Skip to main content

Arc Consistency Projection: A New Generalization Relation for Graphs

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4604))

Abstract

The projection problem (conceptual graph projection, homomorphism, injective morphism, θ-subsumption, OI-subsumption) is crucial to the efficiency of relational learning systems. How to manage this complexity has motivated numerous studies on learning biases, restricting the size and/or the number of hypotheses explored. The approach suggested in this paper advocates a projection operator based on the classical arc consistency algorithm used in constraint satisfaction problems. This projection method has the required properties : polynomiality, local validation, parallelization, structural interpretation. Using the arc consistency projection, we found a generalization operator between labeled graphs. Such an operator gives the structure of the classification space which is a concept lattice.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sowa, J.F.: Conceptual structures: information processing in mind and machine. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA (1984)

    MATH  Google Scholar 

  2. Baget, J.F., Mugnier, M.L.: Extension of simple conceptual graphs: the complexity of rules and constraints. Journal of Artificial Intelligence Research 16, 425–465 (2002)

    MATH  MathSciNet  Google Scholar 

  3. Hell, P., Nesetril, J.: Graphs and homomorphism. In: Oxford Lecture Series in Mathematics and its Application, vol. 28, Oxford University Press, Oxford (2004)

    Google Scholar 

  4. Mugnier, M.L., Chein, M.: Polynomial algorithms for projection and matching. In: Pfeiffer, H.D., Nagle, T.E. (eds.) Conceptual Structures: Theory and Implementation. LNCS, vol. 754, pp. 239–251. Springer, Heidelberg (1993)

    Google Scholar 

  5. Croitoru, M., Compatangelo, E.: A combinatorial approach to conceptual graph projection checking. In: 24th Int’l Conf. of the British Computer Society’s Specialist Group on Art’l Intell, pp. 239–251. Springer, Heidelberg (2004)

    Google Scholar 

  6. Pfeiffer, H.: A comparison of different conceptual structures projection algorithms. In: ICCS 2007 (submitted, 2007)

    Google Scholar 

  7. Maloberti, J., Sebag, M.: Fast theta-subsumption with constraint satisfaction algorithms. Machine Learning 55, 137–174 (2004)

    Article  MATH  Google Scholar 

  8. Zaki, M.: Efficiently mining frequent trees in a forest. In: 8th Intl. Conf. knowledge discovery and data mining, pp. 71–80 (2002)

    Google Scholar 

  9. Cook, D.J., Holder, L.B.: Substructure discovery using minimum description length and background knowledge. Journal of Artificial Intelligence Research 1, 231–255 (1994)

    Google Scholar 

  10. Liquiere, M., Sallantin, J.: Structural machine learning with galois lattice and graphs. In: Shavlik, J.W. (ed.) ICML, pp. 305–313. Morgan Kaufmann, San Francisco (1998)

    Google Scholar 

  11. Sebag, M., Rouveirol, C.: Resource-bounded relational reasoning: induction and deduction through stochastic matching. Machine Learning 38, 41–62 (2000)

    Article  MATH  Google Scholar 

  12. Bessiere, C.: Constraint propagation. In: Rossi, F., van Beek, P., Walsh, T. (eds.) Handbook of Constraint Programming, Elsevier, Amsterdam (2006)

    Google Scholar 

  13. Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations. Springer-Verlag, New York, Inc. Secaucus, NJ, USA, Translator-C. Franzke (1997)

    Google Scholar 

  14. Plotkin, G.: A note on inductive generalization. Machine Intelligence 5, 153–163 (1970)

    MathSciNet  Google Scholar 

  15. Crole, R.: Categories for Types. Cambridge Mathematical Textbooks. Cambridge University Press, Cambridge (1993)

    MATH  Google Scholar 

  16. Weichsel, P.M.: The kronecker product of graphs. Proc. Am. Math. Soc. 13, 47–52 (1962)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Uta Priss Simon Polovina Richard Hill

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Liquiere, M. (2007). Arc Consistency Projection: A New Generalization Relation for Graphs. In: Priss, U., Polovina, S., Hill, R. (eds) Conceptual Structures: Knowledge Architectures for Smart Applications. ICCS 2007. Lecture Notes in Computer Science(), vol 4604. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73681-3_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-73681-3_25

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-73680-6

  • Online ISBN: 978-3-540-73681-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics