Skip to main content

Growth and Characterization of Antimony-Based Narrow-Bandgap III–V Semiconductor Crystals for Infrared Detector Applications

  • Chapter
Springer Handbook of Crystal Growth

Part of the book series: Springer Handbooks ((SHB))

  • 17k Accesses

Abstract

Materials for the generation and detection of 7–12 μm wavelength radiation continue to be of considerable interest for many applications such as night vision, medical imaging, sensitive pollution gas monitoring, etc. For such applications HgCdTe has been the main material of choice in the past. However, HgCdTe lacks stability and uniformity over a large area, and only works under cryogenic conditions. Because of these problems, antimony-based III–V materials have been considered as alternatives. Consequently, there has been a tremendous growth in research activity on InSb-based systems. In fact, InSb-based compounds have proved to be interesting materials for both basic and applied research. This chapter presents a comprehensive account of research carried out so far. It explores the materials aspects of indium antimonide (InSb), indium bismuth antimonide (InBi x Sb1–x ), indium arsenic antimonide (InAs x Sb1–x ), and indium bismuth arsenic antimonide (InBi x As y Sb1–x–y ) in terms of crystal growth in bulk and epitaxial forms and interesting device feasibility. The limiting single-phase composition of InAs x Sb1–x and InBi x Sb1–x using near-equilibrium technique has been also addressed. An overview of the structural, transport, optical, and device-related properties is presented. Some of the current areas of research and development have been critically reviewed and their significance for both understanding the basic physics as well as device applications are discussed. These include the role of defects and impurity on structural, optical, and electrical properties of the materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 309.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ACRT:

accelerated crucible rotation technique

AFM:

atomic force microscopy

CZ:

Czochralski

DTA:

differential thermal analysis

EDAX:

energy-dispersive x-ray analysis

EPD:

etch pit density

FCA:

free carrier absorption

FWHM:

full width at half-maximum

HRXRD:

high-resolution x-ray diffraction

IR:

infrared

LED:

light-emitting diode

LP:

low pressure

LPE:

liquid-phase epitaxy

LPEE:

liquid-phase electroepitaxy

MBE:

molecular-beam epitaxy

MCT:

HgCdTe

ME:

melt epitaxy

ME:

microelectronics

MOCVD:

metalorganic chemical vapor deposition

MOCVD:

molecular chemical vapor deposition

MOVPE:

metalorganic vapor-phase epitaxy

QDT:

quantum dielectric theory

RBM:

rotatory Bridgman method

RT:

room temperature

SEM:

scanning electron microscope

SEM:

scanning electron microscopy

SI:

semi-insulating

TEM:

transmission electron microscopy

TGZM:

temperature gradient zone melting

THM:

traveling heater method

VCA:

virtual-crystal approximation

XPS:

x-ray photoelectron spectroscopy

XPS:

x-ray photoemission spectroscopy

XRD:

x-ray diffraction

References

  1. C.H. Wang, J.G. Crowder, V. Mannheim, T. Ashley, D.T. Dutton, A.D. Johnson, G.J. Pryce, S.D. Smith: Detection of nitrogen dioxide using a room temperature operationmid-infrared InSb light emitting diode, Electron. Lett. 34, 300–3001 (1998)

    Article  Google Scholar 

  2. J.J. Lee, J.D. Kim, M. Razeghi: Room temperature operation of 8–12 μ m InSbBi infrared photodetectors on GaAs substrates, Appl. Phys. Lett. 73, 602–604 (1998)

    Article  ADS  Google Scholar 

  3. J.D. Kim, S. Kim, D. Wu, J. Wojkowski, J. Xu, J. Piotrowski, E. Bigan, M. Razeghi: 8–13 μ m InAsSb heterojunction photodiode operating at near room temperature, Appl. Phys. Lett. 67, 2645–2647 (1995)

    Article  ADS  Google Scholar 

  4. K.Y. Ma, Z.M. Fang, D.H. Jaw, R.M. Cohen, G.B. Stringfellow, W.P. Kosar, D.W. Brown: Organometallic vapor phase epitaxial growth and characterization of InAsBi and InAsSbBi, Appl. Phys. Lett. 55, 2420–2422 (1989)

    Article  ADS  Google Scholar 

  5. V.K. Dixit, B. Bansal, V. Venkataraman, H.L. Bhat, K.S. Chandrasekharan, B.M. Arora: Studies on high resolution x-ray diffraction, optical and transport properties of InAs_xSb_1-x/GaAs (x ≤ 0.06) heterostructure grown using liquid phase epitaxy, J. Appl. Phys. 96, 4989–4995 (2004)

    Article  ADS  Google Scholar 

  6. B. Bansal, V.K. Dixit, V. Venkataraman, H.L. Bhat: Transport, optical and magnetotransport properties of hetero-epitaxial InAs_xSb_1-x/GaAs (x ≤0.06) and bulk InAs_xSb_1-x (x ≤ 0.05) crystals: experiment and theoretical analysis, Physica E 20, 272–277 (2004)

    Article  ADS  Google Scholar 

  7. B. Bansal, V.K. Dixit, V. Venkataraman, H.L. Bhat: Temperature dependence of the energy gap and free carrier absorption in bulk InAs_0.05Sb_0.95 single crystals, Appl. Phys. Lett. 82, 4720–4722 (2003)

    Article  ADS  Google Scholar 

  8. V.K. Dixit, K.S. Keerthi, P. Bera, M.S. Hegde, H.L. Bhat: Structural and compositional analysis of InBi_xAs_ySb_1-x-y films grown on GaAs(001) substrates by liquid phase epitaxy, Appl. Surf. Sci. 220, 321–326 (2003)

    Article  ADS  Google Scholar 

  9. V.K. Dixit, B. Bansal, V. Venkataraman, H.L. Bhat: Structural, optical, and electrical properties of bulk single crystals of InAs_xSb_1-x grown by rotatory Bridgman method, Appl. Phys. Lett. 81, 1630–1632 (2002)

    Article  ADS  Google Scholar 

  10. V.K. Dixit, B. Bansal, V. Venkataraman, G.N. Subbanna, K.S. Chandrasekharan, B.M. Arora, H.L. Bhat: High-mobility InSb epitaxial films grown on a GaAs(001) substrate using liquid-phase epitaxy, Appl. Phys. Lett. 80, 2102–2104 (2002)

    Article  ADS  Google Scholar 

  11. V.K. Dixit, B.V. Rodrigues, R. Venkataraghavan, K.S. Chandrasekharan, B.M. Arora, H.L. Bhat: Effect of lithium ion irradiation on transport and optical properties of Bridgman grown n-InSb single crystals, J. Appl. Phys. 90, 1750–1755 (2001)

    Article  ADS  Google Scholar 

  12. V.K. Dixit, B.V. Rodrigues, H.L. Bhat: Growth of InBi_xSb_1-x crystals by rotatory Bridgman method and their characterization, J. Cryst. Growth 217, 40–47 (2000)

    Article  ADS  Google Scholar 

  13. J.C. Woolley, J. Warner: Optical energy-gap variaton in InAs-InSb alloys, Can. J. Phys. 42, 1879–1885 (1964)

    ADS  Google Scholar 

  14. W.M. Coderre, J.C. Woolley: Electrical properties of InAs_xSb_1-x alloys, Can. J. Phys. 46, 1207–1214 (1968)

    ADS  Google Scholar 

  15. C.E.A. Grigorescu, R.A. Stradling: Semiconductor optical and electro-optical devices. In: Handbook of Thin film Devices, Vol. 2, ed. by M.H. Francombe (Academic, New York 2000) pp. 27–62

    Chapter  Google Scholar 

  16. M.Y. Yen, B.F. Levine, C.G. Bethea, K.K. Choi, A.Y. Cho: Molecular beam epitaxial growth and optical properties of InAs_xSb_1-x in 8–12 μ m wavelength range, Appl. Phys. Lett. 50, 927–929 (1987)

    Article  ADS  Google Scholar 

  17. J.D. Kim, D. Wu, J. Wojkowski, J. Piotrowski, J. Xu, M. Razeghi: Long-wavelength InAsSb photoconductors operated at near room temperatures (200–300 K), Appl. Phys. Lett. 68, 99 (1996)

    Article  ADS  Google Scholar 

  18. A. Rogalski, K. Jozwikowski: Intrinsic carrier concentration and effective masses in InAs_xSb_1-x, Infrared Phys. 29, 35–42 (1989)

    Article  ADS  Google Scholar 

  19. I. Kudman, L. Ekstrom: Semiconducting properties of InSb-InAs alloys, J. Appl. Phys. 39, 3385–3388 (1968)

    Article  ADS  Google Scholar 

  20. J.C. Woolley, J. Warner: Preparation of InAs-InSb alloys, J. Electrochem. Soc. 111, 1142–1145 (1964)

    Article  Google Scholar 

  21. K. Sugiyama: Molecular beam epitaxy of InSb films on CdTe, J. Cryst. Growth 60, 450–452 (1982)

    Article  ADS  Google Scholar 

  22. R. Venkataraghavan, K.S.R.K. Rao, M.S. Hegde, H.L. Bhat: Influence of growth parameters on the surface and interface quality of laser deposited InSb/CdTe heterostructures, Phys. Status Solidi (a) 163, 93–100 (1997)

    Article  ADS  Google Scholar 

  23. B.V. Rao, T. Okamoto, A. Shinmura, D. Gruznev, M. Mori, T. Tambo, C. Tatsuyama: Growth temperature effect on the heteroepitaxy of InSb on Si(111), Appl. Surf. Sci. 159/160, 335–340 (2000)

    Article  ADS  Google Scholar 

  24. S.D. Parker, R.L. Williams, R. Droopad, R.A. Stradling, K.W.J. Barnham, S.N. Holmes, J. Laverty, C.C. Phillips, E. Skuras, R. Thomas, X. Zhang, A. Staton-Beven, D.W. Pashley: Observation and control of the amphoteric behaviour of Si doped InSb grown on GaAs by MBE, Semicond. Sci. Technol. 4, 663–676 (1989)

    Article  ADS  Google Scholar 

  25. M. Mori, Y. Nizawa, Y. Nishi, K. Mae, T. Tambo, C. Tatsuyama: Effect of current flow direction on the heteroepitaxial growth of InSb films on Ge/Si(001) substrate heated by direct current, Appl. Surf. Sci. 159/160, 328–334 (2000)

    Article  ADS  Google Scholar 

  26. S.V. Ivanov, A.A. Boudza, R.N. Kutt, N.N. Ledentsov, B.Y. Meltser, S.S. Ruvimov, S.V. Shaposhnikov, P.S. Kopev: Molecular-Beam epitaxial growth of InSb/GaAs(100) and InSb/Si(100) heteroepitaxial layers (Thermodynamic analysis and characterization), J. Cryst. Growth 156, 191–205 (1995)

    Article  ADS  Google Scholar 

  27. P.E. Thompson, J.L. Davis, J. Waterman, R.J. Wagner, D. Gammon, D.K. Gaskill, R. Stahlbush: Use of atomic layer epitaxy buffer for the growth of InSb on GaAs by molecular beam epitaxy, J. Appl. Phys. 69, 7166–7172 (1991)

    Article  ADS  Google Scholar 

  28. B.S. Yoo, M.A. McKee, S.G. Kim, E.H. Lee: Structural and electrical properties of InSb epitaxial films grown on GaAs by low pressure MOCVD, Solid Stat. Commun. 88, 447–450 (1993)

    Article  ADS  Google Scholar 

  29. D.K. Gaskill, G.T. Stauf, N. Bottka: High mobility InSb grown by organometallic vapor-phase-epitaxy, Appl. Phys. Lett. 58, 1905–1907 (1991)

    Article  ADS  Google Scholar 

  30. M.C. Debnath, T. Zhang, C. Roberts, L.F. Cohen, R.A. Stradling: High-mobility InSb thin films on GaAs(001) substrate grown by the two-step growth process, J. Cryst. Growth 267, 17–21 (2004)

    Article  ADS  Google Scholar 

  31. T.R. Yang, Y. Cheng, J.B. Wang, Z.C. Feng: Optical and transport properties of InSb thin films grown on GaAs by metal organic chemical vapor deposition, Thin Solid Films 498, 158–162 (2006)

    Article  ADS  Google Scholar 

  32. T.R. Yang, Z.C. Feng, W. Lu, W.E. Collins: Far infrared reflectance spectroscopy of InSb thin films grown on GaAs by metal-organic vapor deposition, Proc. XIXth Int. Conf. Raman Spectrosc., ed. by P.M. Fredericks, R.L. Frost, L. Rintoul (2004) pp. 629–630

    Google Scholar 

  33. A. Kumar, P.S. Dutta: Growth of long wavelength In_xGa_1-xAs_ySb_1-y layers on GaAs from liquid phase, Appl. Phys. Lett. 89, 162101–162103 (2006)

    Article  ADS  Google Scholar 

  34. C. Peng, N.F. Chen, F. Gao, X. Zhang, C. Chen, J. Wu, Y. Yu: Liquid-phase-epitaxy-grown InAs_xSb_1-x/ GaAs for room-temperature 8–12 μ m infrared detectors, Appl. Phys. Lett. 88, 242108–242110 (2006)

    Article  ADS  Google Scholar 

  35. C.M. Ruiz, J.L. Plaza, V. Bermúdez, E. Diéguez: Study of induced structural defects on GaSb films grown on different substrates by the liquid phase epitaxy technique, J. Phys.: Condens. Matter 14, 12755–12759 (2002)

    ADS  Google Scholar 

  36. Y.Z. Gao, H. Kan, M. Aoyama, T. Yamaguchi: Germanium and zinc-doped p-type InAsSb single crystals with a cutoff wavelength of 12.5 μ m, Jpn. J. Appl. Phys. 39, 2520–2522 (2000)

    Article  ADS  Google Scholar 

  37. Y.Z. Gao, H. Kan, F.S. Gao, X.Y. Gong, T. Yamaguchi: Improved purity of long-wavelength InAsSb epilayers grown by melt epitaxy in fused silica boats, J. Cryst. Growth 234, 85–90 (2002)

    Article  ADS  Google Scholar 

  38. Y.Z. Gao, X.Y. Gong, Y.S. Gui, T. Yamaguchi, N. Dai: Electrical properties of melt-epitaxy-grown InAs_0.04Sb_0.96 layers with cutoff wavelength of 12 μ m, Jpn. J. Appl. Phys. 43, 1051–1054 (2004)

    Article  ADS  Google Scholar 

  39. S.A. Barnett: Direct E 0 energy gaps of bismuth-containing III–V alloys predicted using quantum dielectric theory, J. Vac. Sci. Technol. A 5, 2845–2848 (1987)

    Article  ADS  Google Scholar 

  40. Y. Amemiya, H. Tareo, Y. Sakai: Electrical properties of InSb-based mixed crystals, J. Appl. Phys. 44, 1625–1630 (1973)

    Article  ADS  Google Scholar 

  41. W. Zawadzki: Electron transport in small-gap semiconductors, Adv. Phys. 23, 435 (1974), and In: Handbook on Semiconductors ed. by T. S. Moss (North–Holland, Amsterdam 1982) p. 713

    Article  ADS  Google Scholar 

  42. A. Thiel, H. Koelsch: Studies on indium, Z. Anorg. Chem. 66, 288–321 (1910), in German

    Article  Google Scholar 

  43. V.M. Goldschmidt: Crystal structure and chemical constitution, Trans. Faraday Soc. 25(253), 253–282 (1929)

    Article  Google Scholar 

  44. H. Welker: Über neue halbleitende Verbindungen, Z. Naturforsch. A 7, 744–749 (1952)

    Article  ADS  Google Scholar 

  45. L. Pincherle, J.M. Radcliffe: Semiconducting intermetallic compounds, Adv. Phys, Philos. Mag. Suppl. 5, 271–322 (1956)

    Google Scholar 

  46. H. Welker, H. Wiess: Solid State Physics, Vol. 3 (Academic, New York 1956)

    Google Scholar 

  47. F.A. Cunnell, E.W. Saker: Progress in Semiconductors, Vol. 2 (Heywood, London 1959)

    Google Scholar 

  48. R.A. Smith: Semiconductors (Cambridge Univ. Press, Cambridge 1959)

    MATH  Google Scholar 

  49. M.J. Whelan: Properties of some covalent semiconductors. In: Semiconductors, ed. by J.B. Hannay (Rheinhold, New York 1959)

    Google Scholar 

  50. H.J. Hrostowski: Infrared absorption of semiconductors. In: Semiconductors, ed. by J.B. Hannay (Rheinhold, New York 1959)

    Google Scholar 

  51. K.T. Huang, C.T. Chiu, R.M. Cohen, G.B. Stringfellow: InAsSbBi alloys grown by organometallic vapor phase epitaxy, J. Appl. Phys. 75, 2857–2863 (1994)

    Article  ADS  Google Scholar 

  52. Q. Du, J. Alperin, W.T. Wang: Molecular beam epitaxial growth of GaInSbBi for infrared detector applications, J. Cryst. Growth 175, 849–852 (1997)

    Article  ADS  Google Scholar 

  53. T.P. Humphreys, P.K. Chiang, S.M. Bedair, N.R. Parikh: Metalorganic chemical vapor deposition and characterization of the In-As-Sb-Bi material system for infrared detection, Appl. Phys. Lett. 53, 142–144 (1988)

    Article  ADS  Google Scholar 

  54. K.Y. Ma, Z.M. Fang, D.H. Jaw, R.M. Cohen, G.B. Stringfellow, W.P. Kosar, D.W. Brown: Organometallic vapor phase epitaxial growth and characterization of InAsBi and InAsSbBi, Appl. Phys. Lett. 55, 2420–2422 (1989)

    Article  ADS  Google Scholar 

  55. C.H. Shih, E.A. Peretti: The phase diagram of the system InAs-Sb, Trans. Am. Soc. Met. 46, 389–396 (1954)

    Google Scholar 

  56. T.S. Liu, E.A. Peretti: The indium-antimony system, Trans. Am. Soc. Met. 44, 539–548 (1951)

    Google Scholar 

  57. J.L. Zilko, J.E. Greene: Growth and phase stability of epitaxial metastable InBi_xSb_1-x films on GaAs, J. Appl. Phys. 51, 1549–1564 (1980)

    Article  ADS  Google Scholar 

  58. N.A. Goryunova, N.N. Fedorova: On the question of the isomorphism of compounds of AIII–BV type, J. Tech. Phys. Moscow 24, 1339–1341 (1955)

    Google Scholar 

  59. J.C. Woolley, B.A. Smith, D.G. Lee: Solid solution in the GaSb-InSb system, Proc. Phys. Soc. B 69, 1339–1343 (1956)

    Article  ADS  Google Scholar 

  60. G.B. Stringfellow, P.E. Greene: Calculation of III-V ternary phase diagram In-Ga-As and In-As-Sb, J. Phys. Chem. Solids 30, 1779–1780 (1969)

    Article  ADS  Google Scholar 

  61. P.S. Dutta, T.R. Miller: Engineering phase formation thermo-chemistry for crystal growth of homogeneous ternary and quaternary III-V compound semiconductors from melts, J. Electron. Mater. 29, 956–963 (2000)

    Article  ADS  Google Scholar 

  62. D. Minic, D. Manasijevic, D. Zivkovic, Z. Zivkovic: Phase equilibria in the In-Sb-Bi system at 300 °C, J. Serb. Chem. Soc. 71, 843–847 (2006)

    Article  Google Scholar 

  63. B. Joukoff, A.M. Jean-Louis: Growth of InBi_xSb_1-x single crystals by Czochralski method, J. Cryst. Growth 12, 169–172 (1972)

    Article  ADS  Google Scholar 

  64. A. Iandelli: MX2-Verbindungen der Erdalkali- und Seltenen Erdmetalle mit Gallium, Indium und Thallium, Z. Anorg. Allg. Chem. 330(3), 221–232 (1941), , in German

    Google Scholar 

  65. J.F. Dewald: The kinetics and mechanism of formation of anode films on single crystal InSb, J. Electrochem. Soc. 104, 244–251 (1957)

    Article  Google Scholar 

  66. G.N. Kozhemyakin: Influence of ultrasonic vibration on the growth of InSb crystals, J. Cryst. Growth 149, 266–268 (1995)

    Article  ADS  Google Scholar 

  67. R.K. Akchurin, V.G. Zinovʼev, V.B. Ufimtsev, V.T. Bublik, A.N. Morozov: Donor nature of bismuth in indium antimonide, Sov. Phys. Semicond. 16, 126–129 (1982)

    Google Scholar 

  68. L. Pauling: The Nature of Chemical Bond (Oxford Univ. Press, London 1940)

    MATH  Google Scholar 

  69. V.K. Dixit: Bulk and Thin Film Growth of Pure and Substituted Indium Antimonide for Infrared Detector Applications. Ph.D. Thesis (Indian Institute of Science, Bangalore 2004)

    Google Scholar 

  70. W.L. Bond: Precision lattice constant determination, Acta. Crystallogr. 13, 814–818 (1960)

    Article  Google Scholar 

  71. R. Krishnaswamy: Compounding, zone refining and crystal growing of Indium Antimonide, J. Indian Chem. Soc. LII, 60–63 (1975)

    Google Scholar 

  72. R.K. Bagai, G.L. Seth, W.N. Borle: Growth of high purity indium antimony crystals for infrared detectors, Indian J. Pure Appl. Phys. 21, 441–444 (1983)

    Google Scholar 

  73. T.A. Campbell, J.N. Koster: In situ visualization of constitutional supercooling within a Bridgman–Stockbarger system, J. Cryst. Growth 171, 1–11 (1997)

    Article  ADS  Google Scholar 

  74. D.B. Gadkari, K.B. Lal, A.P. Shah, B.M. Arora: Growth of high mobility InSb crystals, J. Cryst. Growth 173, 585–588 (1997)

    Article  ADS  Google Scholar 

  75. M.H. Lin, S. Kou: Czochralski pulling of InSb single crystals from a molten zone on a solid feed, J. Cryst. Growth 193, 443–445 (1998)

    Article  ADS  Google Scholar 

  76. W.G. Pfann: Principles of zone melting, J. Met. 4, 747–753 (1952)

    Google Scholar 

  77. T.C. Harman: Effect of zone refining variables on the segregation of impurities in indium antimonide, J. Electrochem. Soc. 103, 128–132 (1956)

    Article  Google Scholar 

  78. A.J. Strauss: Distribution coefficients and carrier mobilities in InSb, J. Appl. Phys. 30, 559–563 (1959)

    Article  ADS  Google Scholar 

  79. J.B. Mullin, K.F. Hulme: Orientation dependent distribution coefficients in melt grown InSb crystals, J. Phys. Chem. Solids 17, 1–6 (1960)

    Article  ADS  Google Scholar 

  80. R.K. Mueller, R.L. Jacobson: Growth twins in indium antimonide, J. Appl. Phys. 32, 550–551 (1961)

    Article  ADS  Google Scholar 

  81. A.R. Murray, J.A. Baldrey, J.B. Mullin, O. Jones: A systematic study of zone refining of single crystal indium antimonide, J. Mater. Sci. 1, 14–28 (1966)

    Article  ADS  Google Scholar 

  82. S.G. Parker, O.W. Wilson, B.H. Barbee: Indium antimonide of high perfection, J. Electrochem. Soc. 112, 80–81 (1965)

    Article  Google Scholar 

  83. J. Zhou, M. Larrousse, W.R. Wilcox, L.L. Regel: Directional solidification with ACRT, J. Cryst. Growth 128, 173–177 (1993)

    Article  ADS  Google Scholar 

  84. K.M. Kim: Suppression of thermal convection by transverse magnetic field, J. Electrochem. Soc. 129, 427–429 (1982)

    Article  Google Scholar 

  85. J. Kang, Y. Okano, K. Hoshikawa, T. Fukuda: Influence of a high vertical magnetic field on Te dopant segregation in InSb grown by the vertical gradient freeze method, J. Cryst. Growth 140, 435–438 (1994)

    Article  ADS  Google Scholar 

  86. A.G. Ostrogorsky, H.J. Sell, S. Scharl, G. Müller: Convection and segregation during growth of Ge and InSb crystals by the submerged heater method, J. Cryst. Growth 128, 201 (1993)

    Article  ADS  Google Scholar 

  87. P.S. Dutta, H.L. Bhat, V. Kumar: Numerical analysis of melt-solid interface shapes and growth rates of gallium antimonide in a single-zone vertical Bridgman furnace, J. Cryst. Growth 154, 213–222 (1995)

    Article  ADS  Google Scholar 

  88. R. Venkataraghavan, K.S.R.K. Rao, H.L. Bhat: The effect of growth parameters on the position of the melt-solid interface in Bridgman growth of indium antimonide, J. Phys. D Appl. Phys. 30, L61–L63 (1997)

    Article  ADS  Google Scholar 

  89. N.K. Udayshankar, K. Gopalakrishna Naik, H.L. Bhat: The influence of temperature gradient and lowering speed on the melt-solid interface shape of Ga_xIn_1-xSb alloy crystals grown by vertical Bridgman technique, J. Cryst. Growth 203, 333–339 (1999)

    Article  ADS  Google Scholar 

  90. P.G. Barber, R.K. Crouch, A.L. Fripp, W.J. Debnam, R.F. Berry, R. Simchick: Modelling melt-solid interfaces in Bridgman growth, J. Cryst. Growth 97, 672–674 (1989)

    Article  ADS  Google Scholar 

  91. T.A. Campbell, J.N. Koster: Growth rate effects during indium-antimony crystal growth, Crystal. Res. Technol. 34, 275–283 (1999)

    Article  Google Scholar 

  92. M.J. Hui, K. Beatty, K. Blackmore, K. Jackson: Impurity distribution in InSb single crystals, J. Cryst. Growth 174, 245–249 (1997)

    Article  ADS  Google Scholar 

  93. T.A. Campbell, J.N. Koster: Compositional effects on solidification of congruently melting InSb, Crystal. Res. Technol. 33, 717–731 (1998)

    Article  Google Scholar 

  94. T. Duffar, C. Potard, P. Dusserre: Growth analysis of the InSb compound by a calorimetric method in microgravity results of the Spacelab-D1 experiment, J. Cryst. Growth 92, 467–478 (1988)

    Article  ADS  Google Scholar 

  95. R. F. Redden, W. F. H. Micklethwait: Final Report to the Canadian Space Agency, MiM/QUELD Increment II (1998)

    Google Scholar 

  96. W.F.H. Micklethwaite: Bulk growth of InSb and related ternary alloys. In: Bulk Growth of Electronic, Optical and Optoelectronic Materials, ed. by P. Capper (Wiley, Chichester 2005)

    Google Scholar 

  97. W.P. Allred, R.T. Bate: Anisotropic segregation in InSb, J. Electrochem. Soc. 108, 258–261 (1961)

    Article  Google Scholar 

  98. K. Terashima: Growth of highly homogeneous InSb single crystals, J. Cryst. Growth 60, 363–368 (1982)

    Article  ADS  Google Scholar 

  99. D.T.J. Hurle, O. Jones, J.B. Mullin: Growth of semiconducting compounds from non-stoichiometric melts, Solid Stat. Electron. 3, 317–320 (1961)

    Article  ADS  Google Scholar 

  100. J.W. Faust Jr., H.F. John: The growth of semiconductor crystals from solution using the twin-plane reentrant-edge mechanism, J. Phys. Chem. Solids 23, 1407–1415 (1962)

    Article  Google Scholar 

  101. K. Morizane, A.F. Witt, H.C. Gatos: Impurity distributions in single crystals. I. Impurity striations in nonrotated InSb crystals, J. Electrochem. Soc. 114, 51–52 (1966)

    Article  Google Scholar 

  102. H.C. Gatos, A.J. Strauss, M.C. Lavine, T.C. Harmon: Impurity striations in unrotated crystals of InSb, J. Appl. Phys. 32, 2057–2058 (1961)

    Article  ADS  Google Scholar 

  103. K.W. Benz, G. Müller: GaSb and InSb crystals grown by vertical and horizontal travelling heater method, J. Cryst. Growth 46, 35–42 (1979)

    Article  ADS  Google Scholar 

  104. R.W. Hamaker, W.B. White: Mechanism of single-crystal growth in InSb using temperature-gradient zone melting, J. Appl. Phys. 39, 1758–1765 (1968)

    Article  ADS  Google Scholar 

  105. N.K. Udayashankar, H.L. Bhat: Growth and characterization of indium antimonide and gallium antimonide crystals, Bull. Mater. Sci. 24, 445–453 (2001)

    Article  Google Scholar 

  106. R. Venkataraghavan, K.S.R.K. Rao, H.L. Bhat: The effect of temperature gradient and ampoule velocity on the composition and other properties of Bridgman-grown indium antimonide, J. Cryst. Growth 186, 322–328 (1998)

    Article  ADS  Google Scholar 

  107. V.M. Glazov, K.B. Poyarkov: InSb-InAs alloys prepared by rapid quenching (106–108 K/s), Inorg. Mater. 36, 991–996 (2000)

    Article  Google Scholar 

  108. A.M. Jean-Louis, B. Ayrault, J. Vargas: Properties of InSb_1-xBi_x alloys. 2. Optical absorption, Phys. Status Solidi (b) 34, 341–342 (1969)

    Article  ADS  Google Scholar 

  109. T. Ozawa, Y. Hayakawa, M. Kumagawa: Growth of III-V ternary and quaternary mixed crystals by the rotationary Bridgman method, J. Cryst. Growth 109, 212–217 (1991)

    Article  ADS  Google Scholar 

  110. M. Kumagawa, T. Ozawa, Y. Hayakawa: A new technique for the growth of III–V mixed crystal layers, Appl. Surf. Sci. 33/34, 611–618 (1988)

    Article  ADS  Google Scholar 

  111. M. Kumagawa, A.F. Witt, M. Lichtensteiger, H.C. Gatos: Current-controlled growth and dopant modulation in liquid phase epitaxy, J. Electrochem. Soc. 120, 583–584 (1973)

    Article  Google Scholar 

  112. I. Melngailis, A.R. Calawa: Solution regrowth of planar InSb laser structures, J. Electrochem. Soc. 113, 58–59 (1966)

    Article  Google Scholar 

  113. D.E. Holmes, G.S. Kamath: Growth-characteristics of LPE InSb and InGaSb, J. Electron. Mater. 9, 95–110 (1980)

    Article  ADS  Google Scholar 

  114. R. Venkataraghavan, N.K. Udayashankar, B.V. Rodrigues, K.S.R.K. Rao, H.L. Bhat: Design and fabrication of liquid phase epitaxy system, Bull. Mater. Sci. 22, 133–137 (1999)

    Article  Google Scholar 

  115. V.K. Dixit, B.V. Rodrigues, R. Venkataraghavan, K.S. Chandrasekharan, B.M. Arora, H.L. Bhat: Growth of InSb epitaxial layers on GaAs(001) substrates by LPE and their characterizations, J. Cryst. Growth 235, 154–160 (2002)

    Article  ADS  Google Scholar 

  116. M. Elwenspoek: On the estimate of the supersaturation of nonelectrolyte solutions from solubility data, J. Cryst. Growth 76, 514–516 (1986)

    Article  ADS  Google Scholar 

  117. A.S. Popov, A.M. Koinova, S.L. Tzeneva: The In-As-Sb phase diagram and LPE growth of InAsSb layers on InAs at extremely low temperatures, J. Cryst. Growth 186, 338–343 (1998)

    Article  ADS  Google Scholar 

  118. L.O. Bubulac, A.M. Andrews, E.R. Gertner, D.T. Cheung: Backside illuminated InAsSb/GaSb broadband detectors, Appl. Phys. Lett. 36, 734 (1980)

    Article  ADS  Google Scholar 

  119. M.C. Wagener, J.R. Botha, A.W.R. Leitch: Substitutional incorporation of arsenic from GaAs substrates into MOVPE grown InSbBi thin films, Physica B 308-310, 866–869 (2001)

    Article  ADS  Google Scholar 

  120. M.C. Wagener, J.R. Botha, A.W.R. Leitch: Characterization of secondary phases formed during MOVPE growth of InSbBi mixed crystals, J. Cryst. Growth 213, 51–56 (2000)

    Article  ADS  Google Scholar 

  121. V.B. Ufimtsev, V.G. Zinovev, M.R. Raukhman: Heterogeneous equilibria in the system In-Sb-Bi and liquid phase epitaxy of InSb based solid solution, Inorg. Mater. 15, 1371–1374 (1979)

    Google Scholar 

  122. Y.Z. Gao, T. Yamaguchi: Liquid phase epitaxial growth and properties of InSbBi films grown from In, Bi and Sn solutions, Cryst. Res. Technol. 34, 285–292 (1999)

    Article  Google Scholar 

  123. V.K. Dixit, K.S. Keerthi, P. Bera, H.L. Bhat: Growth of InBi_xSb_1-x films on GaAs(001) substrates using liquid phase epitaxy and their characterization, J. Cryst. Growth 241, 171–176 (2002)

    Article  ADS  Google Scholar 

  124. K.T. Huang, C.T. Chiu, R.M. Cohen, G.B. Stringfellow: InBi_xAs_ySb_1-x-y alloys grown by organometallic vapor-phase epitaxy, J. Appl. Phys. 75, 2857–2862 (1994)

    Article  ADS  Google Scholar 

  125. Q. Du, J. Alperin, W.T. Wang: Molecular beam epitaxial growth of GaInSbBi for infrared detector applications, J. Cryst. Growth 175/176, 849–852 (1997)

    Article  ADS  Google Scholar 

  126. M. Oszwaldowski, T. Berus, J. Szade, K. Józwiak, I. Olejniczak, P. Konarski: Structural properties of InSbBi and InSbAsBi thin films prepared by the flash-evaporation method, Cryst. Res. Technol. 36, 1155–1171 (2001)

    Article  Google Scholar 

  127. P. Haasen: Twinning in indium antimonide, J. Met. 209, 30–32 (1957)

    Google Scholar 

  128. C.G. Darwin: The reflexion of x-rays from imperfect crystals, Philos. Mag. 43, 800–829 (1922)

    Article  Google Scholar 

  129. J. Auleytner: X-Ray Methods in the Study of Defects in Single Crystals (Pergamon, Oxford 1967)

    Google Scholar 

  130. P.F. Fewster: X-Ray Scattering from Semiconductors (Imperial College Press, London 2000)

    Book  MATH  Google Scholar 

  131. E. Gartstein, R.A. Cowley: The intensity patterns with a multicrystal diffractometer observed at a synchrotron source, Z. Naturforsch. A 48, 519–522 (1992)

    ADS  Google Scholar 

  132. E. Gartstein, Y. Khait, V. Richter: An x-ray diffraction study of implantation damage in InSb reduced by a magnetic field, J. Phys. D Appl. Phys. 28, A291–A294 (1995)

    Article  ADS  Google Scholar 

  133. A.H. Chin, R.W. Schoenlein, T.E. Glover, P. Balling, W.P. Leemans, C.V. Shank: Ultrafast structural dynamics in InSb probed by time-resolved x-ray diffraction, Phys. Rev. Lett. 83, 336–339 (1999)

    Article  ADS  Google Scholar 

  134. M.R. Surowiec, B.K. Tanner: X-ray topography study of dislocations around indents on {111} surfaces of indium-antimonide, J. Appl. Cryst. 20, 499–504 (1987)

    Article  Google Scholar 

  135. D. Briggs, M.P. Seah: Practical Surface Analysis by Auger and x-ray Photoelectron Spectroscopy (Wiley, New York 1984), , Appendix 4

    Google Scholar 

  136. J.H. Scofield: Hartree–Slater subshell photoionization cross sections at 1254 and 1487 eV, J. Electron Spectrosc. Relat. Phenom. 8, 129–137 (1976)

    Article  Google Scholar 

  137. D.R. Penn: Quantitative chemical analysis by ESCA, J. Electron. Spectrosc. Relat. Phenom. 9, 29–40 (1976)

    Article  Google Scholar 

  138. R.J. Egan, V.W.L. Chin, T.L. Tansley: Dislocation scattering effects on electron mobility in InAsSb, J. Appl. Phys. 75, 2473–2476 (1994)

    Article  ADS  Google Scholar 

  139. C. Bocchi, C. Ferrari, P. Franzosi, A. Bosacchi, S. Franchi: Accurate determination of lattice mismatch in the epitaxial AlAs/GaAs system by high-resolution x-ray diffraction, J. Cryst. Growth 132, 427–434 (1993)

    Article  ADS  Google Scholar 

  140. C.R. Wie: High resolution x-ray diffraction characterization of semiconductor structures, Mater. Sci. Eng. R 13, 1–56 (1994)

    Article  Google Scholar 

  141. X. Weng, R.S. Goldman, D.L. Partin, J.P. Heremans: Evolution of structural and electronic properties of highly mismatched InSb films, J. Appl. Phys. 88, 6276–6286 (2000)

    Article  ADS  Google Scholar 

  142. E.O. Kane: Band structure of indium antimonide, J. Phys. Chem. Solids 1, 249–261 (1957)

    Article  ADS  Google Scholar 

  143. G. Dresselhaus, A.F. Kip, C. Kittel, G. Wagoner: Cyclotron and spin resonance in indium antimonide, Phys. Rev. 98, 556–557 (1955)

    Article  ADS  Google Scholar 

  144. H.P.R. Frederikse, W.R. Hosler: Galvanomagnetic effects in n-type indium antimonide, Phys. Rev. 108, 1136 (1957)

    Article  ADS  Google Scholar 

  145. L.M. Roth, B. Lax, S. Zwerdling: Theory of optical magneto-absorption effects in semiconductors, Phys. Rev. 114, 90–103 (1959)

    Article  ADS  Google Scholar 

  146. H.P.R. Frederikse, W.R. Hosler: Galvanomagnetic effects in p-type indium antimonide, Phys. Rev. 108, 1146–1151 (1957)

    Article  ADS  Google Scholar 

  147. C. Hermann, C. Weisbuch: k ⋅ p perturbation theory in III–V compounds and alloys reexamination, Phys. Rev. B 15, 823–833 (1977)

    Article  ADS  Google Scholar 

  148. J.A. van Vechten, O. Berolo, J.C. Woolley: Spin-orbit splitting in compositionally disordered semiconductors, Phys. Rev. Lett. 29, 1400–1403 (1972)

    Article  ADS  Google Scholar 

  149. J.I. Vyklyuk, V.G. Deibuk, I.M. Rarenko: Calculation of absorption coefficients of InBi_xSb_1-x solid solutions, Semicond. Phys. Quantum Electron. Optoelectron. 3, 174–177 (2000)

    Google Scholar 

  150. S.D. Smith, T.S. Moss, K.W. Taylor: The energy-dependence of electron mass in indium antimonide determined from measurements of the infrared Faraday effect, J. Phys. Chem. Solids 11, 131–139 (1959)

    Article  ADS  Google Scholar 

  151. B. Bansal, V. Venkataraman: Magnetic field induced band depopulation in intrinsic InSb: a revisit, J. Phys.: Condens. Matter 17, 7053–7060 (2005)

    ADS  Google Scholar 

  152. C. Hilsum, A.C. Rose-Innes: Semiconducting III-V Compounds (Pergamon, New York 1961) pp. 128–

    MATH  Google Scholar 

  153. H.J. Hrostowski, F.J. Morin, T.H. Geballe, G.H. Wheatley: Hall effect and conductivity of InSb, Phys. Rev. 100, 1672–1672 (1955)

    Article  ADS  Google Scholar 

  154. H. Fritsche, K. Lark–Horovitz: Electrical properties of p-type indium antimonide at low temperatures, Phys. Rev. 99, 400–405 (1955)

    Article  ADS  Google Scholar 

  155. R. Barrie, J.T. Edmond: A study of the conduction band of InSb, J. Electron. 1, 161–170 (1955)

    Google Scholar 

  156. K. Vinogradova, V. Galavanov, D. Nasledov: Production of high purity indium antimonide by zone fusion, Sov. Phys. Tech. Phys. 2, 1832–1839 (1957)

    Google Scholar 

  157. K. Vinogradova, V. Galavanov, D. Nasledov, L. Soloveva: Production of high purity single crystals of InSb by zone melting, Sov. Phys. Solid. Stat. 1, 364–367 (1959)

    Google Scholar 

  158. O. Madelung, H. Weiss: Die elektrischen Eigenschaften von Indiumantimoniden, Z. Naturforsch. 9a, 527–534 (1954)

    ADS  Google Scholar 

  159. O. Drachenko, B. Bansal, V.V. Rylkov, J. Galibert, V.K. Dixit, J. Leotin: InAsSb/GaAs hetero-epitaxial crystals studied by cyclotron resonance measurements, 12th Int. Conf. Narrow Gap Semicond. (Toulouse, 2005)

    Google Scholar 

  160. N. Miura, G. Kido, S. Chikazumi: Infrared cyclotron resonance in InSb, GaAs and Ge in very high magnetic fields, Solid State Commun. 18, 885–888 (1976)

    Article  ADS  Google Scholar 

  161. B.R. Nag: Electron Transport in Compound Semiconductors (Springer, Berlin 1980)

    Book  Google Scholar 

  162. W. Zawadzki: Electron transport in small gap semiconductors, Adv. Phys. 23, 435–455 (1974)

    Article  ADS  Google Scholar 

  163. J.A. van Vechten, T.K. Bergstresser: Electronic structures of semiconductor alloys, Phys. Rev. B 1, 3351–3358 (1970)

    Article  ADS  Google Scholar 

  164. O. Berolo, J.C. Woolley, J.A. van Vechten: Effect of disorder on conduction band effective mass, valence band spin orbit splitting and direct band gap in III–V alloys, Phys. Rev. B 8, 3794–3798 (1973)

    Article  ADS  Google Scholar 

  165. E.J. Johnson: Optical properties of III–V compounds. In: Semiconductors and Semimetals, Vol. 3, ed. by R.K. Willardson, A.C. Beer (Academic, New York 1967) pp. 154–

    Google Scholar 

  166. C.E.A. Grigorescu, R.A. Stradling: Antimony-based infrared materials and devices. In: Handbook of Thin Film Devices, Vol. 2, ed. by M.H. Francombe (Academic, New York 2000)

    Chapter  Google Scholar 

  167. S.W. Kurnick, J.M. Powell: Optical absorption in pure single crystal InSb at 298 K and 78 K, Phys. Rev. 116, 597–604 (1959)

    Article  ADS  Google Scholar 

  168. W.G. Spitzer, H.Y. Fan: Infrared absorption in indium antimonide, Phys. Rev. 106, 1893–1894 (1955)

    Article  ADS  Google Scholar 

  169. T.S. Moss: Optical Properties of Semiconductors (Butterworths, London 1959)

    Google Scholar 

  170. O. Madelung (Ed.): Semiconductors – Basic Data (Springer, Berlin 1996)

    Google Scholar 

  171. Y.P. Varshni: Temperature dependence of energy gap in semiconductors, Physica 34, 149–150 (1967)

    Article  ADS  Google Scholar 

  172. M. Cardona: Renormalization of the optical response of semiconductors by electron-phonon interaction, Phys. Status Solidi (a) 188, 1209–1232 (2001)

    Article  ADS  Google Scholar 

  173. R.H. Parmenter: Energy levels of a disordered alloy, Phys. Rev. 97, 587–598 (1955)

    Article  ADS  MATH  Google Scholar 

  174. L. Malikova, W. Krystek, F.H. Pollak, N. Dai, A. Cavus, M.C. Tamargo: Temperature dependence of the direct gaps of ZnSe and Zn_0.56Cd_0.44Se, Phys. Rev. B 54, 1819–1824 (1996)

    Article  ADS  Google Scholar 

  175. L. Vina, S. Logothetidis, M. Cardona: Temperature dependance of the dielectric function of germanium, Phys. Rev. B 30, 1979–1991 (1984)

    Article  ADS  Google Scholar 

  176. H.H. Wieder, A.R. Clawson: Photo-electronic properties of InAs_0.07Sb_0.93 films, Thin Solid Films 15, 217–221 (1973)

    Article  ADS  Google Scholar 

  177. Y.B. Li, S.S. Dosanjh, I.T. Ferguson, A.G. Norman, A.G. de Oliveira, R.A. Stradling, R. Zallen: Raman scattering in InAs_xSb_1-x alloys grown on GaAs by molecular beam epitaxy, Semicond. Sci. Technol. 7, 567–570 (1992)

    Article  ADS  Google Scholar 

  178. E.H. Reihlen, M.J. Jou, Z.M. Fang, G.B. Stringfellow: Optical absorption and emission of InP_1-xSb_x alloys, J. Appl. Phys. 68, 4604–4609 (1990)

    Article  ADS  Google Scholar 

  179. Y.S. Gao, X.D. Gong, T. Yamaguchi: Optical properties of InAsSb single crystals with cutoff wavelengths of 8–12 μ m grown by melt-epitaxy, J. Appl. Phys. 45, 5732–5734 (2006)

    Article  Google Scholar 

  180. B. Bansal, V. K. Dixit, V. Venkataraman, H. L. Bhat: Alloying induced degradation of the absorption edge of InAs_xSb_1-x, Appl. Phys. Lett. 90, 101905(1–3) (2007)

    Google Scholar 

  181. Y.Z. Gao, H. Kan, F.S. Gao, X.Y. Gong, T. Yamaguchi: Improved purity of long-wavelength InAsSb epilayers grown by melt epitaxy in fused silica boats, J. Cryst. Growth 234, 85–90 (2002)

    Article  ADS  Google Scholar 

  182. M.A. Marciniak, R.L. Hengehold, Y.K. Yeo, G.W. Turner: Optical characterization of molecular beam epitaxially grown InAsSb nearly lattice matched to GaSb, J. Appl. Phys. 84, 480–488 (1998)

    Article  ADS  Google Scholar 

  183. B. Bansal: Construction of a 17 Tesla Pulsed Magnet and Effect of Arsenic Alloying and Heteroepitaxy on Transport and Optical Properties of Indium Antimonide. Ph.D. Thesis (Indian Institute of Science, Bangalore 2004)

    Google Scholar 

  184. L. Bernstein, R.J. Beals: Thermal expansion and related bonding problems of some III–V compound semiconductors, J. Appl. Phys. 32, 122–123 (1961)

    Article  ADS  Google Scholar 

  185. A. Jordan: Estimated thermal diffusivity, Prandtl number and Grashof number of molten GaAs, InP GaSb J. Cryst. Growth 71, 551–558 (1985)

    Article  ADS  Google Scholar 

  186. J.R. Dixon, J.K. Furdyna: Measurement of the static dielectric constant of the InSb lattice via gyrotropic sphere resonances, Solid State Commun. 35, 195–198 (1980)

    Article  ADS  Google Scholar 

  187. T. Ashley, C.T. Elliott: Operation and properties of narrow gap semiconductor devices near room temperature using nonequilbrium techniques, Semicond. Sci. Technol. 6, C99–C105 (1991)

    Article  Google Scholar 

  188. Z. Djuric, V. Jovic, M. Matic, Z. Jaksic: IR photodetector with exclusion effect and self-filtering n+ layer, Electron. Lett. 26, 929–931 (1990)

    Article  Google Scholar 

  189. I. Bloom, Y. Nemirovsky: Surface passivation of backside-illuminated indium antimonide focal plane array, IEEE Trans. Electron. Dev. 40, 309–314 (1993)

    Article  ADS  Google Scholar 

  190. E. Michel, J. Xu, J.D. Kim, I. Ferguson, M. Razeghi: InSb infrared photodetectors on Si substrates grown by molecular beam epitaxy, IEEE Photon. Technol. Lett. 8, 673–675 (1996)

    Article  ADS  Google Scholar 

  191. M. Razeghi: Overview of antimonide based III–V semiconductor epitaxial layers and their applications at the center for quantum devices, Eur. Phys. J. PA 23, 149–205 (2003)

    ADS  Google Scholar 

  192. A. Rogalski: Heterostructure infrared photodiodes, Semicond. Phys. Quantum Electron. Optoelectron. 3, 111–120 (2000)

    Google Scholar 

  193. S.A. Solin, T. Thio, D.R. Hines, J.J. Heremans: Enhanced room-temperature geometric magnetoresistance in inhomogeneous narrow-gap semiconductors, Science 289, 1530–1532 (2000)

    Article  ADS  Google Scholar 

  194. M. Oszwaldowski: Hall sensors based on heavily doped n-InSb thin films, Sens. Actuators A 68, 234–237 (1998)

    Article  Google Scholar 

  195. J. Heremans, D.L. Partin, C.M. Thrush, L. Green: Narrow gap semiconductor magnetic field sensors and applications, Semicond. Sci. Technol. 8, S424–S430 (1993)

    Article  ADS  Google Scholar 

  196. J. Heremans: Solid state magnetic field sensors and applications, J. Phys. D Appl. Phys. 26, 1149 (1993)

    Article  ADS  Google Scholar 

  197. W. Shan, W. Walukiewicz, J.W. Ager III, E.E. Haller, J.F. Geisz, D.J. Friedman, J.M. Olson, S.R. Kurtz: Band anticrossing in GaInNAs alloys, Phys. Rev. Lett. 82, 1221–1224 (1999)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Vijay K. Dixit or Handady L. Bhat .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag

About this chapter

Cite this chapter

Dixit, V.K., Bhat, H.L. (2010). Growth and Characterization of Antimony-Based Narrow-Bandgap III–V Semiconductor Crystals for Infrared Detector Applications. In: Dhanaraj, G., Byrappa, K., Prasad, V., Dudley, M. (eds) Springer Handbook of Crystal Growth. Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74761-1_11

Download citation

Publish with us

Policies and ethics