Skip to main content

Pairwise Global Alignment of Protein Interaction Networks by Matching Neighborhood Topology

  • Conference paper
Book cover Research in Computational Molecular Biology (RECOMB 2007)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 4453))

Abstract

We describe an algorithm, IsoRank, for global alignment of two protein-protein interaction (PPI) networks. IsoRank aims to maximize the overall match between the two networks; in contrast, much of previous work has focused on the local alignment problem— identifying many possible alignments, each corresponding to a local region of similarity. IsoRank is guided by the intuition that a protein should be matched with a protein in the other network if and only if the neighbors of the two proteins can also be well matched. We encode this intuition as an eigenvalue problem, in a manner analogous to Google’s PageRank method. We use IsoRank to compute the first known global alignment between the S. cerevisiae and D. melanogaster PPI networks. The common subgraph has 1420 edges and describes conserved functional components between the two species. Comparisons of our results with those of a well-known algorithm for local network alignment indicate that the globally optimized alignment resolves ambiguity introduced by multiple local alignments. Finally, we interpret the results of global alignment to identify functional orthologs between yeast and fly; our functional ortholog prediction method is much simpler than a recently proposed approach and yet provides results that are more comprehensive.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. http://chianti.ucsd.edu/NetworkBlast

  2. http://www.ensembl.org

  3. Bandyopadhyay, S., Sharan, R., Ideker, T.: Systematic identification of functional orthologs based on protein network comparison. Genome Res. 16(3), 428–435 (2006)

    Article  Google Scholar 

  4. Breitkreutz, B.J., Stark, C., Tyers, M.: The GRID: the general repository for interaction datasets. Genome Biology 4(3), R23 (2003)

    Article  Google Scholar 

  5. FlyBase Consortium: The FlyBase database of the drosophila genome projects and community literature. Nucleic Acids Res. 31(1), 172–175 (2003)

    Article  Google Scholar 

  6. Kelley, B.P., et al.: Pathblast: a tool for alignment of protein interaction networks. Nucleic Acids Res. 32(Web Server issue), W83–88 (2004)

    Article  Google Scholar 

  7. Xenarios, I., et al.: DIP, the database of interacting proteins: a research tool for studying cellular networks of protein interactions. Nucleic Acids Res. 30(1), 303–305 (2002)

    Article  Google Scholar 

  8. Han, J.D., et al.: Evidence for dynamically organized modularity in the yeast protein-protein interaction network. Nature 430(6995), 88–93 (2004)

    Article  Google Scholar 

  9. Miller, J.P., et al.: Large-scale identification of yeast integral membrane protein interactions. Proc. Natl. Acad. Sci. USA 102(34), 12123–12128 (2005)

    Article  Google Scholar 

  10. Kellis, M., et al.: Methods in comparative genomics: genome correspondence, gene identification and regulatory motif discovery. J. of Computational Biology 11(2-3), 319–355 (2004)

    Article  Google Scholar 

  11. Krogan, N.J., et al.: Global landscape of protein complexes in the yeast saccharomyces cerevisiae. Nature 440(7084), 637–643 (2006)

    Article  Google Scholar 

  12. Uetz, P., et al.: A comprehensive analysis of protein-protein interactions in saccharomyces cerevisiae. Nature 403(6770), 623–627 (2000)

    Article  Google Scholar 

  13. Pinter, R.Y., et al.: Alignment of metabolic pathways. Bioinformatics 21(16), 3401–3408 (2005)

    Article  Google Scholar 

  14. Ito, T., et al.: A comprehensive two-hybrid analysis to explore the yeast protein interactome. Proc. Natl. Acad. Sci. USA 98(8), 4569–4574 (2001)

    Article  Google Scholar 

  15. Flannick, J., Novak, A., Srinivasan, B.S., McAdams, H.H., Batzoglou, S.: Graemlin: general and robust alignment of multiple large interaction networks. Genome Res. 16(9), 1169–1181 (2006)

    Article  Google Scholar 

  16. Golub, G.H., Van Loan, C.: Matrix computations. Johns Hopkins University Press, Baltimore (2006)

    Google Scholar 

  17. Gat-Viks, I., Tanay, A., Raijman, D., Shamir, R.: A probabilistic methodology for integrating knowledge and experiments on biological networks. J. of Computational Biology 13(2), 165–181 (2006)

    Article  MathSciNet  Google Scholar 

  18. Koyuturk, M., Grama, A., Szpankowski, W.: Pairwise local alignment of protein interaction networks guided by models of evolution. In: Proc. of the 9th International Conference on Research in Computational Molecular Biology (RECOMB) (2005)

    Google Scholar 

  19. Maslov, S., Sneppen, K.: Specificity and stability in topology of protein networks. Science 296(5569), 910–913 (2002)

    Article  Google Scholar 

  20. Nabieva, E., Jim, K., Agarwal, A., Chazelle, B., Singh, M.: Whole-proteome prediction of protein function via graph-theoretic analysis of interaction maps. Bioinformatics 21(Suppl. 1), i302–310 (2005)

    Article  Google Scholar 

  21. O’Brien, K.P., Remm, M., Sonnhammer, E.L.: Inparanoid: a comprehensive database of eukaryotic orthologs. Nucleic Acids Res. 33(Database issue), D476–480 (2005)

    Article  Google Scholar 

  22. Papadimitriou, C., Steiglitz, K.: Combinatorial optimization: algorithms and complexity. Dover (1998)

    Google Scholar 

  23. Qi, Y., Klein-Seetharaman, J., Bar-Joseph, Z.: Random forest similarity for protein-protein interaction prediction from multiple sources. Proc. of the Pacific Symposium on Biocomputation (2005)

    Google Scholar 

  24. Singh, R., Xu, J., Berger, B.: Struct2net: Integrating structure into protein-protein interaction prediction. Proceedings of the Pacific Symposium on Biocomputation (2006)

    Google Scholar 

  25. Sontag, D., Singh, R., Berger, B.: Probabilistic modeling of systematic errors in yeast two-hybrid experiments. Proceedings of the Pacific Symposium on Biocomputation (to appear, 2007)

    Google Scholar 

  26. Srinivasan, B.S., Novak, A., Flannick, J., Batzoglou, S., McAdams, H.: Integrated protein interaction networks for 11 microbes. Proc of the 10th International Conference on Research in Computational Molecular Biology(RECOMB) (2006)

    Google Scholar 

  27. von Mering, C., et al.: Comparative assessment of large-scale data sets of protein-protein interactions. Nature 417(6887), 399–403 (2002)

    Article  Google Scholar 

  28. Yao, M.Y., Lam, T.W., Ting, H.F.: An even faster and more unifying algorithm for comparing trees via unbalanced bipartite matchings. J. of Algorithms 40, 212 (2006)

    Google Scholar 

  29. Yeang, C.H., Vingron, M.: A joint model of regulatory and metabolic networks. BMC Bioinformatics 7, 332 (2006)

    Article  Google Scholar 

  30. Yook, S.H., Oltvai, Z.N., Barabasi, A.L.: Functional and topological characterization of protein interaction networks. Proteomics 4(4), 928–942 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Terry Speed Haiyan Huang

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Singh, R., Xu, J., Berger, B. (2007). Pairwise Global Alignment of Protein Interaction Networks by Matching Neighborhood Topology. In: Speed, T., Huang, H. (eds) Research in Computational Molecular Biology. RECOMB 2007. Lecture Notes in Computer Science(), vol 4453. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71681-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-71681-5_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-71680-8

  • Online ISBN: 978-3-540-71681-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics