Skip to main content

Generalizing the Concept of Negative Medium to Acoustic Waves

  • Chapter
Physics of Negative Refraction and Negative Index Materials

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 98))

Electromagnetic metamaterials are artificial materials exhibiting simultaneously negative permeability and permittivity, and the “double negativity” gives rise to many interesting phenomena such as negative refraction, backward waves and superlensing effects. We will see that the concept can be extended to acoustic waves. We will show the existence of acoustic metamaterial, in which both the effective density and bulk modulus are simultaneously negative at some particular frequency range, in the sense of an effective medium. Such a double negative acoustic system is an acoustic analog of Veselogo’s medium in electromagnetism, and shares many novel consequences such as negative refractive index, flat slab focusing and super-resolution. The double negativity in acoustics is derived from low frequency resonances, as in the case of electromagnetism, but the negative density and modulus can come from a single resonance structure, as distinct from electromagnetism in which the negative permeability and negative permittivity originates from different resonance mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. V.C. Veselago, Sov. Phys. Usp. 10, 509 (1968).

    Article  ADS  Google Scholar 

  2. D.R. Smith, J.B. Pendry, M.C.K. Wiltshire, Science 305, 788 (2004).

    Article  ADS  Google Scholar 

  3. J.B. Pendry, Phys. Rev. Lett. 85, 3966 (2000).

    Article  ADS  Google Scholar 

  4. 4. J.B. Pendry, A.J. Holden, D.J. Robins, W.J. Stewart, IEEE Trans. Microw. Theory Tech. 47, 2075 (1999).

    Google Scholar 

  5. R.A. Shelby, D.R. Smith, S. Schultz, Science 292, 77 (2001).

    Article  ADS  Google Scholar 

  6. J. Li, C.T. Chan, Phys. Rev. E 70, 055602 (2004).

    Article  ADS  Google Scholar 

  7. Z. Hashin, S. Shtrikman, J. Appl. Phys. 33, 3125 (1962).

    Article  MATH  ADS  Google Scholar 

  8. J.G. Berryman, J. Acoust. Soc. Am. 68, 1809 (1980).

    MATH  Google Scholar 

  9. G. Mie, Ann. Phys. (Leipzig) 25, 377 (1908).

    ADS  Google Scholar 

  10. J.H. Page, A. Sukhovich, S. Yang, M.L. Cowan, F. Van Der Biest, A. Tourin, M. Fing, Z. Liu, C.T. Chan, P. Sheng, Phys. Status Solidi B 241, 3454 (2004).

    Article  ADS  Google Scholar 

  11. For an introduction to photonic crystal, see, e.g., J.D. Joannopoulos, R.D. Meade, J.N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton University Press, Princeton, 1995).

    Google Scholar 

  12. S. Yang, J.H. Page, Z.Y. Liu, M.L. Cowan, C.T. Chan, P. Sheng, Phys. Rev. Lett. 93, 024301 (2004).

    Article  ADS  Google Scholar 

  13. X. Zhang, Z.Y. Liu, Appl. Phys. Lett. 85, 341 (2004).

    Article  ADS  Google Scholar 

  14. L. Feng, X.P. Liu, M.H. Lu, Y.B. Chen, Y.F. Chen, Y.W. Mao, J. Zi, Y.Y. Zhu, S.N. Zhu, N.B. Ming, Phys. Rev. Lett. 96, 14301 (2006).

    Article  ADS  Google Scholar 

  15. See, e.g., C. Luo, S.G. Johnson, J.D. Joannopoulos, J.B. Pendry, Phys. Rev. B. 65,201104(R) (2002).

    Article  ADS  Google Scholar 

  16. See, e.g., N.W. Ashcroft, N.D. Mermin, Solid State Physics(Saunders, Philadelphia, 1976).

    Google Scholar 

  17. Z.Y. Liu, X.X. Zhang, Y. Mao, Y.Y. Zhu, Z. Yang, C.T. Chan, P. Sheng, Science. 289, 1641( 2000).

    Google Scholar 

  18. Z.Y. Liu, C.T. Chan, P. Sheng, A.L. Goertzen, J.H. Page, Phys. Rev. B 62, 2446(2000).

    Article  ADS  Google Scholar 

  19. Z.Y. Liu, C.T. Chan, P. Sheng, Phys. Rev. B 65, 165116 (2002).

    Article  ADS  Google Scholar 

  20. K.H. Fung, Z.Y. Liu, C.T. Chan, Zeitschrift Fur Kristallographie 220, 871. (2005).

    Article  Google Scholar 

  21. See, e.g., A.L. Fetter, J.D. Walecka, Theoretical Mechanics of Particles and Continua (McGraw-Hill, New York, 1980).

    MATH  Google Scholar 

  22. J.E. Sipe, J. Van Kranendonk, Phys. Rev. A 9, 1806 (1974).

    Article  ADS  Google Scholar 

  23. S. Tretyakov, Analytical Modeling in Applied Electromagnetics (Artech House, Boston, 2003).

    MATH  Google Scholar 

  24. L. Tsang, J.A. Kong, K.-H. Ding, Scattering of Electromagnetic Waves: Theories and Applications (Wiley, New York, 2000).

    Book  Google Scholar 

  25. M. Kafeski, E.N. Economou, Phys. Rev. B 60, 1 (1993).

    Google Scholar 

  26. E. Psarobas, A. Modinos, R. Sainidou, N. Stefanou, Phys. Rev. B 65, 064307. (2002).

    Article  ADS  Google Scholar 

  27. D.R. Smith, D. Schurig, M. Rosenbluth, S. Schultz, S.A. Ramakrishna, J.B. Pendry, Appl. Phys. Lett. 82, 1506 (2003).

    Article  ADS  Google Scholar 

  28. L. Zhou, C.T. Chan, Appl. Phys. Lett. 86, 101104 (2005).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Li, J., Fung, K.H., Liu, Z.Y., Sheng, P., Chan, C.T. (2007). Generalizing the Concept of Negative Medium to Acoustic Waves. In: Krowne, C.M., Zhang, Y. (eds) Physics of Negative Refraction and Negative Index Materials. Springer Series in Materials Science, vol 98. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72132-1_8

Download citation

Publish with us

Policies and ethics