Skip to main content

Frequency Modulation Atomic Force Microscopy in Liquids

  • Chapter
Applied Scanning Probe Methods VIII

Part of the book series: Nano Science and Technolgy ((NANO))

Abstract

Frequency modulation atomic force microscopy is a sensitive and quantitative dynamic technique, which utilizes the change in resonance frequency of a cantilever to detect variations in the interaction force between the cantilever tip and the sample of interest. Although it has been used extensively in ultrahigh vacuum, it is rarely used in liquids. Here we explore the application of the technique in the liquid environment, covering various experimental implementations of the technique and its theoretical foundations. In addition, we describe a number of applications that demonstrate the potential of the technique in liquids and highlight future prospects

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albrecht TR, Grütter P, Horne D, Ruger D (1991) J Appl Phys 69:668

    Article  Google Scholar 

  2. Giessibl FJ (1995) Science 267:68

    Article  Google Scholar 

  3. Garcia R, Perez R (2002) Surf Sci Rep 47:197

    Article  Google Scholar 

  4. Giessibl FJ (2003) Rev Mod Phys 75:949

    Article  Google Scholar 

  5. Sugimoto Y, Pou P, Abe M, Jelinek P, Perez R, Morita S, Custance O (2007) Nature 446:64

    Article  Google Scholar 

  6. Giessibl FJ (1997) Phys Rev B 56:16010

    Article  Google Scholar 

  7. Martin Y, Williams CC, Wickramasinghe HK (1987) J Appl Phys 61:4723

    Article  Google Scholar 

  8. Lee M, Jhe W (2006) Phys Rev Lett 97:036104

    Article  Google Scholar 

  9. Sader JE, Jarvis SP (2004) Appl Phys Lett 84:1801

    Article  Google Scholar 

  10. Jarvis SP, Uchihashi T, Ishida T, Tokumoto H, Nakayama Y (2000) J Phys Chem B 26:6091

    Article  Google Scholar 

  11. Jarvis SP, Oral A, Weihs TP, Pethica JB (1993) Rev Sci Instrum 64:3515

    Article  Google Scholar 

  12. Dai H, Hafner JH, Rinzler AG, Colbert DT, Smalley RE (1996) Nature 384:147

    Article  Google Scholar 

  13. Fukuma T, Kimura M, Kobayashi K, Matsushige K, Yamada H (2005) Rev Sci Instrum 76:053704

    Article  Google Scholar 

  14. Fukuma T, Higgins MJ, Jarvis SP (2007) Phys Rev Lett 98:106101

    Article  Google Scholar 

  15. Giessibl FJ (2001) Appl Phys Lett 78:123

    Article  Google Scholar 

  16. Sader JE, Uchihashi T, Higgins MJ, Farrell A, Nakayama Y, Jarvis SP (2005) Nanotechnology 16:S94

    Article  Google Scholar 

  17. Humphris ADL, Tamayo J, Miles MJ (2000) Langmuir 16:7891

    Article  Google Scholar 

  18. Kageshima M, Jensenius H, Dienwiebel M, Nakayama Y, Tokumoto H, Jarvis SP, Oosterkamp TH (2002) Appl Surf Sci 188:440

    Article  Google Scholar 

  19. Umeda N, Ishizaki S, Uwai H (1991) J Vac Sci Technol B 9:1318

    Article  Google Scholar 

  20. Ratcliff GC, Erie DA, Superfine R (1998) Appl Phys Lett 72:1911

    Article  Google Scholar 

  21. Hoogenboom BW, Hug HJ, Pellmont Y, Martin S, Frederix PLTM, Fotiadis D, Engel A (2006) Appl Phys Lett 88:193109

    Article  Google Scholar 

  22. Kawakatsu H, Kawai S, Kobayashi D, Kitamura S, Meguro S (2006) e-J Surf Sci Nanotechnol 4:110

    Article  Google Scholar 

  23. Giessibl FJ (1999) Appl Surf Sci 140:352

    Article  Google Scholar 

  24. Meyer G, Amer NM (1988) Appl Phys Lett 53:1045

    Article  Google Scholar 

  25. Fukuma T, Jarvis SP (2006) Rev Sci Instrum 77:043701

    Article  Google Scholar 

  26. Sarid D (1994) Scanning force microscopy with applications to electronic, magnetic and atomic forces. Oxford University Press, Oxford

    Google Scholar 

  27. Okajima T, Sekiguchi H, Arakawa H, Ikai A (2003) Appl Surf Sci 210:68

    Article  Google Scholar 

  28. Fukuma T, Kobayashi K, Matsushige K, Yamada H (2005) Appl Phys Lett 87:034101

    Article  Google Scholar 

  29. Kobayashi K, Yamada H, Matsushige K (2002) Appl Surf Sci 188:430

    Article  Google Scholar 

  30. Jarvis SP, Ishida T, Uchihashi T, Nakayama Y, Tokumoto H (2001) Appl Phys A 72:S129

    Article  Google Scholar 

  31. Uchihashi T, Higgins MJ, Yasuda S, Jarvis SP, Akita S, Nakayama Y, Sader JE (2004) Appl Phys Lett 85:3575

    Article  Google Scholar 

  32. Uchihashi T, Higgins MJ, Sader JE, Jarvis SP (2005) Nanotechnology 16:S40

    Article  Google Scholar 

  33. Fukuma T, Kobayashi K, Matsushige K, Yamada H (2005) Appl Phys Lett 86:193108

    Article  Google Scholar 

  34. Erlandsson R, Hadziioannou G, Mate CM, McClelland GM, Chiang S (1988) J Chem Phys 89:5190

    Article  Google Scholar 

  35. Drake B, Prater CB, Weisenhorn AL, Gould SA, Albrecht TR, Quate CF, Cannell DS, Hansma HG, Hansma PK (1989) Science 243:1586

    Article  Google Scholar 

  36. Tamayo J, Humphris ADL, Owen RJ, Miles MJ (2001) Biophys J 81:526

    Article  Google Scholar 

  37. Sekiguchi H, Okajima T, Arakawa H, Maeda S, Takashima A, Ikai A (2003) Appl Surf Sci 210:61

    Article  Google Scholar 

  38. Okajima T, Tokumoto H (2004) Jpn J Appl Phys 43:4634

    Article  Google Scholar 

  39. Ebeling D, Hölscher H, Anczykowski B (2006) Appl Phys Lett 89:203511

    Article  Google Scholar 

  40. Yang C-W, Hwang I-S, Chen YF, Chang CS, Tsai DP (2007) Nanotechnology 18:084009

    Article  Google Scholar 

  41. Morita S, Yamada H, Ando T (2007) Nanotechnology 18:08401

    Article  Google Scholar 

  42. Humphris ADL, Antognozzi M, McMaster TJ, Miles MJ (2002) Langmuir 18:1729

    Article  Google Scholar 

  43. Higgins MJ, Riener CK, Uchihashi T, Sader JE, McKendry R, Jarvis SP (2005) Nanotechnology 16:S85

    Article  Google Scholar 

  44. Higgins MJ, Sader JE, Jarvis SP (2006) Biophys J 90:640

    Article  Google Scholar 

  45. Higgins MJ, Polcik M, Fukuma T, Sader JE, Nakayama Y, Jarvis SP (2006) Biophys J 91:2532

    Article  Google Scholar 

  46. Fukuma T, Higgins MJ, Jarvis SP (2007) Biophys J 92:3603

    Article  Google Scholar 

  47. Groves JT, Boxer SG, McConnell HM (2000) J Phys Chem B 104:11409

    Article  Google Scholar 

  48. Ohki S, Arnold K (2000) Colloids Surf B 18:83

    Article  Google Scholar 

  49. Herbette L, Napolitano CA, McDaniel RV (1984) Biophys J 46:677

    Article  Google Scholar 

  50. Hermann TR, Jayaweera AR, Shamoo AE (1986) Biochemistry 25:5834

    Article  Google Scholar 

  51. Binder H, Zschörnig (2002) Chem Phys Lipids 115:39

    Article  Google Scholar 

  52. Berkowitz ML, Bostick DL, Pandit S (2006) 106:1527

    Google Scholar 

  53. Garcia-Manyes S, Oncins G, Sanz F (2005) Biophys J 89:1812

    Article  Google Scholar 

  54. Böckmann RA, Hac A, Heimburg T, Grubmüller H (2003) Biophys J 85:1647

    Article  Google Scholar 

  55. Sader JE (2002) In: Encyclopedia of surface and colloid science. Dekker, New York

    Google Scholar 

  56. Gotsmann B, Seidel C, Anczykowski B, Fuchs H (1999) Phys Rev B 60:11051

    Article  Google Scholar 

  57. Abramowitz M, Stegun IA (1975) Handbook of mathematical functions. Dover, New York

    MATH  Google Scholar 

  58. Dürig U (2000) Appl Phys Lett 76:1203

    Article  Google Scholar 

  59. Sader JE (1998) J Appl Phys 84:64

    Article  Google Scholar 

  60. Chon JWM, Mulvaney P, Sader JE (2000) J Appl Phys 87:3978

    Article  Google Scholar 

  61. Green CP, Sader JE (2005) Phys Fluids 17:073102

    Article  MathSciNet  Google Scholar 

  62. Sader JE, Jarvis SP (2006) Phys Rev B 74:195424

    Article  Google Scholar 

  63. Holscher H, Gotsmann B, Allers W, Schwarz UD, Fuchs H, Wiesendanger R (2001) Phys Rev B 64:075402

    Article  Google Scholar 

  64. Patil S, Matei G, Oral A, Hoffmann PM (2006) Langmuir 22:6485

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Jarvis, S., Sader, J., Fukuma, T. (2008). Frequency Modulation Atomic Force Microscopy in Liquids. In: Bhushan, B., Fuchs, H., Tomitori, M. (eds) Applied Scanning Probe Methods VIII. Nano Science and Technolgy. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74080-3_9

Download citation

Publish with us

Policies and ethics