholar 

  • Ray CA, Black RA, Kronheim SR, Greenstreet TA, Sleath PR, Salvesan GS, Pickup DJ (1992) Viral inhibition of inflammation: cowpox virus encodes an inhibitor of the interleukin-1(3 converting enzyme. Cell 69: 597–604

    Article  PubMed  CAS  Google Scholar 

  • Rouvier E, Luciani MF, Golstein P (1993) Fas involvement in Car)-independent T cell-mediated cytotoxicity. J Exp Med 177: 195–200

    Article  PubMed  CAS  Google Scholar 

  • Russell JH (1983) Internal disintegration model of cytotoxic lymphocyte-induced target damage. Immunol Rev 72: 97–118

    Article  PubMed  CAS  Google Scholar 

  • Sarin A, Williams MS, Alexander-Miller MA, Berzofsky JA, Zacharchuk CM, Henkart P (1997a) Target cell lysis by CTL granule exocytosis is independent of ICE-ced-3 family proteases. Immunity 6: 209–215

    Article  PubMed  CAS  Google Scholar 

  • Sarin A, Williams MS, Alexander-Miller MA, Berzofsky JA, Zacharchuk CM, Henkart PA (1997b) CTL lysis via the two CTL pathways differs with respect to utilization of target caspases: lysis via Fas requires caspases while granule exocytosis does not. Proc 6th EMBO Worksh on Cell-mediated cytotoxicity, Kerkrade, The Netherlands, p 28 (Abstr)

    Google Scholar 

  • Sayers TJ, Wiltrout TA, Sowder R, Munger WL, Smyth MJ, Henderson LE (1992) Purification of a factor from the granules of a rat natural killer cell line (RNK) that reduces tumor cell growth and changes tumor morphology. Molecular identity with a granule serine protease (RNKP-1). J Immunol 148: 292–300

    PubMed  CAS  Google Scholar 

  • Schmid DS, Tite JP, Ruddle NH (1986) DNA fragmentation: manifestation of target cell destruction mediated by cytotoxic T-cell lines, lymphotoxin-secreting helper T-cell clones, and cell-free lymphotoxin-containing supernatant. Proc Natl Acad Sci USA 83: 1881–1885

    Article  PubMed  CAS  Google Scholar 

  • Schultze-Ostoff K, Walczak KH, Droge W, Krammer PH (1994) Cell nucleus and DNA fragmentation are not required for apoptosis. J Cell Biol 127: 15–22

    Article  Google Scholar 

  • Seth P (1994) A simple and efficient method of protein delivery into cells using adenovirus. Biochem Biophys Res Commun 203: 582–587

    Article  PubMed  CAS  Google Scholar 

  • Shi L, Kraut RP, Aebersold R, Greenberg AH (1992a) A natural killer cell granule protein that induces DNA fragmentation and apoptosis. J Exp Med 175: 553–566

    Article  PubMed  CAS  Google Scholar 

  • Shi L, Kam CM, Powers JC, Aebersold R, Greenberg AH (1992b) Purification of three cytotoxic lymphocyte granule serine proteases that induce apoptosis through distinct substrate and target cell interactions. J Exp Med 176: 1521–1529

    Article  PubMed  CAS  Google Scholar 

  • Shi L, Mai S, Israels S, Browne K, Trapani JA, Greenberg AH (1997) Granzyme B autonomously crosses the cell membrane and perforin initiates apoptosis and granzyme B nuclear accumulation. J Exp Med 185: 855–866

    Article  PubMed  CAS  Google Scholar 

  • Shiver JW, Henkart PA (1991) A noncytotoxic mast cell tumor line exhibits potent IgE-dependent cytotoxicity after transfection with the cytolysin/perforin gene. Cell 64: 1175–1181

    Article  PubMed  CAS  Google Scholar 

  • Shiver JW, Su L, Henkart PA (1992) Cytotoxicity with target DNA breakdown by rat basophilic leukemia cells expressing both cytolysin and granzyme A. Cell 71: 315–322

    Article  PubMed  CAS  Google Scholar 

  • Simon MM, Kramer MD (1994) Granzyme A. Methods Enzymol 244: 68–79

    Article  CAS  Google Scholar 

  • Simon MM, Hoschutzky H, Fruth U, Simon HG, Kramer MD (1986) Purification and characterization of a T cell specific serine proteinase (TSP-1) from cloned cytolytic T lymphocytes. Embo J 5: 3267–3274

    PubMed  CAS  Google Scholar 

  • Simon MM, Simon HG, Fruth U, Epplen J, Muller-Hermelink HK, Kramer MD (1987) Cloned cytolytic T-effector cells and their malignant variants produce an extracellular matrix degrading trypsin-like serine proteinase. Immunology 60: 219–230

    PubMed  CAS  Google Scholar 

  • Simon MM, Kramer MD, Prester M, Gay S (1991) Mouse T-cell associated serine proteinase 1 degrades collagen type IV: a structural basis for the migration of lymphocytes through vascular basement membranes. Immunology 73: 117–119

    PubMed  CAS  Google Scholar 

  • Smyth MJ, Trapani JA (1995) Granzymes: exogenous proteases that induce target cell apoptosis. Immunol Today 16: 202–206

    Article  PubMed  CAS  Google Scholar 

  • Smyth MJ, O’Connor MD, Trapani JA (1996) Granzymes: a variety of serine protease specificities encoded by genetically distinct subfamilies. J Leukoc Biol 60: 555–562

    PubMed  CAS  Google Scholar 

  • Sneller MC, Straus SE, Jaffe ES et al. (1992) A novel lymphoproliferative/autoimmune syndrome resembling murine 1pr/gld disease. J Clin Invest 90: 334–341

    Article  PubMed  CAS  Google Scholar 

  • Song Q, Lees-Miller SP, Kumar S, Zhang N, Smith GC, Jackson SP, Alnemri ES, Litwack G, Lavin MF (1996) DNA-dependent protein kinase catalytic subunit: a target for the ICE-like protease CPP32 in apoptosis. EMBO J 15: 3238–3246

    PubMed  CAS  Google Scholar 

  • Sower L, Froelich CJ, Allegretto N, Rose PM, Hanna WD, Klimpel DR (1996a) Extracellular activation of granzyme A. Monocyte activation by granzyme A versus a-thrombin. J Immunol 156: 2585–2590

    PubMed  CAS  Google Scholar 

  • Sower L, Klimpel GR, Hanna W, Froelich CJ (1996b) Extracellular activities of human granzymes. I. Granzyme A induces IL6 and IL8 production in fibroblast and epithelial cell lines. Cell Immunol 171: 159–163

    Article  CAS  Google Scholar 

  • Srinivasula SM, Fernandes-Alnemri T, Zangrilli J, Robertson N, Armstrong RC, Wang L, Trapani JA, Tomaselli KJ, Litwack G, Alnemri ES (1996) The ced-3/interleukin-113 converting enzyme-like homolog Mch6 and the lamin-cleaving enzyme Mch2a are substrates for the apoptotic mediator CPP32. J Biol Chem 271: 27099–27106

    Article  PubMed  CAS  Google Scholar 

  • Stalder T, Hahn S, Erb P (1994) Fas antigen is the major target molecule for CD4+ T cell-mediated cytotoxicity. J Immunol 152: 1127–1133

    PubMed  CAS  Google Scholar 

  • Stanger BZ, Leder P, Lee TH, Kim E, Seed B (1995) RIP: a novel protein containing a death domain that interacts with Fas/APO-1 (CD95) in yeast and causes cell death. Cell 81: 513–523

    Article  PubMed  CAS  Google Scholar 

  • Strasser A, Harris AW, Huang DC, Krammer PH, Cory S (1995) Bd-2 and Fas/APO-1 regulate distinct pathways to lymphocyte apoptosis. EMBO J 14: 6136–6147

    PubMed  CAS  Google Scholar 

  • Suda T, Nagata S (1994) Purification and characterization of the Fas-ligand that induces apoptosis. J Exp Med 179: 873–879

    Article  PubMed  CAS  Google Scholar 

  • Suidan HS, Bouvier J, Schaerer E, Stone SR, Monard D, Tschopp J (1994) Granzyme A released upon stimulation of T lymphocytes activates the thrombin receptor on neuronal cells and astrocytes. Proc Natl Acad Sci USA 91: 8112–8116

    Article  PubMed  CAS  Google Scholar 

  • Suidan HS, Clemetson KJ, Brown-Luedi M, Niclou SP, Clemetson JM, Tschopp J, Monard D (1996) The serine protease granzyme A does not induce platelet aggregation but inhibits responses triggered by thrombin. Biochem J 315: 939–945

    PubMed  CAS  Google Scholar 

  • Sun J, Bird CH, Sutton V, McDonald L, Coughlin PB, De Jong TA, Trapani JA, Bird PI (1996) A cytosolic granzyme B inhibitor related to the viral apoptotic regulator cytokine response modifier A is present in cytotoxic lymphocytes. J Biol Chem 271: 27802–27809

    Article  PubMed  CAS  Google Scholar 

  • Sutton VR, Vaux DL, Trapani JA (1997) Bd-2 prevents apoptosis induced by perforin and granzyme B but not that mediated by whole cytotoxic lymphocytes. J Immunol 158: 5783–5790

    PubMed  CAS  Google Scholar 

  • Talento A, Nguyen M, Law S, Wu JK, Poe M, Blake JT, Patel M, Wu TJ, Manyak CL, Silberklang M (1992) Transfection of mouse cytotoxic T lymphocyte with an antisense granzyme A vector reduces lytic activity. J Immunol 149: 4009–4015

    PubMed  CAS  Google Scholar 

  • Tewari M, Dixit VM (1995) Fas- and tumor necrosis factor-induced apoptosis is inhibited by the cowpox crmA gene product. J Biol Chem 270: 18738–18741

    Article  PubMed  CAS  Google Scholar 

  • Tewari M, Quan LT, O’Rourke K, Desnoyers S, Zeng Z, Seidler DR, Poirier GG, Salvesan GS, Dixit VM (1995) Yama/CPP32b, a mammalian homologue of CED-3, is a crmA inhibitable protease that cleaves the death substrate poly(ADP-ribose) polymerase. Cell 81: 801–809

    Article  PubMed  CAS  Google Scholar 

  • Thornberry NA, Bull HG, Calaycay JR, Chapman KT, Howard AD, Kostura MJ, Miller DK, Molineaux SM, Weidner JR, Aunins J et al. (1992) A novel heterodimeric cysteine protease is required for interleukin-1(3 processing in monocytes. Nature 356: 768–774

    Article  PubMed  CAS  Google Scholar 

  • Trapani JA, Browne KA, Smyth MJ, Jans DA (1996) Localization of granzyme B in the nucleus: a putative role in the mechanism of lymphocyte-mediated apoptosis. J Biol Chem 271: 4127–4133

    Article  PubMed  CAS  Google Scholar 

  • Trapani JA, Jans P, Froelich CJ, Smyth MJ, Sutton VR, Jans D (1998) Perforin-dependent nuclear entry of granzyme B precedes apoptosis, and is not a consequence of nuclear membrane dysfunction (in press)

    Google Scholar 

  • Trauth BC, Klas C, Peters AM, Matzku S, Moller P, Falk W, Debatin KM, Krammer PH (1989) Monoclonal antibody-mediated tumor regression by induction of apoptosis. Science 245: 301–305

    Article  PubMed  CAS  Google Scholar 

  • Trenn G, Takayama H, Sitkovsky MV (1987) Exocytosis of cytolytic granules may not be required for target cell lysis by cytotoxic T-lymphocytes. Nature 330: 72–74

    Article  PubMed  CAS  Google Scholar 

  • Tschopp J, Schafer S, Masson D, Peitsch MC, Heusser C (1989) Phosphorylcholine acts as a calcium dependent receptor for lymphocyte perforin. Nature 337: 272–274

    Article  PubMed  CAS  Google Scholar 

  • Ucker DS, Obermiller PS, Eckhart W, Apgar JR, Berger NA, Meyers J (1992) Genome digestion is a disposable consequence of physiological cell death mediated by cytotoxic T lymphocytes. Mol Cell Biol 12: 3060–3069

    PubMed  CAS  Google Scholar 

  • Varfolomeev EE, Boldin MP, Goncharov TM, Wallach D (1996) A potential mechanism of “cross-talk” between the p55 tumor necrosis factor (TNF) receptor and Fas/APO1: proteins binding to the death domains of the two receptors bind also to each other. J Exp Med 183: 1272–1275

    Article  Google Scholar 

  • Vaux DL, Weissman IL, Kim SK (1992) Prevention of programmed cell death in Caenorhabditis elegans by human bd-2. Science 258: 1955–1957

    Article  PubMed  CAS  Google Scholar 

  • Vaux DL, Haecker G, Strasser A (1994) An evolutionary perspective on apoptosis. Cell 76: 777–779

    Article  PubMed  CAS  Google Scholar 

  • Walsh CM, Matloubian M, Liu C-C et al. (1994) Immune function in mice lacking the perforin gene. Proc Natl Acad Sci USA 91: 10854–10858

    Article  PubMed  CAS  Google Scholar 

  • Wang Z-Q, Auer B, Sting L, Berghammer H, Haidacher D, Schweiger M, Wagner EF (1995) Mice lacking ADPRT and poly(ADP-ribosyl)ation develop normally but are susceptible to skin disease. Genes Dev 9: 509–520

    Article  PubMed  CAS  Google Scholar 

  • Wang X, Zelenski NG, Yang G, Sakai J, Brown MS, Goldstein JL (1996) Cleavage of sterol regulatory element binding proteins (SREBPs) by CPP32 during apoptosis. EMBO J 15: 10121020

    Google Scholar 

  • White K, Grether ME, Abrams JM, Young L, Farrell K, Steller H (1994) Genetic control of programmed cell death in drosophila. Science 264: 677–683

    Article  PubMed  CAS  Google Scholar 

  • Wilson KP, Black JF, Thomson JA, Kim EE, Griffith JP, Navia MA, Murcko MA, Chambers SP, Aldape RA, Raybuck SA, Livingston DJ (1994) Structure and mechanism of interleukin-113 converting enzyme. Nature 370: 270–275

    Article  PubMed  CAS  Google Scholar 

  • Wu D, Wallen HD, Nunez G (1997) Interaction and regulation of subcellular localization of CED-4 by CED-9. Science 275: 1126–1128

    Article  PubMed  CAS  Google Scholar 

  • Xiao C-Y, Hübner S, Elliot RM, Caon M, Jans DA (1996) A consensus PK-A site in place of the CcN motif casein kinase II site of SV40 large T-antigen confers PK-A-mediated regulation of nuclear import. J Biol Chem 271: 6451–6457

    Article  PubMed  CAS  Google Scholar 

  • Yang X, Khosravi-Far R, Chang HY, Baltimore D (1997) Daxx, a novel Fas-binding protein that activates JNK and apoptosis. Cell 89: 1067–1076

    Article  PubMed  CAS  Google Scholar 

  • Ymer S, Jans DA (1995) In vivo chromatin structure of the murine interleukin-5 gene region: a new intact cell system. Biotechniques 20: 834–837

    Google Scholar 

  • Yonehara S, Ishii A, Yonehara M (1989) A cell-killing monoclonal antibody (anti-Fas) to a cell surface antigen co-downregulated with the receptor of tumor necrosis factor. J Exp Med 169: 1747–1756

    Article  PubMed  CAS  Google Scholar 

  • Yuan J, Horwitz HR (1992) The Caenorhabditis elegans cell death gene ced-4 encodes a novel protein and is expressed during the period of extensive programmed cell death. Development 116: 309–320

    PubMed  CAS  Google Scholar 

  • Yuan J, Shaham S, Ledoux S, Ellis H, Horwitz HR (1993) The C. elegans cell death gene ced-3 encodes a protein similar to mammalian interleukin-1β-converting enzyme. Cell 75: 641–652

    Article  PubMed  CAS  Google Scholar 

  • Zagury D, Bernard J, Thierness N, Feldman M, Berke G (1975) Isolation and characterization of individual functionally reactive cytotoxic T lymphocytes: conjugation killing and recycling at the single cell level. Eur J Immunol 5: 818–822

    Article  Google Scholar 

  • Zhitovitsky B, Gahm A, Ankarcrona M, Nicotera P, Orrenius S (1995) Multiple proteases are involved in thymocyte apoptosis. Exp Cell Res 221: 404–412

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Trapani, J.A., Jans, D.A. (1999). Lymphocyte-Mediated Cytolysis: Dual Apoptotic Mechanisms with Overlapping Cytoplasmic and Nuclear Signalling Pathways. In: Kumar, S. (eds) Apoptosis: Biology and Mechanisms. Results and Problems in Cell Differentiation, vol 23. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69184-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-69184-6_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-21623-1

  • Online ISBN: 978-3-540-69184-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics