Skip to main content

Kinetics and Thermodynamics

Measurement of H2 Sorption Properties

  • Chapter
Hydrogen Technology

Part of the book series: Green Energy and Technology ((GREEN))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  1. Joubert, J.-M., et al., Differentes méthodes de stockage de l’hydrogène. Annales de Chimie-Science des Materiaux Chim. Sci. Mat., 2005. 30(5): pp. 441–454.

    Google Scholar 

  2. Bowman, R.C. and B. Fultz, Metallic hydrides I: Hydrogen storage and other gas-phase applications. MRS Bulletin, 2002. 27(9): pp. 688–693.

    Google Scholar 

  3. Dantzer, P., Properties of intermetallic compounds suitable for hydrogen storage applications. Materials Science and Engineering A, 2002. 329–331: pp. 313–320.

    Article  Google Scholar 

  4. Suda, S. and G. Sandrock, Three decades of intermetallic hydrides – What happened to the applications? Zeitschrift fuer Physikalische Chemie, 1994. 183: pp. 149–156.

    Google Scholar 

  5. Chandra, D., J.J. Reilly, and R. Chellappa, Metal hydrides for vehicular applications: The state of the art. JOM, 2006. 56(2): pp. 26–32.

    Article  Google Scholar 

  6. Schlapbach, L., Hydrogen as a fuel and its storage for mobility and transport. MRS Bulletin, 2002. 27(9): pp. 675–676.

    Google Scholar 

  7. Schlapbach, L. and A. Züttel, Hydrogen-storage materials for mobile applications. Nature, 2001. 414: pp. 353–358.

    Article  Google Scholar 

  8. Schlapbach, L., et al., Hydrogen for novel materials and devices. Applied Physics A, 2001. 72(2): pp. 245–253.

    Article  Google Scholar 

  9. Züttel, A., Materials for hydrogen storage. Materials Today, 2003. 6(9): pp. 24–33.

    Article  Google Scholar 

  10. Züttel, A., Hydrogen storage methods. Naturwissenschaften, 2004. 91: pp. 157–172.

    Article  Google Scholar 

  11. Sandrock, G., A panoramic overview of hydrogen storage alloys from a gas reaction point of view. Journal of Alloys and Compounds, 1999. 293–295: pp. 877–888.

    Article  Google Scholar 

  12. Gerard, N. and S. Ono, Hydride formation and decomposition kinetics, in Hydrogen in Intermetallic Compounds II, L. Schlapbach, Editor. 1992, Springer-Verlag: Berlin. Chapter 4.

    Google Scholar 

  13. Libowitz, G.G., The Solid-state Chemistry of Binary Metal Hydrides. 1965, New-York: W.A. Benjamin. p. 139.

    Google Scholar 

  14. Yamaguchi, M. and E. Akiba, Ternary hydrides, in Electronic and Magnetic Properties of Metals and Ceramics Part II, K.H.J. Buschow, Editor. 1994, VCH: Weinheim. pp. 333–398.

    Google Scholar 

  15. Schlapbach, L., Surface properties and activation, in Hydrogen in Intermetallic Compounds II, L. Schlapbach, Editor. 1992, Springer-Verlag: Berlin. pp. 15–95.

    Google Scholar 

  16. Wiswall, R., Hydrogen storage in metals, in Hydrogen in Metals II, G. Alefeld and J. Völkl, Editors. 1978, Springer-Verlag: Berlin. p. 201.

    Google Scholar 

  17. Fukai, Y., The metal-hydrogen system, in Springer Series in Materials Science, U. Gonser, Editor. 1993, Springer-Verlag: Berlin. p. 248.

    Google Scholar 

  18. Schlapbach, L., I. Anderson, and J.P. Burger, Hydrogen in metals, in Electronic and Magnetic Properties of Metals and Ceramics Part II, K.H.J. Buschow, Editor. 1994, VCH: Weinheim. pp. 271–331.

    Google Scholar 

  19. Tanaka, K. and O. Yoshinari, Hydrogen-metal systems: Basic properties (1), in Encyclopedia of Materials: Science and Technology, K.H.J. Buschow, et al., Editors. 2001, Elsevier: Amsterdam.

    Google Scholar 

  20. Schlapbach, L., Thermodynamics of metal, alloy and intermetallic/hydrogen systems. in Hydrides for Energy Storage. 1977, Pergamon: Geilo, Norway.

    Google Scholar 

  21. Flanagan, T.B. and W.A. Oates, Thermodynamics of intermetallic compound-hydrogen systems, in Hydrogen in Intermetallic Compounds I, L. Schlapbach, Editor. 1988, Springer-Verlag: Berlin. pp. 49–85.

    Google Scholar 

  22. Griessen, R. and T. Riesterer, Heat of formation models, in Hydrogen in Intermetallic Compounds I, L. Schlapbach, Editor. 1988, Springer-Verlag: Berlin. pp. 219–284.

    Google Scholar 

  23. Sandrock, G., S. Suda, and L. Schlapbach, Applications, in Hydrogen in Intermetallic Compounds II, L. Schlapbach, Editor. 1992, Springer-Verlag: Berlin. pp. 197–258.

    Google Scholar 

  24. Balasubramaniam, R., Hysteresis in metal-hydrogen systems. Journal of Alloys and Compounds, 1997. 253–254: pp. 203–206.

    Article  Google Scholar 

  25. Flanagan, T.B., The thermodynamics of hydrogen solution in ’perfect’ and defective metals alloys, in Progress in Hydrogen Treatment of Materials, V.A. Goltsov, Editor. 2001, Donetsk State Technical University: Donetsk. pp. 37–63.

    Google Scholar 

  26. Flanagan, T.B. and J.D. Clewley, Hysteresis in metal hydrides. Journal of the Less-Common Metals, 1982. 83: pp. 127–141.

    Article  Google Scholar 

  27. Flanagan, T.B., C.N. Park, and D.H. Everett, Hysteresis in metal hydrides: An illustration of entropy production. Journal of Chemical Education, 1987. 64(11): pp. 944–946.

    Article  Google Scholar 

  28. Flanagan, T.B., C.N. Park, and W.A. Oates, Hysteresis in solid state reactions. Progress in Solid State Chemistry, 1995. 23: pp. 291–363.

    Article  Google Scholar 

  29. Lototsky, M.V., et al., Modelling of phase equilibria in metal-hydrogen systems. Journal of Alloys and Compounds, 2003. 356–357: pp. 27–31.

    Article  Google Scholar 

  30. Park, C.N., S. Luo, and T.B. Flanagan, Analysis of sloping plateaux in alloys and intermetallic hydrides. I. Diagnostic features. Journal of Alloys and Compounds, 2004. 384: pp. 203–207.

    Article  Google Scholar 

  31. Luo, S., C.N. Park, and T.B. Flanagan, Analysis of sloping plateaux in alloys and intermetallic hydrides. II. Real systems. Journal of Alloys and Compounds, 2004. 384: pp. 208–216.

    Article  Google Scholar 

  32. Hanada, N., et al., Remarkable improvement of hydrogen sorption kinetics in magnesium catalyzed with Nb 2O5. Journal of Alloys and Compounds, 2006. 420: pp. 46–49.

    Article  Google Scholar 

  33. Akiba, E., et al., Kinetics of the reaction between Mg-Ni alloys and H 2. International Journal of Hydrogen Energy, 1982. 7(10): pp. 787–791.

    Article  Google Scholar 

  34. Miyamoto, M., K. Yamaji, and Y. Nakata, Reaction kinetics of LaNi 5. Journal of the Less-Common Metals, 1983. 89: pp. 111–116.

    Article  Google Scholar 

  35. Friedlmeier, G. and M. Groll, Experimental analysis and modelling of the hydriding kinetics of Ni-doped and pure Mg. Journal of Alloys and Compounds, 1997. 253–254: pp. 550–555.

    Article  Google Scholar 

  36. Friedlmeier, G., M. Schaaf, and M. Groll, How to measure pressure-concentration-isotherms representative for technical applications. Zeitschrift fur Physikalische Chemie, 1994. 183: pp. 185–195.

    Google Scholar 

  37. Nahm, K.S., W.B. Jung, and W.Y. Lee, The reaction kinetics of hydrogen storage in CaNi 5. International Journal of Hydrogen Energy, 1990. 15(9): pp. 635–641.

    Article  Google Scholar 

  38. Kircher, O. and M. Fichtner, Hydrogen exchange kinetics in NaAlH 4 catalyzed in different decomposition states. Journal of Applied Physics, 2004. 95(12): pp. 7748–7753.

    Article  Google Scholar 

  39. Wang, X. and S. Suda, Hydriding-dehydriding reactions of LaNi 4.7Al0.3-H system under quasi-isothermal conditions. Journal of Alloys and Compounds, 1993. 194: pp. 173–177.

    Article  Google Scholar 

  40. Goodell, P.D. and P.S. Rudman, Hydriding and dehydriding rates of the LaNi 5-H system. Journal of the Less-Common Metals, 1983. 89: pp. 117–125.

    Article  Google Scholar 

  41. Hammioui, M.E., L. Belkbir, and N. Gerard, Study of a hydride forming system by thermogravimetry. Hydriding characteristics of LaNi 5 mixed with nickel. Thermochimica Acta, 1994. 231: pp. 225–230.

    Article  Google Scholar 

  42. Rudman, P.S., Hydriding and dehydriding kinetics. Journal of the Less-Common Metals, 1983. 89: pp. 93–110.

    Article  Google Scholar 

  43. Mintz, M.H. and J. Bloch, Evaluation of the kinetics and mechanisms of hydriding reactions. Prog. Solid State Chem., 1985. 16: pp. 163–194.

    Article  Google Scholar 

  44. Goodell, P.D., G.D. Sandrock, and E.L. Huston, Kinetic and dynamic aspects of rechargeable metal hydrides. Journal of the Less-Common Metals, 1980. 73: pp. 135–142.

    Article  Google Scholar 

  45. Jung, W.B., K.S. Nahm, and W.Y. Lee, The reaction kinetics of hydrogen storage in Mg 2Ni. International Journal of Hydrogen Energy, 1990. 15(9): pp. 641–648.

    Article  Google Scholar 

  46. Martin, M., et al., Absorption and desorption kinetics of hydrogen storage alloys. Journal of Alloys and Compounds, 1996. 238: pp. 193–201.

    Article  Google Scholar 

  47. Hjort, P., A. Krozer, and B. Kasemo, Hydrogen sorption kinetics in partly oxidized Mg films. Journal of Alloys and Compounds, 1996. 237: pp. 74–80.

    Article  Google Scholar 

  48. Bloch, J. and M.H. Mintz, Kinetics and mechanisms of metal hydrides formation – A review. Journal of Alloys and Compounds, 1997. 253–254: pp. 529–541.

    Article  Google Scholar 

  49. Schweppe, F., M. Martin, and E. Fromm, Model on hydride formation describing surface control, diffusion control and transition regions. Journal of Alloys and Compounds, 1997. 261: pp. 254–258.

    Article  Google Scholar 

  50. Inomata, A., H. Aoki, and T. Miura, Measurement and modelling of hydriding and dehydriding kinetics. Journal of Alloys and Compounds, 1998. 278: pp. 103–109.

    Article  Google Scholar 

  51. Bloch, J., The kinetics of a moving metal hydride layer. Journal of Alloys and Compounds, 2000. 312: pp. 135–153.

    Article  Google Scholar 

  52. Chou, K.-C., et al., Kinetics of absorption and desorption of hydrogen in alloy powder. International Journal of Hydrogen Energy, 2005. 30: pp. 301–309.

    Article  Google Scholar 

  53. Gabis, I.E., et al., Kinetics of hydrogen desorption from the powders of metal hydrides. Journal of Alloys and Compounds, 2005. 404–406: pp. 312–316.

    Article  Google Scholar 

  54. Delmon, B., Introduction à la cinétique hétérogène. 1969, Technip: Paris.

    Google Scholar 

  55. Barkhordarian, G., T. Klassen, and R. Bormann, Kinetic investigation of the effect of milling time on the hydrogen sorption reaction of magnesium catalyzed with different Nb 2O5 contents. Journal of Alloys and Compounds, 2006. 407: pp. 249–255.

    Article  Google Scholar 

  56. Christian, J.W., The Theory of Transformations in Metals and Alloys. Part 1. 2002, Pergamon: Oxford.

    Google Scholar 

  57. Mintz, M.H. and Y. Zeiri, Hydriding kinetics of powders. Journal of Alloys and Compounds, 1994. 216: pp. 159–175.

    Article  Google Scholar 

  58. Dufour, J. and J. Huot, Rapid activation, enhanced hydrogen sorption kinetics and air resistance in laminated Mg-Pd2.5at. Journal of Alloys and Compounds. 2007. 439: pp. L5–L7.

    Article  Google Scholar 

  59. Gerard, N., L. Belkbir, and E. Joly, High-accuracy volumetric device for hydrogen sorption kinetic studies. J. Phys. E: Sci. Instrum., 1979. 12: pp. 476–477.

    Article  Google Scholar 

  60. Hirata, T., Hydrogen absorption and desorption properties of FeTi 1.14O0.03 in impure hydrogen containing CO, CO 2 and oxygen. Journal of the Less-Common Metals, 1985. 107: pp. 23–33.

    Article  Google Scholar 

  61. Poirier, E., et al., Gravimetric and volumetric approaches adapted for hydrogen sorption measurements with in-situ conditioning on small sorbent samples. Review of Scientific Instruments, 2005. 76(5): p. 055101.

    Article  Google Scholar 

  62. Checchetto, R., G. Trettel, and A. Miotello, Sievert-type apparatus for the study of hydrogen storage in solids. Measurement Science and Technology, 2004. 15: pp. 127–130.

    Article  Google Scholar 

  63. Bogdanovic, B. and B. Spliethoff, Untersuchung von Reaktionen unter Gasentwicklung oder Gasverbrauch bei Normaldruck mit Hilfe einer automatisch registrierenden Gasburette. Chemie Ingenievr Technik, 1983. 55(2): p. 156.

    Article  Google Scholar 

  64. Bogdanovic, B. and M. Schwickardi, Ti-doped alkali metal aluminium hydrides as potential novel reversible hydrogen storage materials. Journal of Alloys and Compounds, 1997. 253–254: pp. 1–9.

    Article  Google Scholar 

  65. Bogdanovic, B., et al., Metal-doped sodium aluminium hydrides as potential new hydrogen storage materials. Journal of Alloys and Compounds, 2000. 302: pp. 36–58.

    Article  Google Scholar 

  66. Dillon, A.C., et al., Storage of hydrogen in single-walled carbon nanotubes. Nature, 1997. 386(27 March): pp. 377–379.

    Article  Google Scholar 

  67. Mommer, N., et al., Influence of the microstructure on the desorption kinetics of single and multiphase LaNiFe alloys. Journal of Alloys and Compounds, 1998. 266: pp. 255–259.

    Article  Google Scholar 

  68. Castro, F.J. and G. Meyer, A novel thermal desorption spectroscopy apparatus. Review of Scientific Instruments, 2000. 71(5): pp. 2131–2133.

    Article  Google Scholar 

  69. Mintz, M.H., I. Jacob, and D. Shaltiel, Experimental techniques II: Adaptation of new techniques to study surface and bulk properties of H-metal systems, in Hydrogen in Intermetallic Compounds II, L. Schlapbach, Editor. 1992, Springer: Berlin. p. 304.

    Google Scholar 

  70. Poirier, E., et al., Storage of hydrogen on single-walled carbon nanotubes and other carbon structures. Applied Physics A, 2004. 78: pp. 961–967.

    Article  Google Scholar 

  71. Pinkerton, F.E., et al., Thermogravimetric measurement of hydrogen absorption in alkali-modified carbon materials. Journal of Physical Chemistry B, 2000. 104: pp. 9460–9467.

    Article  Google Scholar 

  72. Ströbel, R., et al., Hydrogen adsorption on carbon materials. Journal of Power Sources, 1999. 84: pp. 221–224.

    Article  Google Scholar 

  73. Lan, A. and A. Mukasyan, Hydrogen storage capacity characterization of carbon nanotubes by a microgravimetrical approach. Journal of Physical Chemistry B, 2005. 109: pp. 16011–16016.

    Article  Google Scholar 

  74. Henneberg, E., B. Bernhardt, and K. Bohmhammel, Thermoanalytical investigations of hydrogen adsorption on carbon materials. Thermochimica Acta, 2004. 415: pp. 43–45.

    Article  Google Scholar 

  75. Li, X., et al., Measuring hydrogen storage capacity of carbon nanotubes by tangent-mass method. International Journal of Hydrogen Energy, 2003. 28: pp. 1251–1253.

    Article  Google Scholar 

  76. Hirscher, M., et al., Hydrogen storage in carbon nanostructures. Journal of Alloys and Compounds, 2002. 330–332: pp. 654–658.

    Article  Google Scholar 

  77. Benham, M.J. and D.K. Ross, Experimental determination of absorption-desorption isotherms by computer-controlled gravimetric analysis. Zeitschrift fuer Physikalische Chemie Neue Folge, 1989. 163: pp. 25–32.

    Google Scholar 

  78. Ryden, J., et al., Unusual kinetics of hydride formation in Mg-Pd sandwiches, studied by hydrogen profiling and quartz crystal microbalance measurements. Journal of the Less-common Metals, 1989. 152: pp. 295–309.

    Article  Google Scholar 

  79. Feenstra, R., et al., Gravimetrical determination of pressure-composition isotherms of thin PdH c films. Journal of Physics F: Metal Physics, 1986. 16: pp. 1953–1963.

    Article  Google Scholar 

  80. Feenstra, R., R. Griessen, and D.G.d. Groot, Hydrogen induced lattice expansion and effective H-H interaction in single phase PdH c. Journal of Physics F: Metal Physics, 1986. 16: pp. 1933–1952.

    Article  Google Scholar 

  81. Xu, X. and C. Song, Improving hydrogen storage/release properties of magnesium with nano-sized metal catalysts as measured by tapered element oscillating microbalance. Applied Catalysis A: General, 2006. 300: pp. 130–138.

    Article  Google Scholar 

  82. Chen, D., et al., Catalyst deactivation studied by conventional and oscillating microbalance reactors. Applied Catalysis A: General, 1996. 137: pp. L1–L8.

    Article  Google Scholar 

  83. Fernandez, J.F., F. Cuervas, and C. Sanchez, Simultaneous differential scanning calorimetry and thermal desorption spectroscopy measurements for the study of the decomposition of metal hydrides. Journal of Alloys and Compounds, 2000. 298: pp. 244–253.

    Article  Google Scholar 

  84. Millet, P., Pneumatochemical impedance spectroscopy: 2. Dynamics of hydrogen sorption in metals.y Journal of Physics Chemistry B, 2005. 109: pp. 24025–24030.

    Article  Google Scholar 

  85. Gray, E.M.A., Frequency-domain hydriding and dehydriding kinetics of LaNi 5Hx. Journal of Alloys and Compounds, 1992. 190: pp. 49–56.

    Article  Google Scholar 

  86. Schulz, R., S. Boily, and J. Huot, Apparatus for Titration and Circulation of Gases and Circulation of an Absorbent or Adsorbent. 2003, Hydro-Quebec: US. #6582663.

    Google Scholar 

  87. Brinks, H.W., et al., Pressure-composition isotherms of TbNiAlH x. Journal of Alloys and Compounds, 2006. 417: pp. 92–95.

    Article  Google Scholar 

  88. Fichtner, M., et al., Small Ti clusters for catalysis of hydrogen exchange in NaAlH 4. Nanotechnology, 2003. 14: pp. 778–785.

    Article  Google Scholar 

  89. Blackman, J.M., J.W. Patrick, and C.E. Snape, An accurate volumetric differential pressure method for the determination of high storage capacity at high pressures in carbon materials.y Carbon, 2006. 44: pp. 918–927.

    Article  Google Scholar 

  90. Tibbetts, G.G., G.P. Meisner, and C.H. Olk, Hydrogen storage capacity of carbon nanotubes, filaments, and vapor-grown fibers.y Carbon, 2001. 39: pp. 2291–2301.

    Article  Google Scholar 

  91. Boser, O., Hydrogen sorption in LaNi 5. Journal of the Less-Common Metals, 1976. 46: pp. 91–99.

    Article  Google Scholar 

  92. Ryan, D.H. and J.M.D. Coey, Thermopiezic analysis: Gas absorption and desorption studies on milligram samples.y Journal of Physics E: Science Instruments, 1986. 19: pp. 693–694.

    Article  Google Scholar 

  93. Karty, A., J. Grunzweig-Genossar, and P.S. Rudman, Hydriding and dehydriding kinetics of Mg in a Mg/Mg 2 Cu eutectic alloy: Pressure sweep method.y Journal of Applied Physics, 1979. 50(11): p. 7200.

    Article  Google Scholar 

  94. Batalla, E., et al., Hydrogen in amorphous Ni-Zr: Pressure concentration isotherms, site occupation, and binding energy.y Journal of Materials Research, 1986. 1(6): p. 765.

    Article  Google Scholar 

  95. Tessier, P., Hydrogen storage in metastable Fe-Ti, in Department of Physics. 1995, McGill: Montreal, Canada. p. 143.

    Google Scholar 

  96. Dantzer, P. and P. Millet, Advances in hydride phase growth: Automatic high precision calorimeter-volumetric devices, for thermodynamic and kinetic analyses. Review of Scientific Instruments, 2000. 71(1): pp. 142–153.

    Article  Google Scholar 

  97. Dantzer, P. and P. Millet, On the accuracy of heat flux calorimetry in stable intermetallic-H 2(g) systems. Journal of Alloys and Compounds, 2002. 330–332: pp. 34–40.

    Article  Google Scholar 

  98. Pons, M. and P. Dantzer, Heat transfer in hydride packed beds. II. A new experimental technique and results on LaNi 5 powder. Zeitschrift Für Physikalische Chemie, 1994. 183: pp. 213–223.

    Google Scholar 

  99. Pons, M., P. Dantzer, and J.J. Guilleminot, A measurement technique and a new model for the wall heat transfer coefficient of a packed bed of (reactive) powder without gas flow. International Journal of Heat and Mass Transfer, 1993. 36(10): pp. 2635–2646.

    Article  Google Scholar 

  100. Bayane, C., E. Sciora, and N. Gerard, Influence of the material and the shape of the container on LaNi 5 hydride formation. Journal of Materials Science Letters, 1993. 12: pp. 1821–1822.

    Article  Google Scholar 

  101. Gerard, N., C. Bayane, and M.E. Hammioui, Study of hydride forming system by thermogravimetry. Role of the sample mass in exothermic kinetics. Thermochimica Acta, 1984. 82: pp. 171–177.

    Article  Google Scholar 

  102. Bayane, C., et al., LaNi 5 hydride formation. The effects of the thermal conductivity of the holder on the kinetics. Thermochimica Acta, 1993. 224: pp. 193–202.

    Article  Google Scholar 

  103. Dehouche, Z., et al., Influence of cycling on the thermodynamic and structure properties of nanocrystalline magnesium based hydride. Journal of Alloys and Compounds, 2000. 305: pp. 264–271.

    Article  Google Scholar 

  104. Dehouche, Z., et al., Moisture effect on hydrogen storage properties of nanostructured MgH 2-V-Ti composite. International Journal of Hydrogen Energy, 2003. 28: pp. 983–988.

    Article  Google Scholar 

  105. Sun, D., et al., Rehydrogenation and cycling studies of dehydrogenated NaAlH 4. Journal of Alloys and Compounds, 2004. 373: pp. 265–269.

    Google Scholar 

  106. Srivastava, S.S., et al., Long term cycling behavior of titanium doped NaAlH 4 prepared through solvent mediated milling of NaH and Al with titanium dopant precursors. Journal of Alloys and Compounds, 2004. 377: pp. 283–289.

    Article  Google Scholar 

  107. Yang, R.T., Hydrogen storage by alkali-doped carbon nanotubes-revisited. Carbon, 2000. 38: pp. 623–641.

    Article  Google Scholar 

  108. Lemmon, E.W., et al., Standardized Equation for Hydrogen Gas Densities for Fuel Consumption Applications, in SAE 2006 World Congress & Exhibition. 2006. Detroit SEA International.

    Google Scholar 

  109. Lemmon, E.W., et al., NIST Thermodynamic and Transport Properties of Pure Fluids Database: Version 5.0. 2000, National Institute of Standards and Technology: Boulder, Colorado.

    Google Scholar 

  110. Park, C.N. and T.B. Flanagan, The effect of hydrogen aliquot size on the plateau pressures of LaNi 5-H. Journal of the Less-Common Metals, 1983. 94: pp. L1–L4.

    Article  Google Scholar 

  111. Park, C.N. and T.B. Flanagan, Experimental observations on the effect of the rate of hydride formation and decomposition on the plateau pressure of intermetallic compounds hydrides. Ber. Bunsenges. Phys. Chem., 1985. 89: pp. 1300–1304.

    Google Scholar 

  112. Park, C.N. and T.B. Flanagan, The effect of interface velocity on the plateau pressure of intermetallic compounds hydrides. Theoretical interpretation of hydrogen aliquot size on the plateau pressures of LaNi 5-H. Berichte der Bunsen-Gesellschaft Physical Chemical Physics, 1985. 89: pp. 1305–1311.

    Google Scholar 

  113. Shilov, A.L. and N.T. Kuznetsov, The peculiarities of the behavior of hydride systems related to mechanisms of phase transitions. Journal of the Less-Common Metals, 1989. 152: pp. 275–285.

    Article  Google Scholar 

  114. Qian, S. and D.O. Northwood, Effect of hydrogen aliquot size on the plateau pressures and pressure hysteresis in intermetallic compounds-hydrogen systems. International Journal of Hydrogen Energy, 1992. 17(8): pp. 631–634.

    Article  Google Scholar 

  115. Gray, E.M.A., C.E. Buckley, and E.H. Kisi, New experiments on pressure hysteresis in LaNi 5-Hx. Zeitschrift fuer Physikalische Chemie, 1993. 179(1–2): pp. 85–91.

    Google Scholar 

  116. Gray, E.M.A., C.E. Buckley, and E.H. Kisi, Stability of the hydrogenabsorption and desorption plateaux in LaNi 5 -H. Part 2: Effects of the absorbing and desorbing large aliquots of hydrogen. Journal of Alloys and Compounds, 1994. 215: pp. 201–211.

    Article  Google Scholar 

  117. Kisi, E.H. and E.M.A. Gray, Stability of the hydrogen absorption and desorption plateaux in LaNi 5 -H. Part 3: Experimental observations of compositional inhomogeneities due to temperature gradients. Journal of Alloys and Compounds, 1995. 217: pp. 112–117.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Huot, J. (2008). Kinetics and Thermodynamics. In: Léon, A. (eds) Hydrogen Technology. Green Energy and Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69925-5_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-69925-5_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-79027-3

  • Online ISBN: 978-3-540-69925-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics