Skip to main content

Small Alliances in Graphs

  • Conference paper
Mathematical Foundations of Computer Science 2007 (MFCS 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4708))

Abstract

Let G = (V,E) be a graph. A nonempty subset S ⊆ V is a (strong defensive) alliance of G if every node in S has at least as many neighbors in S than in V ∖ S. This work is motivated by the following observation: when G is a locally structured graph its nodes typically belong to small alliances. Despite the fact that finding the smallest alliance in a graph is NP-hard, we can at least compute in polynomial time depth G (v), the minimum distance one has to move away from an arbitrary node v in order to find an alliance containing v.

We define depth(G) as the sum of depth G (v) taken over v ∈ V. We prove that depth(G) can be at most \(\frac{1}{4}(3n^2-2n+3)\) and it can be computed in time O(n 3). Intuitively, the value depth(G) should be small for clustered graphs. This is the case for the plane grid, which has a depth of 2n. We generalize the previous for bridgeless planar regular graphs of degree 3 and 4.

The idea that clustered graphs are those having a lot of small alliances leads us to analyze the value of {S contains an alliance}, with S ⊆ V randomly chosen. This probability goes to 1 for planar regular graphs of degree 3 and 4. Finally, we generalize an already known result by proving that if the minimum degree of the graph is logarithmically lower bounded and if S is a large random set (roughly \(|S| > \frac{n}{2})\), then also r p (G) →1 as n → ∞.

Partially supported by Programs Conicyt “Anillo en Redes”, Fondap on Applied Mathematics and Ecos-Conicyt.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Watts, D.J., Strogatz, S.H.: Collective dynamics of “small-world” networks. Nature 393, 440–442 (1998)

    Article  Google Scholar 

  2. Soffer, S.N., Vazquez, A.: Network clustering coefficient without degree-correlation biases. Phys. Rev. E 71(5), 57101 (2005)

    Article  Google Scholar 

  3. Abdo, A.H., de Moura, A.P.S.: Measuring the local topology of networks: An extended clustering coefficient, arXiv:physics/0605235 (2006)

    Google Scholar 

  4. Caldarelli, G., Pastor-Santorras, R., Vespignani, A.: Cycles structure and local ordering in complex networks. The European Physical Journal B - Condensed Matter 38(2), 183–186 (2004)

    Article  Google Scholar 

  5. Buhl, J., Gautrais, J., Solé, R.V., Kuntz, P., Valverde, S., Deneubourg, J., Theraulaz, G.: Efficiency and robustness in ant networks of galleries. The European Physical Journal B - Condensed Matter 42, 123–129 (2004)

    Article  Google Scholar 

  6. Schank, T., Wagner, D.: Approximating clustering coefficient and transitivity. Journal of Graph Algorithms and Applications 9(2), 265–275 (2005)

    MATH  MathSciNet  Google Scholar 

  7. Fronczak, A., Holyst, J.A., Jedynak, M., Sienkiewicz, J.: Higher order clustering coefficients in Barabasi-Albert networks. Physica A 316(1), 688–694 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  8. Latora, V., Marchiori, M.: Efficient behavior of small-world networks. Phys. Rev. Lett. 87(19), 198701 (2001)

    Article  Google Scholar 

  9. Kristiansen, P., Hedetniemi, S.M., Hedetniemi, S.T.: Alliances in graphs. J. Combin. Math. Combin. Comput. (48), 157–177 (2004)

    Google Scholar 

  10. Shafique, K.H.: Partitioning a graph in alliances and its application to data clustering. PhD thesis, School of Comp. Sci., College of Eng. and Comp. Sci., University of Central Florida (2004)

    Google Scholar 

  11. Sigarreta, J.M., Rodríguez, J.A.: On defensive alliances and line graphs. Applied Mathematics Letters 12(19), 1345–1350 (2006)

    Article  Google Scholar 

  12. Favaron, O., Fricke, G., Goddard, W., Hedetniemi, S.M., Hedetniemi, S.T., Kristiansen, P.: Offensive alliances in graphs. Discuss. Math. Graph Theory 24(2), 263–275 (2004)

    MATH  MathSciNet  Google Scholar 

  13. Haynes, T.W., Hedetniemi, S.T., Henning, M.A.: Global defensive alliances in graphs. Electron. J. Combin (10), 139–146 (2003)

    MathSciNet  Google Scholar 

  14. Rodríguez, J.A., Sigarreta, J.M.: Global offensive alliances in graphs. Electronic Notes in Discrete Mathematics 25, 157–164 (2006)

    Article  Google Scholar 

  15. Brigham, R., Dutton, R., Hedetniemi, S.: A sharp lower bound on the powerful alliance number of c m ×c n . Congr. Number. 167, 57–63 (2004)

    MATH  MathSciNet  Google Scholar 

  16. Shafique, K.H., Dutton, R.D.: Maximum alliance-free and minimum alliance-cover sets. Congr. Number. 162, 139–146 (2003)

    MATH  MathSciNet  Google Scholar 

  17. Shafique, K.H., Dutton, R.D.: A tight bound on the cardinalities of maximum alliance-free and minimum alliance-cover sets. J. Combin. Math. Combin. Comput. 56, 139–145 (2006)

    MATH  MathSciNet  Google Scholar 

  18. Rodríguez-Velázquez, J.A., Gonzalez-Yero, I., Sigarreta, J.M.: Defensive k-alliances in graphs. eprint arXiv:math/0611180 (2006)

    Google Scholar 

  19. Rodríguez-Velázquez, J.A., Sigarreta, J.M.: Global defensive k-alliances in graphs. eprint arXiv:math/0611616 (2006)

    Google Scholar 

  20. Flake, G.W., Lawrence, S., Giles, C.L.: Efficient identification of web communities. In: Proc. of the 6th ACM SIGKDD Int. Conference on Knowledge Discovery and Data Mining, pp. 150–160. ACM Press, New York (2000)

    Chapter  Google Scholar 

  21. Flocchini, P., Lodi, E., Luccio, F., Pagli, L., Santoro, N.: Dynamic monopolies in tori. Discrete Appl. Math. 137(2), 197–212 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  22. Bermond, J., Bond, J., Peleg, D., Perennes, S.: Tight bounds on the size of 2-monopolies. In: Proc. 3rd Colloq. on Structural Information and Communication Complexity (1996)

    Google Scholar 

  23. Peleg, D.: Local majorities, coalitions and monopolies in graphs: A review. Theor. Comput. Sci. 282(2), 231–257 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  24. Newman, M.E.J.: Finding community structure in networks using the eigenvectors of matrices. Phys. Rev. E 74(3), 36104 (2006)

    Article  Google Scholar 

  25. McRae, A., Goddard, W., Hedetniemi, S.M., Hedetniemi, S.T., Kristiansen, P.: The algorithmic complexity of alliances in graphs (Preprint, 2002)

    Google Scholar 

  26. Vazirani, V.V.: Approximation Algorithms. Springer, Heidelberg (2004)

    Google Scholar 

  27. Sipser, M.: Introduction to the Theory of Computation. International Thomson Publishing (1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Luděk Kučera Antonín Kučera

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Carvajal, R., Matamala, M., Rapaport, I., Schabanel, N. (2007). Small Alliances in Graphs. In: Kučera, L., Kučera, A. (eds) Mathematical Foundations of Computer Science 2007. MFCS 2007. Lecture Notes in Computer Science, vol 4708. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74456-6_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74456-6_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74455-9

  • Online ISBN: 978-3-540-74456-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics