Skip to main content

Solving Protein Structures Using Molecular Replacement Via Protein Fragments

  • Conference paper
Applications of Fuzzy Sets Theory (WILF 2007)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4578))

Included in the following conference series:

Abstract

The need to determine phases is a major bottleneck in a fully automated X-ray crystallography pipeline. The problem commonly called phasing can be solved by a computational method called molecular replacement (MR). With the deposition of more and more proteins into the Protein Data Bank (PDB), it has been shown that the MR yields better initial models. In this paper, ab initio first model generation is addressed. A novel scheme using PHASER is proposed which does not require any a priori information about the structure. The input to the system is the target structure factors and the sequence. We created a unique set of supersecondary structure (fragment) dataset and used them in creation of the first model. The method was evaluated with log-likelihood gain (LLG) and translational Z-score (TFZ) as defined by PHASER. The results obtained are highly encouraging with translation Z-scores of 7 and above for the first model. The proposed scheme is tested on six proteins, two each from α, β and α + β classes with very good results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Berman, H.M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T.N., Weissig, H., Shindyalov, I.N., Bourne, P.E.: The protein data bank. Nucleic Acids Research 28, 235–242 (2000)

    Article  Google Scholar 

  2. Abola, E., Kuhn, P., Earnest, T., Stevens, R.C.: Automation of x-ray crystallography. Nature structural biology, Structural Genomic Supplement 973–977 (2000)

    Google Scholar 

  3. Lamzin, V.S., Perrakis, A.: Current state of automated crystallographic data analysis. Nature structural biology, Structural Genomic Supplement 978–981 (2000)

    Google Scholar 

  4. Drenth, J.: Principles of Protein X-Ray Crystallography, 2nd edn. Springer, New York (1999)

    Google Scholar 

  5. Rhodes, G.: Crystallography Made Crystal Clear, 2nd edn. Academic Press, San Diego (2000)

    Google Scholar 

  6. Rossmann, M.G., Blow, D.M.: The detection of sub-units within the crystallographic asymmetric unit. Acta Crystallographica 15, 24–31 (1962)

    Article  Google Scholar 

  7. Jones, D.T.: Evaluating the potential of using fold-recognition models for molecular replacement. Acta Crystallographica D57, 1428–1434 (2001)

    Google Scholar 

  8. Rost, B.: Twilight zone of protein sequence alignments. Protein Engineering 12(2), 85–94 (1999)

    Article  MathSciNet  Google Scholar 

  9. Schwarzenbacher, R., Godzik, A., Grzenchnik, S.K., Jaroszewski, L.: The importance of alignment accuracy for molecular replacement. Acta Crystallographica D60, 1229–1236 (2004)

    Google Scholar 

  10. Collaborative Computational Project Number 4. The CCP4 suite: programs for protein crystallography. Acta Crystallographica Section D, 50(5), pp.760–763 (1994)

    Google Scholar 

  11. McCoy, A.J.: Solving structures of protein complexes by mlecular replacement with Phaser. Acta Crystallographica D63, 32–41 (2007)

    Google Scholar 

  12. Read, R.J.: Pushing the boundaries of molecular replacement with maximum likelihood. Acta Crystallographica D57, 1373–1382 (2001)

    Google Scholar 

  13. Navaza, G.: AMORE: an automated package for molecular replacement. Acta Crystallographica A50, 157–163 (1994)

    Google Scholar 

  14. Vagin, A., Teplyakov, A.: MOLREP: an automated program for molecular replacement. Journal of Applied Crystallography 30, 1022–1025 (1997)

    Article  Google Scholar 

  15. Claude, J.-B., Suhre, K., Notredame, C., Claverie, C., Abergel, J.M.: CaspR: a web-server for automated molecular replacement using homology modelling. Nucleic Acids Research 32, W606–W609 (2004)

    Article  Google Scholar 

  16. Bahar, M., et al.: Others. SPINE workshop on automated X-ray analysis: a progress report. Acta Crystallographica D62, 1170–1183 (2006)

    Google Scholar 

  17. Long, F., Vagin, A.A., Murshudov, G.N.: Complete automation of molecular replacement in BALBES. CCP4 Study Weekend (abstract, 2007)

    Google Scholar 

  18. Strop, P., Brzustowicz, M.R., Brunger, A.T.: Ab initio molecular replacement phasing for symmetric helical membrane proteins. Acta Crystallographica D63, 188–196 (2007)

    Google Scholar 

  19. Webster, G., Hilgenfeld, R.: An evolutionary computational approach to the phase problem in macromolecular X-ray crystallography. Acta Crystallographica A57, 351–358 (2001)

    Google Scholar 

  20. Cowtan, K.: Modified Phased Translation Functions and their application to Molecular-Fragment location. Acta Crystallographica D54, 750–756 (1998)

    Google Scholar 

  21. Terwilliger, T.C.: Automated main-chain model building by template matching and iterative fragment extension. Acta Crystallographica D59, 38–44 (2003)

    Google Scholar 

  22. Orengo, C.A., Michie, A.D., Jones, S., Jones, D.T., Swindells, M.B., Thornton, J.M.: Cath- a hierarchic classification of protein domain structures. Structure 5(8), 1093–1108 (1997)

    Article  Google Scholar 

  23. Gubbi, J., Shilton, A., Parker, M., Palaniswami, M.: Protein topology classification using two-stage support vector machines. Genome Informatics 17(2), 259–269 (2006)

    Google Scholar 

  24. Guex, N., Peitsch, M.C.: SWISS-MODEL and the Swiss-PdbViewer: An environment for comparative protein modeling. Electrophoresis 18, 2714–2723 (1997)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Francesco Masulli Sushmita Mitra Gabriella Pasi

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gubbi, J., Parker, M., Palaniswami, M. (2007). Solving Protein Structures Using Molecular Replacement Via Protein Fragments. In: Masulli, F., Mitra, S., Pasi, G. (eds) Applications of Fuzzy Sets Theory. WILF 2007. Lecture Notes in Computer Science(), vol 4578. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73400-0_80

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-73400-0_80

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-73399-7

  • Online ISBN: 978-3-540-73400-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics