Skip to main content

Dendritic Cells in Viral Infections

  • Chapter

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 188))

Abstract

Antigen presenting cells (APCs) are recognized as key initiators of adaptive immunity, particularly to pathogens, by eliciting a rapid and potent immune attack on infected cells. Amongst APCs, dendritic cells (DCs) are specially equipped to initiate and regulate immune responses in a manner that depends on signals they receive from microbes and their cellular environment. To achieve this, they are equipped with highly efficient mechanisms that allow them to detect pathogens, to capture, process and present antigens, and to activate and guide the differentiation of T cells into effector and memory cells. DCs can no longer be considered as a homogeneous cell type performing a single function, but are heterogeneous both in phenotype, function and dependence on inflammatory stimuli for their formation and responsiveness. Recent studies of DC subtypes have highlighted the contrasting roles of different professional APCs in activating divergent arms of the immune response towards pathogens. In this review, we discuss the progress that has been made in dissecting the attributes of different DC subsets that migrate into, or reside permanently, within lymphoid tissues and their putative roles in the induction of the anti-viral immune response.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ackerman AL, Cresswell P (2004) Cellular mechanisms governing cross-presentation of exogenous antigens. Nat Immunol 5:678–684

    PubMed  CAS  Google Scholar 

  • Ahn K et al (1996) Human cytomegalovirus inhibits antigen presentation by a sequential multistep process. Proc Natl Acad Sci USA 93:10990–10995

    PubMed  CAS  Google Scholar 

  • Akashi K et al (2000) A clonogenic common myeloid progenitor that gives rise to all myeloid lineages. Nature 404:193–197

    PubMed  CAS  Google Scholar 

  • Albert ML et al (1998a) Immature dendritic cells phagocytose apoptotic cells via alphavbeta5 and CD36, and cross-present antigens to cytotoxic T lymphocytes. J Exp Med 188:1359–1368

    CAS  Google Scholar 

  • Albert ML et al (1998b) Dendritic cells acquire antigen from apoptotic cells and induce class I-restricted CTLs. Nature 392:86–89

    CAS  Google Scholar 

  • Allan RS et al (2003) Epidermal viral immunity induced by CD8α+ dendritic cells but not by Langerhans cells. Science 301:1925–1928

    PubMed  CAS  Google Scholar 

  • Allan RS et al (2006) Migratory dendritic cells transfer antigen to a lymph node-resident dendritic cell population for efficient CTL priming. Immunity 25:153–162

    PubMed  CAS  Google Scholar 

  • Andoniou CE et al (2005) Interaction between conventional dendritic cells and natural killer cells is integral to the activation of effective antiviral immunity. Nat Immunol 6:1011–1019

    PubMed  CAS  Google Scholar 

  • Andrews DM et al (2005) Cross-talk between dendritic cells and natural killer cells in viral infection. Mol Immunol 42:547–555

    PubMed  CAS  Google Scholar 

  • Andrews DM et al (2003) Functional interactions between dendritic cells and NK cells during viral infection. Nat Immunol 4:175–181

    PubMed  CAS  Google Scholar 

  • Arase H et al (2002) Direct recognition of cytomegalovirus by activating and inhibitory NK cell receptors. Science 296:1323–1326

    PubMed  CAS  Google Scholar 

  • Asselin-Paturel C et al (2001) Mouse type I IFN-producing cells are immature APCs with plasma-cytoid morphology. Nat Immunol 2:1144–1150

    Google Scholar 

  • Banchereau J et al (2000) Immunobiology of dendritic cells. Annu Rev Immunol 18:767–811

    PubMed  CAS  Google Scholar 

  • Banchereau J and Steinman RM (1998) Dendritic cells and the control of immunity. Nature 392:245–252

    PubMed  CAS  Google Scholar 

  • Bancroft GJ et al (1981) Genetic influences on the augmentation of natural killer (NK) cells during murine cytomegalovirus infection: correlation with patterns of resistance. J Immunol 126:988–994

    PubMed  CAS  Google Scholar 

  • Barchet W et al (2005) Plasmacytoid dendritic cells—virus experts of innate immunity. Semin Immunol 17:253–261

    PubMed  CAS  Google Scholar 

  • Barr DP et al (2007) A role for plasmacytoid dendritic cells in the rapid IL-18-dependent activation of NK cells following HSV-1 infection. Eur J Immunol 37:1334–1342

    PubMed  CAS  Google Scholar 

  • Basta S, Alatery A (2007) The cross-priming pathway: a portrait of an intricate immune system. Scand J Immunol 65:311–319

    PubMed  CAS  Google Scholar 

  • Belkaid Y and Rouse BT (2005) Natural regulatory T cells in infectious disease. Nat Immunol 6:353–360

    PubMed  CAS  Google Scholar 

  • Bell D et al (1999) Dendritic cells. Advances in Immunology 72:255–324

    PubMed  CAS  Google Scholar 

  • Belz GT et al (2002) Cross-presentation of antigens by dendritic cells. Crit Rev Immunol 22: 439–448

    PubMed  CAS  Google Scholar 

  • Belz GT et al (2005) CD8α+ dendritic cells selectively present MHC class I-restricted noncytolytic viral and intracellular bacterial antigens in vivo. J Immunol 175:196–200

    PubMed  CAS  Google Scholar 

  • Belz GT et al (2004a) Cutting Edge: Conventional CD8α+ dendritic cells are generally involved in priming CTL immunity to viruses. J Immunol 172:1996–2000

    CAS  Google Scholar 

  • Belz GT et al (2004b) Distinct migrating and nonmigrating dendritic cell populations are involved in MHC class I-restricted antigen presentation after lung infection with virus. Proc Natl Acad Sci USA 101:8670–8675

    CAS  Google Scholar 

  • Belz GT et al (2007) Shaping naive and memory CD8+ T cell responses in pathogen infections through antigen presentation. Adv Exp Med Biol 590:31–42

    PubMed  Google Scholar 

  • Belz GT et al (2006) Bone marrow-derived cells expand memory CD8+ T cells in response to viral infections of the lung and skin. Eur J Immunol 36:327–335

    PubMed  CAS  Google Scholar 

  • Bennett NJ et al (2005) Gamma-herpesvirus latency requires T cell evasion during episome maintenance. PLoS Biol 3:e120

    PubMed  Google Scholar 

  • Bevan MJ (1976) Cross-priming for a secondary cytotoxic response to minor H antigens with H-2 congenic cells which do not cross-react in the cytotoxic assay. J Exp Med 143:1283–1288

    PubMed  CAS  Google Scholar 

  • Bhardwaj N et al (1994) Influenza virus-infected dendritic cells stimulate strong proliferative and cytolytic responses from human CD8+ T cells. J Clin Investig 94:797–807

    PubMed  CAS  Google Scholar 

  • Biron CA (1999) Initial and innate responses to viral infections — pattern setting in immunity or disease. Curr Opin Microbiol 2:374–381

    PubMed  CAS  Google Scholar 

  • Boname JM et al (2004) Viral degradation of the MHC class I peptide loading complex. Immunity 20:305–317

    PubMed  CAS  Google Scholar 

  • Borrow P et al (1995) Virus-induced immunosuppression: immune system-mediated destruction of virus-infected dendritic cells results in generalized immune suppression. J Virol 69:1059–1070

    PubMed  CAS  Google Scholar 

  • Bowie A et al (2000) A46R and A52R from vaccinia virus are antagonists of host IL-1 and toll-like receptor signaling. Proc Natl Acad Sci USA 97:10162–10167

    PubMed  CAS  Google Scholar 

  • Bronte V, Zanovello P (2005) Regulation of immune responses by L-arginine metabolism. Nat Rev Immunol 5:641–654

    PubMed  CAS  Google Scholar 

  • Bubeck A et al (2002) The glycoprotein gp48 of murine cytomegalovirusL proteasome-dependent cytosolic dislocation and degradation. J Biol Chem 277:2216–2224

    PubMed  CAS  Google Scholar 

  • Carrasco YR, Batista FD (2007) B cells acquire particulate antigen in a macrophage-rich area at the boundary between the follicle and the subcapsular sinus of the lymph node. Immunity 27:160–171

    PubMed  CAS  Google Scholar 

  • Caux C et al (1994) B70/B7–2 is identical to CD86 and is the major functional ligand for CD28 expressed on human dendritic cells. J Exp Med 180:1841–1847

    PubMed  CAS  Google Scholar 

  • Cella M et al (1999) Plasmacytoid monocytes migrate to inflamed lymph nodes and produce large amounts of type I interferon. Nat Med 5:919–923

    PubMed  CAS  Google Scholar 

  • Coscoy L, Ganem D (2001) A viral protein that selectively downregulates ICAM-1 and B7–2 and modulates T cell costimulation. J Clin Investig 107:1599–1606

    PubMed  CAS  Google Scholar 

  • D'Amico A, Wu L (2003) The early progenitors of mouse dendritic cells and plasmacytoid pre-dendritic cells are within the bone marrow hemopoietic precursors expressing Flt3. J Exp Med 198:293–303

    PubMed  Google Scholar 

  • Degli-Esposti MA, Smyth MJ (2005) Close encounters of different kinds: dendritic cells and NK cells take centre stage. Nat Rev Immunol 5:112–124

    PubMed  CAS  Google Scholar 

  • den Haan JM et al (2000) CD8+ but not CD8- dendritic cells cross-prime cytotoxic T cells in vivo. J Exp Med 192:1685–1696

    Google Scholar 

  • Ferguson TA, Griffith TS (2006) A vision of cell death: Fas ligand and immune privilege 10 years later. Immunol Rev 213:228–238

    PubMed  CAS  Google Scholar 

  • Filippi C et al (2003) CD4+ T cell polarization in mice is modulated by strain-specific major histo- compatibility complex-independent differences within dendritic cells. J Exp Med 198:201–209

    PubMed  CAS  Google Scholar 

  • Fleeton MN et al (2004) Peyers patch dendritic cells process viral antigen from apoptotic epithelial cells in the intestine of reovirus-infected mice. J Exp Med 200:235–245

    PubMed  CAS  Google Scholar 

  • Fruh K et al (1995) A viral inhibitor of peptide transporters for antigen presentation. Nature 375:415–418

    PubMed  CAS  Google Scholar 

  • Gazit R et al (2006) Lethal influenza infection in the absence of the natural killer cell receptor gene Ncr1. Nat Immunol 7:517–523

    PubMed  CAS  Google Scholar 

  • Geissmann F et al (2003) Blood monocytes consist of two principal subsets with distinct migratory properties. Immunity 19:71–82

    PubMed  CAS  Google Scholar 

  • Gerosa F et al (2002) Reciprocal activating interaction between natural killer cells and dendritic cells. J Exp Med 195:327–333

    PubMed  CAS  Google Scholar 

  • Ginhoux F et al (2006) Langerhans cells arise from monocytes in vivo. Nat Immunol 7:265–273

    PubMed  CAS  Google Scholar 

  • Granucci F et al (2004) A contribution of mouse dendritic cell-derived IL-2 for NK cell activation. J Exp Med 200:287–295

    PubMed  CAS  Google Scholar 

  • Guermonprez P et al (2002) Antigen presentation and T cell stimulation by dendritic cells. Annu Rev Immunol 20:621–667

    PubMed  CAS  Google Scholar 

  • Harshyne LA et al (2001) Dendritic cells acquire antigens from live cells for cross-presentation to CTL. J Immunol 166:3717–3723

    PubMed  CAS  Google Scholar 

  • Hawiger D et al (2001) Dendritic cells induce peripheral T cell unresponsiveness under steady state conditions in vivo. J Exp Med 194:769–779

    PubMed  CAS  Google Scholar 

  • He Y et al (2006) Skin-derived dendritic cells induce potent CD8+ T cell immunity in recombinant lentivector-mediated genetic immunization. Immunity 24:643–656

    PubMed  CAS  Google Scholar 

  • Heath WR et al (2004) Cross-presentation, dendritic cell subsets, and the generation of immunity to cellular antigens. Immunol Rev 199:9–26

    PubMed  CAS  Google Scholar 

  • Henri S et al (2001) The dendritic cell populations of mouse lymph nodes. J Immunol 167:741–748

    PubMed  CAS  Google Scholar 

  • Hill A et al (1995) Herpes simplex virus turns off the TAP to evade host immunity. Nature 375: 411–415

    PubMed  CAS  Google Scholar 

  • Hoebe K et al (2003) Identification of Lps2 as a key transducer of MyD88-independent TIR signalling. Nature 424:743–748

    PubMed  CAS  Google Scholar 

  • Inaba K et al (1992) Generation of large numbers of dendritic cells from mouse bone marrow cultures supplemented with granulocyte/macrophage colony-stimulating factor. J Exp Med 176:1693–1702

    PubMed  CAS  Google Scholar 

  • Inaba K et al (2000) The formation of immunogenic major histocompatibility complex class II-peptide ligands in lysosomal compartments of dendritic cells is regulated by inflammatory stimuli. J Exp Med 191:927–936

    PubMed  CAS  Google Scholar 

  • Ingulli E et al (2002) In situ analysis reveals physical interactions between CD11b+ dendritic cells and antigen-specific CD4 T cells after subcutaneous injection of antigen. J Immunol 169: 2247–2252

    PubMed  CAS  Google Scholar 

  • Ishido S et al (2000) Downregulation of major histocompatibility complex class I molecules by Kaposi's sarcoma-associated herpesvirus K3 and K5 proteins. J Virol 74:5300–5309

    PubMed  CAS  Google Scholar 

  • Itano AA et al (2003) Distinct dendritic cell populations sequentially present antigen to CD4 T cells and stimulate different aspects of cell-mediated immunity. Immunity 19:47–57

    PubMed  CAS  Google Scholar 

  • Iyoda T et al (2002) The CD8+ dendritic cell subset selectively endocytoses dying cells in culture and in vivo. J Exp Med 195:1289–1302

    PubMed  CAS  Google Scholar 

  • Jung S et al (2002) In vivo depletion of CD11c+ dendritic cells abrogates priming of CD8+ T cells by exogenous cell-associated antigens. Immunity 17:211–220

    PubMed  CAS  Google Scholar 

  • Junt T et al (2007) Subcapsular sinus macrophages in lymph nodes clear lymph-borne viruses and present them to antiviral B cells. Nature 450:110–114

    PubMed  CAS  Google Scholar 

  • Karsunky H et al (2003) Flt3 ligand regulates dendritic cell development from Flt3+ lymphoid and myeloid-committed progenitors to Flt3+ dendritic cells in vivo. J Exp Med 198:305–313

    PubMed  CAS  Google Scholar 

  • Keir ME et al (2007) PD-1 and its ligands in T-cell immunity. Curr Opin Immunol 19:309–314

    PubMed  CAS  Google Scholar 

  • Kleijnen MF et al (1997) A mouse cytomegalovirus glycoprotein, gp34, forms a complex with folded class I MHC molecules in the ER which is not retained but is transported to the cell surface. Embo J 16:685–694

    PubMed  CAS  Google Scholar 

  • Kondo M et al (1997) Identification of clonogenic common lymphoid progenitors in mouse bone marrow. Cell 91:661–672

    PubMed  CAS  Google Scholar 

  • Kotenko SV et al (2000) Human cytomegalovirus harbors its own unique IL-10 homolog (cmvIL-10). Proc Natl Acad Sci USA 97:1695–1700

    PubMed  CAS  Google Scholar 

  • Krmpotic A et al (2005) NK cell activation through the NKG2D ligand MULT-1 is selectively prevented by the glycoprotein encoded by mouse cytomegalovirus gene m145. J Exp Med 201:211–220

    PubMed  CAS  Google Scholar 

  • Krmpotic A et al (1999) The immunoevasive function encoded by the mouse cytomegalovirus gene m152 protects the virus against T cell control in vivo. J Exp Med 190:1285–1296

    PubMed  CAS  Google Scholar 

  • Krutzik SR et al (2005) TLR activation triggers the rapid differentiation of monocytes into macrophages and dendritic cells. Nat Med 11:653–660

    PubMed  CAS  Google Scholar 

  • Kupresanin F et al (2007) Dendritic cells present lytic antigens and maintain function throughout persistent γ-herpesvirus infection. J Immunol 179:7506–7513

    PubMed  CAS  Google Scholar 

  • Kushnir N et al (1998) Dendritic cells and resting B cells form clusters in vitro and in vivo: T cell independence, partial LFA-1 dependence, and regulation by cross-linking surface molecules. J Immunol 160:1774–1781

    PubMed  CAS  Google Scholar 

  • Legge KL, Braciale TJ (2003) Accelerated migration of respiratory dendritic cells to the regional lymph nodes is limited to the early phase of pulmonary infection. Immunity 18:265–277

    PubMed  CAS  Google Scholar 

  • Lemos MP et al (2004) MHC class II expression restricted to CD8α+ and CD11b+ dendritic cells is sufficient for control of Leishmania major. J Exp Med 199:725–730

    PubMed  CAS  Google Scholar 

  • Leon B et al (2007) Monocyte-derived dendritic cells formed at the infection site control the induction of protective T helper 1 responses against Leishmania. Immunity 26:519–531

    PubMed  CAS  Google Scholar 

  • Li K et al (2005) Immune evasion by hepatitis C virus NS3/4A protease-mediated cleavage of the Toll-like receptor 3 adaptor protein TRIF. Proc Natl Acad Sci USA 102:2992–2997

    PubMed  CAS  Google Scholar 

  • Lilley BN, Ploegh HL (2005) Viral modulation of antigen presentation: manipulation of cellular targets in the ER and beyond. Immunol Rev 207:126–144

    PubMed  CAS  Google Scholar 

  • Liu YJ (2005) IPC: professional type 1 interferon-producing cells and plasmacytoid dendritic cell precursors. Annu Rev Immunol 23:275–306

    PubMed  CAS  Google Scholar 

  • Lockridge KM et al (2000) Primate cytomegaloviruses encode and express an IL-10-like protein. Virology 268:272–280

    PubMed  CAS  Google Scholar 

  • Lodoen M et al (2003) NKG2D-mediated natural killer cell protection against cytomegalovirus is impaired by viral gp40 modulation of retinoic acid early inducible 1 gene molecules. J Exp Med 197:1245–1253

    PubMed  CAS  Google Scholar 

  • Loo YM et al (2006) Viral and therapeutic control of IFN-beta promoter stimulator 1 during hepatitis C virus infection. Proc Natl Acad Sci USA 103:6001–6006

    PubMed  CAS  Google Scholar 

  • Loureiro J, Ploegh HL (2006) Antigen presentation and the ubiquitin-proteasome system in host-pathogen interactions. Adv Immunol 92:225–305

    PubMed  CAS  Google Scholar 

  • Macatonia SE et al (1987) Localization of antigen on lymph node dendritic cells after exposure to the contact sensitizer fluorescein isothiocyanate. Functional and morphological studies. J Exp Med 166:1654–1667

    PubMed  CAS  Google Scholar 

  • Mandelboim O et al (2001) Recognition of haemagglutinins on virus-infected cells by NKp46 activates lysis by human NK cells. Nature 409:1055–1060

    PubMed  CAS  Google Scholar 

  • Manickasingham S, Reise Sousa C (2000) Microbial and T cell-derived stimuli regulate antigen presentation by dendritic cells in vivo. J Immunol 165:5027–5034

    PubMed  CAS  Google Scholar 

  • Mellman I, Steinman RM (2001) Dendritic cells: specialized and regulated antigen processing machines. Cell 106:255–258

    PubMed  CAS  Google Scholar 

  • Mellor AL, Munn DH (2004) IDO expression by dendritic cells: tolerance and tryptophan catabolism. Nat Rev Immunol 4:762–774

    PubMed  CAS  Google Scholar 

  • Mellor AL, Munn DH (2008) Creating immune privilege: active local suppression that benefits friends, but protects foes. Nat Rev Immunol 8(1):74–80

    PubMed  CAS  Google Scholar 

  • Menard C et al (2003) Role of murine cytomegalovirus US22 gene family members in replication in macrophages. J Virol 77:5557–5570

    PubMed  CAS  Google Scholar 

  • Merad M (2002) Langerhans cells renew in the skin throughout life under steady-state conditions. Nat Immunol 3:1135–1141

    PubMed  CAS  Google Scholar 

  • Meylan E et al (2005) Cardif is an adaptor protein in the RIG-I antiviral pathway and is targeted by hepatitis C virus. Nature 437:1167–1172

    PubMed  CAS  Google Scholar 

  • Mintern JD et al (2006) Viral interference with B7–1 costimulation: a new role for murine cy-tomegalovirus fc receptor-1. J Immunol 177:8422–8431

    PubMed  CAS  Google Scholar 

  • Mount AM, Smith CM, Kupresanin F, Stoermer K, Heath WR et al (2008) Multiple dendritic cell populations activate CD4+ T cells after viral stimulation. PLoS ONE 3:: e1691

    PubMed  Google Scholar 

  • Munks MW et al (2007) Viral interference with antigen presentation does not alter acute or chronic CD8 T cell immunodominance in murine cytomegalovirus infection. J Immunol 178:7235–7241

    PubMed  CAS  Google Scholar 

  • Naik SH et al (2006) Intrasplenic steady-state dendritic cell precursors that are distinct from mono-cytes. Nat Immunol 7:663–671

    PubMed  CAS  Google Scholar 

  • Norbury CC et al (2002) Visualizing priming of virus-specific CD8+ T cells by infected dendritic cells in vivo. Nat Immunol 3:265–271

    PubMed  CAS  Google Scholar 

  • Norbury CC et al (2001) Multiple antigen-specific processing pathways for activating naive CD8+ T cells in vivo. J Immunol 166:4355–4362

    PubMed  CAS  Google Scholar 

  • O'Keeffe M et al (2002) Mouse plasmacytoid cells: long-lived cells, heterogeneous in surface phe-notype and function, that differentiate into CD8+ dendritic cells only after microbial stimulus. J Exp Med 196:1307–1319

    PubMed  Google Scholar 

  • Odermatt B et al (1991) Virus-triggered acquired immunodeficiency by cytotoxic T-cell-dependent destruction of antigen-presenting cells and lymph follicle structure. Proc Natl Acad Sci USA 88:8252–8256

    PubMed  CAS  Google Scholar 

  • Okazaki T, Honjo T (2006) The PD-1-PD-L pathway in immunological tolerance. Trends Immunol 27:195–201

    PubMed  CAS  Google Scholar 

  • Orange JS, Biron CA (1996) Characterization of early IL-12, IFN-alphabeta, and TNF effects on antiviral state and NK cell responses during murine cytomegalovirus infection. J Immunol 156:4746–4756

    PubMed  CAS  Google Scholar 

  • Pape KA et al (2007) The humoral immune response is initiated in lymph nodes by B cells that acquire soluble antigen directly in the follicles. Immunity 26:491–502

    PubMed  CAS  Google Scholar 

  • Parry CM et al (2000) A broad spectrum secreted chemokine binding protein encoded by a her-pesvirus. J Exp Med 191:573–578

    PubMed  CAS  Google Scholar 

  • Phan TG et al (2007) Subcapsular encounter and complement-dependent transport of immune complexes by lymph node B cells. Nat Immunol 8:992–1000

    PubMed  CAS  Google Scholar 

  • Pierre P et al (1997) Developmental regulation of MHC class II transport in mouse dendritic cells. Nature 388:787–792

    PubMed  CAS  Google Scholar 

  • Ploegh HL (1998) Viral strategies of immune evasion. Science 280:248–253

    PubMed  CAS  Google Scholar 

  • Pooley JL et al (2001) Cutting edge: intravenous soluble antigen is presented to CD4 T cells by CD8_ dendritic cells, but cross-presented to CD8 T cells by CD8+ dendritic cells. J Immunol 166:5327–5330

    PubMed  CAS  Google Scholar 

  • Probst HC et al (2002) Cutting edge: competition for APC by CTLs of different specificities is not functionally important during induction of antiviral responses. J Immunol 168:5387–5391

    PubMed  CAS  Google Scholar 

  • Pulendran B et al (1997) Developmental pathways of dendritic cells in vivo: distinct function, phenotype, and localization of dendritic cell subsets in FLT3 ligand- treated mice. J Immunol 159:2222–2231

    PubMed  CAS  Google Scholar 

  • Qi H et al (2006) Extrafollicular activation of lymph node B cells by antigen-bearing dendritic cells. Science 312:1672–1676

    PubMed  CAS  Google Scholar 

  • Reiner SL, Locksley RM (1995) The regulation of immunity to Leishmania major. Annu Rev Immunol 13:151–177

    PubMed  CAS  Google Scholar 

  • Reise Sousa C (2006) Dendritic cells in a mature age. Nat Rev Immunol 6:476–483

    CAS  Google Scholar 

  • Romani N et al (1989) Presentation of exogenous protein antigens by dendritic cells to T cell clones. Intact protein is presented best by immature, epidermal Langerhans cells. J Exp Med 169:1169–1178

    PubMed  CAS  Google Scholar 

  • Roy DJ et al (2000) Murine gammaherpesvirus M11 gene product inhibits apoptosis and is expressed during virus persistence. Arch Virol 145:2411–2420

    PubMed  CAS  Google Scholar 

  • Salomon B et al. (1998) Three populations of mouse lymph node dendritic cells with different origins and dynamics. J Immunol 160:708–717

    PubMed  CAS  Google Scholar 

  • Schlender J et al (2005) Inhibition of toll-like receptor 7- and 9-mediated alpha/beta interferon production in human plasmacytoid dendritic cells by respiratory syncytial virus and measles virus. J Virol 79:5507–5515

    PubMed  CAS  Google Scholar 

  • Schnorrer P et al (2006) The dominant role of CD8+ dendritic cells in cross-presentation is not dictated by antigen capture. Proc Natl Acad Sci USA 103:10729–10734

    PubMed  CAS  Google Scholar 

  • Schuler G, Steinman RM (1985) Murine epidermal Langerhans cells mature into potent immunos-timulatory dendritic cells in vitro. J Exp Med 161:526–546

    PubMed  CAS  Google Scholar 

  • Schulz O, Reise Sousa C (2002) Cross-presentation of cell-associated antigens by CD8α+ dendritic cells is attributable to their ability to internalize dead cells. Immunology 107:183–189

    PubMed  CAS  Google Scholar 

  • Serbina NV et al (2003a) Sequential MyD88-independent and -dependent activation of innate immune responses to intracellular bacterial infection. Immunity 19:891–901

    CAS  Google Scholar 

  • Serbina NV et al (2003b) TNF/iNOS-producing dendritic cells mediate innate immune defense against bacterial infection. Immunity 19:59–70

    CAS  Google Scholar 

  • Sharpe AH, Freeman GJ (2002) The B7-CD28 superfamily. Nat Rev Immunol 2:116–126

    PubMed  CAS  Google Scholar 

  • Shortman K, Naik SH (2007) Steady-state and inflammatory dendritic-cell development. Nat Rev Immunol 7:19–30

    PubMed  CAS  Google Scholar 

  • Sigal LJ et al (1999) Cytotoxic T-cell immunity to virus-infected non-haematopoietic cells requires presentation of exogenous antigen [see comments]. Nature 398:77–80

    PubMed  CAS  Google Scholar 

  • Sixt M et al (2005) The conduit system transports soluble antigens from the afferent lymph to resident dendritic cells in the T cell area of the lymph node. Immunity 22:19–29

    PubMed  CAS  Google Scholar 

  • Smith CM et al (2003) Cutting Edge: Conventional CD8α+ dendritic cells are preferentially involved in CTL priming after footpad infection with herpes simplex virus-1. J Immunol 170:4437–4440

    PubMed  CAS  Google Scholar 

  • Smith CM et al (2007) Murine gammaherpesvirus-68 inhibits antigen presentation by dendritic cells. PLoS ONE 2:e1048

    PubMed  Google Scholar 

  • Smith HR et al (2002) Recognition of a virus-encoded ligand by a natural killer cell activation receptor. Proc Natl Acad Sci USA 99:8826–8831

    PubMed  CAS  Google Scholar 

  • Stack J et al (2005) Vaccinia virus protein A46R targets multiple Toll-like-interleukin-1 receptor adaptors and contributes to virulence. J Exp Med 201:1007–1018

    PubMed  CAS  Google Scholar 

  • Steinman RM (1991) The dendritic cell system and its role in immunogenicity. Annu Rev Immunol 9:271–296

    PubMed  CAS  Google Scholar 

  • Steinman RM, Cohn ZA (1973) Identification of a novel cell type in peripheral lymphoid organs of mice. I. Morphology, quantitation, tissue distribution. J. Exp. Med. 137:1142–1162

    PubMed  CAS  Google Scholar 

  • Stevenson PG et al (1999) Changing patterns of dominance in the CD8+ T cell response during acute and persistent murine gamma-herpesvirus infection. Eur J Immunol 29:1059–1067

    PubMed  CAS  Google Scholar 

  • Stevenson PG et al (2000) Inhibition of MHC class I-restricted antigen presentation by gamma 2-herpesviruses. Proc Natl Acad Sci USA 97:8455–8460

    PubMed  CAS  Google Scholar 

  • Stevenson PG et al (2002) K3-mediated evasion of CD8 + T cells aids amplification of a latent gamma-herpesvirus. Nat Immunol 3:733–740

    PubMed  CAS  Google Scholar 

  • Stoitzner P et al (2003) Visualization and characterization of migratory Langerhans cells in murine skin and lymph nodes by antibodies against Langerin/CD207. J Investig Dermatol 120:266–274

    PubMed  CAS  Google Scholar 

  • Suvas S et al (2003) CD4 + CD25 + T cells regulate virus-specific primary and memory CD8+ T cell responses. J Exp Med 198:889–901

    PubMed  CAS  Google Scholar 

  • Tabeta K et al (2004) Toll-like receptors 9 and 3 as essential components of innate immune defense against mouse cytomegalovirus infection. Proc Natl Acad Sci USA 101:3516–3521

    PubMed  CAS  Google Scholar 

  • Tabeta K et al (2006) The Unc93b1 mutation 3d disrupts exogenous antigen presentation and signaling via Toll-like receptors 3, 7 and 9. Nat Immunol 7:156–164

    PubMed  CAS  Google Scholar 

  • Tang Q et al (2006) Visualizing regulatory T cell control of autoimmune responses in nonobese diabetic mice. Nat Immunol 7:83–92

    PubMed  CAS  Google Scholar 

  • Tang Q, Bluestone JA (2006) Plasmacytoid DCs and T(reg) cells: casual acquaintance or monogamous relationship? Nat Immunol 7:551–553

    PubMed  CAS  Google Scholar 

  • Taylor PR et al (2005) Macrophage receptors and immune recognition. Annu Rev Immunol 23:901–944

    PubMed  CAS  Google Scholar 

  • Thomas S et al (2007) Antigen presentation by nonhemopoietic cells amplifies clonal expansion of effector CD8 T cells in a pathogen-specific manner. J Immunol 178:5802–5811

    PubMed  CAS  Google Scholar 

  • Turley SJ et al (2000) Transport of peptide-MHC class II complexes in developing dendritic cells. Science 288:522–527

    PubMed  CAS  Google Scholar 

  • Valchanova RS et al (2006) Murine cytomegalovirus m142 and m143 are both required to block protein kinase R-mediated shutdown of protein synthesis. J Virol 80:10181–10190

    PubMed  CAS  Google Scholar 

  • Vermaelen KY et al (2001) Specific migratory dendritic cells rapidly transport antigen from the airways to the thoracic lymph nodes. J Exp Med 193:51–60

    PubMed  CAS  Google Scholar 

  • Vremec D et al (2000) CD4 and CD8 expression by dendritic cell subtypes in mouse thymus and spleen. J Immunol 164:2978–2986

    PubMed  CAS  Google Scholar 

  • Vremec D, Shortman K (1997) Dendritic cell subtypes in mouse lymphoid organs: cross-correlation of surface markers, changes with incubation, and differences among thymus, spleen, and lymph nodes. J Immunol 159:565–573

    PubMed  CAS  Google Scholar 

  • Vremec D et al (1992) The surface phenotype of dendritic cells purified from mouse thymus and spleen: investigation of the CD8 expression by a subpopulation of dendritic cells. J Exp Med 176:47–58

    PubMed  CAS  Google Scholar 

  • West MA et al. (2004) Enhanced dendritic cell antigen capture via toll-like receptor-induced actin remodeling. Science 305:1153–1157

    PubMed  CAS  Google Scholar 

  • Wilson NS et al (2003) Most lymphoid organ dendritic cell types are phenotypically and functionally immature. Blood 102:2187–2194

    PubMed  CAS  Google Scholar 

  • Wilson NS, Villadangos JA (2004) Lymphoid organ dendritic cells: beyond the Langerhans cells paradigm. Immunol Cell Biol 82:91–98

    PubMed  Google Scholar 

  • Wilson NS et al (2008) Normal proportion and expression of maturation markers in migratory dendritic cells in the absence of germs or Toll-like receptor signaling. Immunol Cell Biol 86: 200–205

    PubMed  CAS  Google Scholar 

  • Winzler C et al (1997) Maturation stages of mouse dendritic cells in growth factor-dependent long-term cultures. J Exp Med 185:317–328

    PubMed  CAS  Google Scholar 

  • Witmer-Pack MD et al (1993) Identification of macrophages and dendritic cells in the osteopetrotic (op/op) mouse. J Cell Sci 104:1021–1029

    PubMed  Google Scholar 

  • Yewdell JW, Haeryfar SM (2005) Understanding presentation of viral antigens to CD8 + T cells in vivo: the key to rational vaccine design. Annu Rev Immunol 23:651–682

    PubMed  CAS  Google Scholar 

  • Yewdell JW, Hill AB (2002) Viral interference with antigen presentation. Nat Immunol 3: 1019–1025

    PubMed  CAS  Google Scholar 

  • Yewdell JW et al (1999) Mechanisms of exogenous antigen presentation by MHC class I molecules in vitro and in vivo: implications for generating CD8+ T cell responses to infectious agents, tumors, transplants, and vaccines. Adv Immunol 73:1–77

    PubMed  CAS  Google Scholar 

  • Zammit DJ et al (2005) Dendritic cells maximize the memory CD8 T cell response to infection. Immunity 22:561–570

    PubMed  CAS  Google Scholar 

  • Zhao X et al (2003) Vaginal submucosal dendritic cells, but not Langerhans cells, induce protective Th1 responses to herpes simplex virus-2. J Exp Med 197:153–162

    PubMed  CAS  Google Scholar 

  • Zuniga EI et al (2004) Bone marrow plasmacytoid dendritic cells can differentiate into myeloid dendritic cells upon virus infection. Nat Immunol 5:1227–1234

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Belz, G., Mount, A., Masson, F. (2009). Dendritic Cells in Viral Infections. In: Lombardi, G., Riffo-Vasquez, Y. (eds) Dendritic Cells. Handbook of Experimental Pharmacology, vol 188. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71029-5_3

Download citation

Publish with us

Policies and ethics